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Confinement and translocation of macromolecules in and
through different small geometries not only are of academic

interest but also exert profound influence on many real applica-
tions, such as size exclusion chromatography, ultrafiltration, and
controlled release. Moreover, biological macromolecules (proteins,
DNA, and RNA) are often confined inside various structures
composed of proteins, including ribosome channels, chaperons,
viral capsids, and nuclear pores, to name a few. Recently, we have
experimentally studied how polymer chains with different topol-
ogies are driven through a cylindrical pore by an elongation
flow,1,2 have investigated the influence of solvent quality and
pore size,3 have measured the hydrodynamic force required to
pull a chain out of a core�shell polymeric micelle,4 and have
developed an effective ultrafiltration method to separate polymer
chains by differences in chain topology rather than current
methods that separate according to hydrodynamic sizes.5

Earlier theoretical treatments of geometrical confinement of
polymer chains follow the pioneering 1969 studies by Casassa
and Tagami6 and Edwards and Freed,7 who use classical eigen-
function expansion methods for solving diffusion equations, as
detailed by Carslaw and Jaeger.8 Later, using a Rouse model,9 de
Gennes10 and Pincus11 predict that linear polymer chains in a
dilute solution can undergo a first-order coil-to-stretch transition
in an elongation flow field at a critical (minimum) flow rate (qc).
This elongation thus enables the chain to pass through a much
smaller cylindrical pore than its coiled size for sufficiently strong
hydrodynamic drag forces, as schematically represented in Figure 1.
de Gennes and Pincus assume that a confined chain may be
approximated as a string of nondraining hard spheres (blobs) and

use this simple model to predict that qc is independent of both
the chain length and pore size, more specifically, that qc = kBT/
12πη, kBT/3πη, or kBT/8η, depending on whether each small
confined space occupied by a subchain, designated by “2R” in
Figure 1, is considered as a cylinder, a cube, or a sphere, where kB,
T, and η are Boltzmann’s constant, the absolutely temperature,
and the solvent viscosity, respectively. The quantitative compar-
isons below take the small confined space as a cylinder because
this physically reasonable choice corresponds more closely to the
real situation inside the tube.

We have experimentally confirmed the existence of a critical
flow rate for the passage of linear chains through a small cylindrical
pore and of the first-order coil-to-stretch transition.1 However,
our measured qc decreases as the pore size increases,

2 and the mea-
sured values under various experimental conditions are 102�103

times smaller than those predicted using the blob model.10 To
explain these discrepancies, we have again considered the full
draining limit in which each subchain inside the pore is char-
acterized by an effective subchain length (Le) along the direction
of the elongation flow. Using a scaling argument relating the pore
diameter (D) and the number of Kuhn segments (N) per
subchain, i.e., D = kNα, we have derived2

qc ¼ kBT
12η

D
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ABSTRACT: Using recently developed analytical Green’s function/numerical
inverse Laplace transform methods, we calculate the hydrodynamic drag and
confinement forces on a linear Gaussian chain inside an interacting and impenetrable
cylindrical tube in the free draining limit. Equating the two forces leads to an
estimation of the critical (minimum) flow rate (qc) to drag the chain through the
tube. The estimated qc is compared with our measured qc in theta solutions as well as
with our previous scaling argument for a variety of experimental conditions (solvent
quality and tube radius, R). Satisfactory agreement between the calculated and
observed critical flow rates reveals that the previous description by de Gennes of a
linear chain confined in a tube as a series of hard spheres (blobs) significantly
underestimates the hydrodynamic drag force, such that the predicted qc for the hard
sphere model is 102�103 times higher than observed. The calculations also confirm
our previous scaling argument that qc decreases with increasing R, thus departing from the hard-sphere blob prediction that qc is
independent of R. More importantly, the calculation describes how interactions with the tube walls affect chain confinement.

http://pubs.acs.org/action/showImage?doi=10.1021/ma202071b&iName=master.img-000.jpg&w=164&h=123


9864 dx.doi.org/10.1021/ma202071b |Macromolecules 2011, 44, 9863–9866

Macromolecules ARTICLE

where kBT/12η is the critical flow rate (qc,HS) when each subchain
(blob) is treated as a hard sphere, l is theKuhn length,Le = lN/

√
3, k

is a constant that is proportional to l, and 0.5 e α e 0.6 with the
lower and upper limits, respectively, for theta and good solvents.
Equation 1 enables qualitatively explaining why the observed qc are
much smaller than those predicted by the hard-sphere blob model
and why they decrease with increasing the pore size.

Recently, Freed12 has applied his Laplace�Green’s function/
numerical inverse Laplace transform methods to evaluate quan-
titatively the confinement free energy and drag force for the flow
of linear (theta solution) chains through a cylindrical tube whose
length far exceeds that of the chain and whose walls present the
whole range of interactions (including repulsive and attractive
boundary conditions). The evaluation of the drag force exhibits
remarkable advantages of the Laplace�Green’s function meth-
ods over the traditional eigenfunction expansion schemes, espe-
cially for general interactions between the chain and the tube
walls. The more cumbersome traditional methods would require
(a) the numerical solution of a transcendental equation to enable
introduction of the eigenfunctions, (b) the introduction of
doubly infinite expansions in eigenfunctions for the general case,
and (c) the numerical evaluation of the radial integral for each
term in the sums, integrals in the series expansions that depend
on the eigenvalues from the transcendental equations. The
Laplace�Green’s function approach, in contrast, requires only
a numerical inverse transform of a closed form analytical expres-
sion and is, therefore, farmore efficient than the traditionalmethods,
especially (1) in the intermediate range wherein the chain and
the pore are of comparable sizes and (2) for the practically
important,13 but mathematically rather challenging, systems with
finite, nonzero polymer�pore wall interactions.

In order to invoke the free draining limit, Freed andWu consider
a chain segment (“blob”) with N Kuhn segments and an effective
lengthLe along the tubewhich thus occupies a volume ofV= 2πRg

3.
The average segment concentration c =N/V∼ c*, the chain overlap
concentration, where polymer dynamics are closer to those pre-
dicted by a Rouse, free draining model than a Zimm, nondraining
model because solvent molecules are forced to flow through the
tube and each confined subchain must be draining. Since analytical
calculations with partially screened hydrodynamics are not possible
for the cylindrical geometry, the following comparison of their
theory with experiment serves as a stringent test of this assumption.

The theoretical calculations of Freed and Wu12 enable the
quantitative determination, without adjustable parameters, of the
critical flow rate (qc) for an elongation flow to begin permitting a
linear polymer chain in a theta solution to pass through a small
cylindrical tube. To define the notation and facilitate the discus-
sion, a brief review of some key equations from ref 12 is required.
The chain is immersed in a Poiseuille flow of a fluid with viscosity
η and pressure drop of ΔP/Δx per unit length. The total drag
force (Fh) on the chain in the free draining limit is the average of
the fluid velocity v(r) over the chain conformations, integrated
over all the Kuhn segments in the chain, namely

Fh ¼ �ζ
Z N

0
dτ Æv½rðτÞ�æ ð2Þ

where r(τ) represents the continuous chain conformation of the
confined chain segments and ζ = 3πηl is the friction coefficient of
individual Kuhn segments. The Poiseuille flow implies that the
fluid velocity in the cylinder has the profile

vðrÞ ¼ � 4
η

ΔP
Δx

ðR2 � r2Þ ð3Þ

Let F(r,N,c) denote the average chain density at the radial
distance (r) from the tube center, whereupon the Laplace
transform of Fh in the free draining limit can be written as

FhðN , c, RÞ ¼ �ζL �1f
Z R

0
2πrvðrÞFðE, c, rÞ drg ð4Þ

where F(E,c,r) =
R
dN exp(�EN)F(E,c,r) and L �1 denotes the

inverse Laplace transform. The ability of deriving a closed form
expression for the integral in braces critically facilitates evaluating
the numerical inverse Laplace transform for arbitrary polymer�
surface interaction parameters (c, the dimensionless interaction
energy per unit length). When c < 0, the tube surface is repulsive,
while c > 0 describes attractive walls. The chain partition function
Zconfine is evaluated from the chain distribution Green function
G(r,r0;N,c,R) by

ZconfineðN , c,RÞ ¼ expð�Ac=kBTÞ

¼
Z Z

dr dr0 Gðr, r0;N , c,RÞ ð5Þ

whereAc is the free energy of confinement and the integral is over
the volume inside the cylinder. The Laplace transform of the
chain density F(r;E,c,R) is evaluated from G(r,r0;E,c,R) as

Fðr; E, c, RÞZconfineðN , c,RÞ
¼

Z Z
dr0 dr00 Gðr0, r; E, c,RÞGðr, r00; E, c,RÞ ð6Þ

The Laplace transform of the confinement partition function and
the right-hand side of eq 6 are both evaluated analytically.

Figure 2 exhibits the calculated confinement free energy for
cR = �1000. Actually, when cR = �20, the surface is already
sufficiently repulsive that it may be treated as a completely
repulsive surface.12 A fit to the data in Figure 2 yields

Ac ≈ kBT 1:05 þ 5:78
Rg

R

� �2
" #

ð7Þ

Figure 1 suggests that the chain inside the tube may be de-
composed into a series of subchains, each of which occupies a
small cylindrical space. Because the subchains are statistically

Figure 1. Schematic representation of a linear chain in a dilute solution
before and after being dragged into a long cylindrical tube with a radius
smaller than its radius of gyration.
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equivalent, Ac equals the product of the confinement free energy
of each subchain and the number of subchains. In other words,
we only need to consider the first subchain that enters the tube
and may ignore the chain length as long as the chain is much
shorter than the tube length. This assumption physically means
that the flow is critical and that it is only necessary to drag or push
the first subchain into the tube because the rest of the chain
simply follows the strong flow. Each subchain has the size Rg∼ R,
so that the confinement force (fc) on each subchain is

fc ¼ Ac

Vcylinder
πR2 ¼ 3:42kBT

R
ð8Þ

where Ac/Vcylinder is the osmotic pressure generated by the
subchain inside the tube and Vcylinder is the small volume oc-
cupied by each subchain. Further, the evaluation of the integrals
in eq 6 leads to F(r;E,c,R)Zconfine(N,c,R) that has been inserted
into eq 4 to yield the hydrodynamic drag force as12

Fh ¼ 4
η
ζ
ΔP
Δx

R4N
Rg

2 FredðN , cRÞ ¼ 24ζR4

ηl2
ΔP
Δx

FredðN , cRÞ

ð9Þ

where Rg
2 = Nl2/6 for a Gaussian chain, ΔP/Δx is related to the

flow rate (q) in classic fluid mechanics as q = (πR4/8η)(|ΔP/Δx|),
and Fred(N,cR) is a reduced dimensionless function. Note
that q is used to denote the flow rate instead of J in ref 12 to be
consistent with the notation in refs 1�5. In the limit of a
completely repulsive surface (cR f �∞),12 the theory yields

FredðN , cRÞ = 0:741
Rg

R

� �2

þ 0:010
Rg

R

� �4

ðfor ðRg=RÞ2 > ∼0:7Þ ð10Þ

while for a less repulsive surface, Fred(N,cR) can drop∼15% as cR
ranges from�20 to�2 for Rg = R. The combination of eqs 9 and
10 leads to

Fh =
192ς
πl2

q 0:741
Rg

R

� �2

þ 0:010
Rg

R

� �4
" #

ð11Þ

Following similar arguments, Fh equals the product of the
hydrodynamic force experienced per subchain (fh) and the

number of subchains. Since each subchain is characterized by
Rg ∼ R

fh =
144ς
πl2

q ð12Þ

Therefore, by increasing q, the critical flow rate (qc) at which
fh = fc emerges as

qc ¼ qc, HS
l

10:5R
ð13Þ

where qc,HS = kBT/12η is the hard-sphere approximation that
involves treating each subchain as a randomly moving hard
sphere inside a small cylinder [πR2(2R)],10 l ∼ 1 nm for
typical linear flexible polymer chains, and R is in units of nm.
Equation 13 qualitatively supports our previous scaling argu-
ment summarized in eq 1; i.e., qc is inversely proportional to
R in theta solutions (α = 0.5).

Figure 3 demonstrates that the two measured values of
qc/qc,HS = 9.17 � 10�3 and 6.55 � 10�4 (ref 3) are close to those
calculated from eq 13 without adjustable parameters and to those
from eq 1 using the previous experimentally determined scaling
relationship,14 ÆRgæ (nm) = 2.82 � 10�2Mw

0.5. Surprisingly, our
previous simple scaling argument embodied in eq 1 accords with
the current more quantitative analysis (eq 13) for polymers in theta
solutions. The overall agreement between the measured and
calculated critical flow rates is rather satisfactory considering all
the uncertainties in the measured values, especially for the large
pore with R = 50 nm. Moreover, eq 1 additionally predicts that qc
increases as the solvent quality improves, i.e., as α increases.

Figure 4 displays how the measured ratio qc/qc,HS for linear
polystyrene chains in cyclohexane varies with the solution
temperature.3 Most prior studies determine the theta tempera-
ture for polystyrene in cyclohexane as∼34.5 �C from the vanishing
of the second virial coefficient. The calculated and measured
values of qc/qc,HS near ∼34.5 �C in Figures 3 and 4 are in
reasonably good agreement. The comparison demonstrates that
both the current rigorous evaluation (using a combination of
the Laplace�Green’s function methods and numerical inverse
Laplace transforms of closed form analytical expressions) and our
previous rough estimation using a simple scaling argument are suf-
ficient for quantitatively describing how a linear polymer chain in a
dilute solution passes through a small cylindrical tube (“nanopore”).

Note that Figure 4 reveals a minimum in qc around 35 �C,
which can be qualitatively attributed to a balance between changes
of enthalpy and entropy under theta conditions; namely, the
chain becomes the most deformable at this point. The elevation

Figure 3. Dependence of calculated normalized critical flow rates
(qc and qc,HS) on tube radius, where qc,HS = kBT/12η and the two circles
representmeasured values for polystyrene in cyclohexane at 34.3 �C (ref 3).

Figure 2. Dependenceof confinement energy (normalizedby the thermal
energy) on relative chain size, where the line presents the least-squares fit
to data.
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of qc with increasing solution temperature on the right side of the
minimum is due to chain swelling in good solvents; namely, a
higher hydrodynamic force (a faster flow) is required in order to
squeeze and stretch a swollen polymer chain and thereby increase
its entropy. Equations 2 and 5 provide the expectation that both
Fh and Fc would decrease in good solvents because each confined
subchain has a smaller number N of Kuhn segments. The
increase of qc on the right side of Figure 4 indicates that Fh must
decrease faster than Fc as the chain swells, so that a higher flow
rate is required to obtain the force balance Fh = Fc.

On the other hand, the increase of qc with decreasing solution
temperature on the left side of Figure 4 should be related to the
stronger chain segment�segment attraction in poor solvents;
i.e., the flow has to be faster in order to override the extra enthalpic
force resisting the stretching of the chain. As the solution tem-
perature decreases, the chain gradually shrinks, so that each sub-
chain inside the tube becomes less draining and has diminished
confinement energy. The increase of qc with descending solution
temperature in Figure 4 suggests that the draining effect begins to
overpower the confinement in poor solutions. The quantitative
evaluation of the hydrodynamic force and confinement energy in
good solvents are rather challenging, but in poor solvents, the
quantitative evaluation of how linear chains are confined inside a
cylindrical tube and are stretched under an elongation flowbecomes
even tougher to handle.

In summary, satisfactory agreement is obtained between the
calculated and measured critical flow rates (qc) of elongational
flow for linear polystyrene chains in theta solutions to pass through a
small cylindrical tube (“nanopore”) of radius smaller than the
chain size. This agreement demonstrates the validity of our pre-
vious derivations of the hydrodynamic force and confinement
energy of a linear chain inside a cylindrical tube. The theories
satisfactorily explain why the measured values of qc are 10

2�103

lower than those predicted by de Gennes10 using a hard-sphere,
“blob” model for each subchain inside the tube, and they further
predict that qc is inversely proportional to the tube radius, un-
like the tube radius independence of the hard-sphere model. The
Laplace�Green’s function methods are tractable for different
interacting tube walls and are extendable to star chains and other
chain topologies. On the other hand, our prior scaling argument
can predict the dependence of qc on solvent quality. The ex-
tension of our rigorous evaluation to polymer chains in good
solvents is under consideration. As expected, the average local
concentration decreases in good solvents; each confined sub-
chain should be more draining to solvent molecules that are

forced through the tube. The next real challenge of the theories is
to describe the behavior in poor solvents.
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Figure 4. Measured temperature dependence of the normalized critical
flow rate (qc/qc,HS) for polystyrene in cyclohexane (ref 3), where qc,HS =
kBT/12η and the circles and triangles represent the two calculated values
from eqs 1 and 13, respectively.
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