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General approach to polymer chains confined by interacting boundaries. Il.

Flow through a cylindrical nano-tube
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Science and Technology of China, Hefei, Anhui 230026, China
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The Laplace-Green’s function methods of Paper I are extended to describe polymers confined in
interacting, impenetrable cylindrical geometries, whose treatment is far more challenging than the
slit and box geometries considered in Paper I. The general methods are illustrated with calculations
(as a function of the polymer-surface interaction) of the free energy of confinement, the radial density
profile, and the average of the drag force in the free draining limit, quantities that will be used
elsewhere to analyze experiments of Wu and co-workers involving the flow of polymers through
nanopores. All these properties are evaluated by numerical inverse Laplace transforms of closed
form analytical expressions, a significant savings over the traditional eigenfunction approaches. The
example of the confinement free energy for a 3-arm star polymer illustrates the treatment when
a closed form expression for the Laplace transform is unavailable. © 2011 American Institute of

Physics. [doi:10.1063/1.3646959]

Il. INTRODUCTION

Polymer chains often suffer the effects of confinement
that arise from the presence of geometric constraints in-
troduced by interacting (i.e., adsorbing or repulsive) im-
penetrable boundaries. Polymer confinement phenomena
influence numerous properties and processes in materials
science, including rubber elasticity,' ultrafiltration,>> and
chromatography,* and in biology (e.g., the folding of protein
chains during synthesis inside ribosome channels'® or
chaperons,'! the packing of the genome into viral capsids,'?
the translocation through pores,'>”'® and the facilitation
of protein crystallization by crowding with polymers,'
etc.).

The overwhelming majority of theoretical treatments of
geometrical confinement in polymer systems follows the pio-
neering studies of Casassa and Tagami® and of Edwards and
Freed,?’ who employ classical eigenfunction expansions tech-
niques for solving diffusion equations, as detailed, for exam-
ple, in the classic monograph by Carslaw and Jaeger?! for the
corresponding heat flow problems. The eigenfunction expan-
sion methods produce analytically tractable solutions when
the ratio § = Rg%/L?* of the squares of the radius of gyration
R of the unconfined chain and the confinement dimension
L either greatly exceeds or is much less than 7 =2 and when
the interacting boundaries conform to the limiting absorbing
or reflecting conditions. The mathematical expressions ob-
tained by this classical procedure, however, become unwieldy
when the polymer-boundary interaction parameter ¢ differs
from the limiting values of zero or infinity and/or the reduced
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confinement scale 728 becomes on the order of unity. This
unwieldy behavior arises from the necessity of determining
higher order terms and eigenvalues from transcendental equa-
tions in the series expansions inherent to this approach. The
intermediate range of § ~ O(w ~2) and/or ¢ # 0 or oo is rel-
evant to many practical applications,?” but these mathemati-
cally challenging “crossover regimes” have not been studied
in much detail.

Our recent paper>® develops mathematical techniques de-
signed for treating polymer confinement phenomena for the
full range of ¢ and §. This extension is necessary for com-
puting the static structure factor of confined polymers, even
for conditions where the “ground state dominance” approx-
imation of retaining the lowest mode suffices for estimating
the free energy of confinement. Likewise, the ground state
dominance approximation is shown there to provide a rather
poor approximation for the partition coefficient of a chain in
a nanoscale pore and for the analysis of data from a common
method used by experimentalists to characterize the dimen-
sions of nanopores.

The approach in Ref. 22 does not employ infinite series
expansions in eigenfunctions and, instead, is based on the use
of Green’s functions and Laplace transforms that are widely
applied in quantum mechanical theories and in diffusion and
heat transfer problems. These alternative methods in which
the Laplace inversion can be performed analytically have only
been applied to polymer systems in rather limited contexts,
e.g., in renormalization group calculations of the influence
of excluded volume effects on polymers near penetrable and
impenetrable surfaces, between parallel surfaces, and exterior
to a sphere.?*2" The extension of these methods is possible
because of recent advances in numerical Laplace transform
techniques.”®

© 2011 American Institute of Physics

Downloaded 06 Jan 2012 to 137.189.39.170. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


http://dx.doi.org/10.1063/1.3646959
http://dx.doi.org/10.1063/1.3646959
http://dx.doi.org/10.1063/1.3646959
mailto: freed@uchicago.edu

144902-2 K. F. Freed and C. Wu

The Laplace/Green’s function methods have hitherto
been used for the simplest parallel plate and box geometries,
raising questions concerning their applicability to more com-
plicated geometries, such as cylinders and spheres. These is-
sues are addressed by the present paper that describes the
calculation of quantities required to determine the critical flow
rate for transport of polymer chains through nanopores, a
phenomenon studied in experiments by Wu and co-workers.”
Further, their recent ground breaking experiments demon-
strate that chains of different architectures but the same hy-
drodynamic radius can be separated by varying the flow rate
through the nanopores.? Since our goal here is to illustrate
the power of the Laplace/Green’s function methods by eval-
uating quantities pertinent to describing polymer transport
through nanopores, the comparisons with experiment will be
presented elsewhere.

The description of polymer transport through cylindri-
cal nanopores could, in principle, be pursued by using the
traditional eigenfunction expansion approach as pursued, for
instance, by Wong and co-workers.”” The Laplace-Green’s
function methods can readily be used to compute all the prob-
abilities determined by Wong and Muthukumar for portions
of the polymer to reside in various components. However, us-
ing these methods for the case of purely repulsive walls con-
sidered by them, the probabilities are expressed as sums that
are sufficiently simple that no real benefit accrues with the
new approaches (apart, perhaps, for situations in which a very
small portion of the chain lies in a compartment and the se-
ries expansion is slowly convergent). The classic approach,
however, becomes more unwieldy when the polymer-surface
interaction parameter becomes finite since the treatment of
general boundary conditions would incur substantial com-
plications associated with the need to solve transcendental
equations in addition to summing terms from the eigenfunc-
tion expansion. The present work, however, demonstrates that
general boundary conditions are readily handled, and all the
quantities required by Wong and Muthukumar emerge from a
single inverse Laplace transform of a closed form analytical
expression that is readily obtained numerically from routines
in MATHEMATICA.* On the other hand, when computing var-
ious averages over the conformations of confined chains, sub-
stantial and computational simplifications accrue. For exam-
ple, we compute the force exerted Fpygr on a chain dragged
through an interacting cylindrical nanopore by Poiseuille
flow. The Laplace transform of the force Fpyq, with respect to
the chain length is obtained analytically for arbitrary polymer-
surface interactions, and only a fairly rapid numerical Laplace
inversion’? is necessary to determine Fyyq,. In contrast, the tra-
ditional eigenfunction method yields a double sum of numeri-
cal integrals involving eigenfunctions containing a parameter
from the solution of a transcendental equation arising from
the boundary conditions at the walls of the nanopore.

Section II provides the definitions of the Laplace trans-
forms of the density distribution within the cylindrical
nanopore and the drag force on the chain. Because the chain
concentration ¢ in the nanopore is comparable to the overlap
concentration c*, the hydrodynamic interactions are some-
what screened,’! and the drag force is computed in the free
draining limit. Section III presents the calculation of the par-
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tition function and; hence, the confinement free energy for
a polymer confined by impenetrable, interacting walls, while
the density profile and drag force are evaluated in Sec. IV. The
treatment of more complicated systems is illustrated in Sec. V
by a computation of the confinement free energy for a 3-arm
star polymer. These examples illustrate in more detail various
situations on which the Laplace-Green’s function methods of-
fer advantages over the eigenfunction approach and others for
which there is none.

A future paper will provide comparisons of the present
theory with experiment. Since the analysis of the experimen-
tal data®3? considers a force balance between the confinement
and drag forces, the analysis only requires the evaluation of
equilibrium averages. The comparisons also serve as a partial
test of the use of the free draining limit.

Il. DRAG FORCE ON POLYMER IN A CYLINDER

Consider a Gaussian (theta) chain confined to a cylindri-
cal nanopore of radius R and of length L, where L far exceeds
the radius of gyration R of the unconfined chain. The chain-
surface interaction is determined by the parameter ¢ in units
of inverse length, where ¢ = —oo for reflecting boundary con-
ditions for which the chain density p(R) vanishes and ¢ = 0
for adsorbing boundary conditions. Confinement of the chain
to the cylinder incurs a confinement free energy Aconfine that
we wish to determine as a function of § = (Rg/R)?* and ¢, not-
ing that the regime with § ~ 1 is the most relevant for com-
parison with the experiments by Wu and co-workers.>*? The
polymer is immersed in a fluid of viscosity »n that is under-
going Poiseuille flow with a pressure drop per unit length of
AP/Ax. The flow is assumed to be free draining, so the to-
tal drag force Fpyq, on the chain in the free draining limit is
the average of the fluid velocity v(r) over the chain confor-
mations, summed over all beads in the chain. Let r(t) denote
the continuous chain conformation of the confined polymer,
S0 Fryqr is expressed as the average of v[r(7)],

N
Fhyar = —4/0 dt (v[r(7)]), (1)

where N is the chain length and ¢ is the individual bead fric-
tion coefficient.

Poiseuille flow implies that the fluid velocity in the cylin-
der has the radial dependence,

4 AP
() = ————(R* = r?). )
n Ax

Denoting the average chain density at the radial distance
1 from the center of the nanopore as p(r,N,c), the force Fyyq
in the free draining limit can be written as

R
Fhyar = —;/ 2 rdrv(r)p(r, N, c).
0
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The Laplace transform po(r,E,c) of p(r,N,c),

po(r,E,c) = /00 dN exp(—EN)p(r, N, ¢), 3)
0

and the Laplace transform of Fyyq,

R
Fhyar(N, ¢, R) = —¢ L™ {/ 2rrdro(r)p(r, E, C)}, 4)
0

are evaluated in closed form in Secs. III-IV. The ability of
deriving a closed form expression is one key feature facil-
itating the numerical inverse Laplace transform for arbitrary
polymer-surface interaction parameters c. (L' in Eq. (4) des-
ignates the inverse Laplace transform.) Before turning to the
explicit evaluation of Aconfine and Fryar, we note that the use
of the traditional eigenfunction equation method for general ¢
would require a cumbersome series of numerical calculations:
(1) First transcendental equations must be solved in order to
satisfy the boundary conditions at the surface. (2) p(1,N,c) is
represented as a twofold infinite sum, with several terms re-
quired to attain numerical accuracy. (3) The radial integral
[ dr must be evaluated numerically for each term in the dou-
ble sum. In contrast, all these complications do not plague the
Laplace-Green’s function methods since the boundary con-
ditions are satisfied analytically, a single compact analytical
expression for p(r,E,c) is obtained, and the f drin Eq. (4) is
then resolved analytically.

lll. PARTITION FUNCTION FOR POLYMER
IN CYLINDER

The distribution function G(r,r’;N) for the chain in a
cylinder obeys the diffusion equation,

0 [
(W ~5 f) G(r,r';N,c, R) = 8(r — r')d(N), )
where [ is the Kuhn length. The presence of polymer-surface
interactions at » = R translates into the imposition of the
boundary conditions at the walls of the nanopore that

dalnG(r,r';N,c, R)
or

Negative c corresponds to repulsive walls, and positive ¢
implies attractive ones. Additionally, the boundary condition
at the center of the nanopore requires that G(0,r';N,c,R) is fi-
nite.

The chain partition function is evaluated from G(r, r’;
N, ¢, R) by

Zeonfine(N, ¢, R) = exp( — BAconfine)

= // drdr’ G(r,¥';N,c,R), (7)

|r=R:C~ (6)

where the integral is over the volume inside the cylinder.
Taking the Laplace transforms of Eqs. (5) and (6) gives,

<E - évrz) G(r,r;E,c. R) = 8(r — 1), ®)

olnG(r,r;E,c, R)
ar

lr=r=c. ©))
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The Laplace transform of the chain density p(r;E,c,R) is
evaluated from G as

p(r; E, ¢, R)Z onfine(N, ¢, R) = // dl'/dl'//G(l‘/, r;E,c,R)
x G(r,r"; E,c, R). (10)

Since the length L of the nanopore is taken as very large
compared to the radius of gyration of the polymer, the chain
can be assumed to lie far from the ends of the cylinder (at z
= 0 and L). Hence the boundary conditions for z = 0, L are
largely immaterial and are chosen as

G, r;E, ¢, R),—o =G r;E,c,R).-, =0. (1D

When the expansion of G(r,r’;E,c,R) in terms of angular (0)
and longitudinal eigenfunctions,

G(r,v';E,c,R) = QnL)™" i i

k=—00 m=—00
x explikm(z — 2')/ L] explim(® — 0)gwm(r, 7’5 E, ©),
(12)

is substituted Eqgs. (4), (7), and (10), the integrals over the z
and 6 variables eliminate all terms in Eq. (12) apart from the
single term for k = m = 0. Thus, the only survivor from the
sum in Eq. (12) is ggo = (6/1)g, which is the Green’s func-
tion for zero order Bessel functions, i.e., the solution to the
equations,

2,19 98 " /
a” + r—|glr,r)=0, r #r, (13a)
or or
gr,¥r)—=8(r—7r), r—r, (13b)

where a®> = —6E/l and g(r,r’) must satisfy the same boundary
condition at » = R as in Eq. (9) for the full Green’s function
G. The solution to Eq. (13) can be written in terms of Bessel
functions,

g(r, 1"y = (/22" Jolar)Jolar’) + 6 — r")Jo(ar')No(ar)
+0G" — r)Jo(ar)No(ar'))]. (14)

The presence of the quantity,

_ aJi(aR)+ cJo(aR)

, (15)
aNi(aR) + cNy(aR)

and the factors of Jy(ar) in Eq. (14) ensure that g(r,r’) satisfies
the boundary conditions for » = R and for r = 0, respectively.

The traditional eigenfunction expansion method, on the
other hand, would consist in an expansion of g(r,/”;N,c,R)
in the set of eigenfunctions {Jo(w;#/R)} with the {w;} being
the infinite set of solutions to the cumbersome transcendental
equation —wJi(w) = cRJp(w) that emerges from imposition
of the boundary conditions of Eq. (6).

The Laplace transform of the confinement partition func-
tion can be evaluated analytically. After changing variables to
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(3]

confine

: ! w > ¢
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()] 1 L 1
0 5 10 15 20
Interaction parameter, -y

Confinement free energy, PA

-

FIG. 1. BAconfine from Eq. (7) vs. —y for a repulsive surface (symbols) and
for § = 1. The line provides a fit 0.68535 + 4.48096 [1 — exp(0.25681 y)] to
the computed data.

x=aR, x> =s = — 6ER?*/l, 8 = —NI[%/6R?, and y = cR, this
procedure yields

|4
ZCOnﬁne(85 }’) = %/ eXp(SB)dS
C

1 —yJi(s'/?) 1
* {<§> [sl/z[sl/le(S‘/z)+yJo(s1/2)] * 5}} (1o

where V is the volume of the cylinder and C is the standard
contour for Laplace inversion. The length L of the nanopore
is considered as sufficiently long, so that the contribution
KT ?(RG/L)? t0 Aconfine is negligible and may be ignored.
The limit y — —oo corresponds to purely repulsive
boundary conditions, where BAconine Scales for large § as
5.79 §, in good agreement with the ground state domi-
nance result of BAcofine — 5.78 § from the eigenfunc-
tion expansion method. However, the present approach fa-
cilitates treating the dependence of Aconfine and Fpya, on the
interaction parameter cR as illustrated in Figs. 1 and 2 for
repulsive and attractive surfaces, respectively. Figure 1 ex-
hibits a strong increase in the confinement free energy as the
repulsive polymer-surface interaction elevates (i.e., as y goes
from —1 to —8) before leveling off to the fully repulsive wall
limit for y - —oo. The confinement free energy becomes
favorable (Aconfine < 0) and overcomes the entropy loss on

confine

Confinement free energy, PA
A

0 0.5 1 15 2
Interaction parameter, y

FIG. 2. BAconfine from Eq. (7) vs. a = y for an attractive surface
(symbols) and for § = 1. The line gives a fit —0.04314 — 1.7761
y — 0.76559 y to the computed data.

J. Chem. Phys. 135, 144902 (2011)

confinement when the polymer-surface interaction parameter
y is positive as depicted in Fig. 2.

IV. DRAG FORCE AND DENSITY PROFILE

The straightforward evaluation of the integrals in Eq. (10)
produces the compact form,

I 2
6(aR)2]
2
o { —yJolar) n 1} .

aRJiy(aR)+ yJo(aR)

Substituting Eq. (17) into Eq. (4) and changing variables (w
= ar, x = aR) yields the radial integral required in the deter-
mination of Fyqr,
2
1} dw.

(18)

p(riE,c, VZ(N,c,R) = VR? [

a7

—yJo(w)

— * — 2 T N L TN
I(x,y)—/0 w(l (w/x)){le(xwao(x)

Finally, /(x,y) emerges in closed form,
I(x, y) = {(—48 + Tx*)xy* Jo(x)?

+2y[3x* — 48y — 2x3(—12 + y)]Jo(x)Jy (x)
+x[3x* + 4y(=24 + y) + 4x2yD)] 11 (x)?} (19)
x{12[yJo(x) + x J1(x)1*} "

In contrast, when using the classic eigenfunction expan-
sion method, the corresponding average for Eq. (4) contains
a double sum over the eigenfunctions {Jy(w;7/R)} of inte-
grals that must be treated numerically. [Given the results in
Eq. (19), use of the residue theorem enables obtaining an an-
alytical form for the integrals, albeit in terms of a double infi-
nite series and transcendental equations for the poles.]

The integral Freq(s,y) = s73I(x = s5"2,y) is then nu-
merically transformed to its counterpart Fq(f,y) using
MATHEMATICA.*® Then, the drag force emerges as

4 AP R’N 24:R* AP

I hydr — § I red N? y) = I red Na y),

where / is the Kuhn length, N = n/, and 7 is the polymerization
index.

Figure 3 demonstrates that the drag force approaches the
asymptotic long chain limit for § ~ 1. Figure 4 displays Fq
as a function —y, revealing that F.y converges towards the
repulsive wall limit when y ~ —20 and undergoes a drop of
~15% as the repulsion weakens from —20 to —2.

The eigenfunction expansion and Laplace-Green’s func-
tion methods have been compared for properties in the sim-
plest limit of purely repulsive walls. Curves for the confine-
ment free energies Aconfine are superimposed over the range
from 6 = 0.1 (where ground state dominance is not yet es-
tablished) to 6 = 1.0 (where ground state dominance applies)
when two terms are retained in the eigenfunction expansion.
Thus, no benefit emerges in this case in using the Laplace-
Green’s function methods. The situation alters, however, in
calculations of the drag force. Convergence for 0.01 < §
< 0.1 requires retention of five terms from each of the
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FIG. 3. Freq(8,—20)/8 from Eq. (20) as a function of 5.

two eigenfunction expansions [one for each factor of G in
Eq. (10)] and, consequently, the numerical evaluation of 15
radial integrals as opposed to a single numerical inverse
Laplace transform that is readily processed by the routines in
MATHEMATICA.?? Because the calculations have all been per-
formed on a laptop, no comparative CPU times are available.
Moreover, the relevant point with these types of calculations
is programming time, not CPU time, and the Laplace-Green’s
function methods offer the greater efficiency in this regard.

A. Density profile

The radial density profile p(r,N,c,R)/N in the nanopore
is obviously sensitive to the polymer-surface interaction pa-
rameter y = cR, and this dependence is illustrated in Fig. 5
for both repulsive (y < 0) and attractive interactions
(y < 0.1). As the repulsion diminishes in passing from
y = —1000 to y = —2, the chain density increases near the
walls of the nanotube. Small attractive interactions (y = 0.1)
suffice to flatten out the radial density. [Only small attractive
interactions are considered because the traditional continuous
chain model becomes unphysical for large attractive y.>3]

0.76 ,
0.74}

0.6 1 ] ]
0 5 10 15 20

Interaction parameter, -y

FIG. 4. Freq(1, —y) of Eq. (20) as a function of —y.
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8 ] ] 1 1
s 7 y =-1000 -
2
@ 4l
&

s 3
S 2
(]
T4
0 1 1 1
0 0.2 0.4 0.6 0.8

Radial position, r

FIG. 5. Density profile p(r) vs. the radial distance from the center of the
nanopore for § = 1 and y = —2, —20, —1000, and 0.1 (attractive).

V. FURTHER EXTENSIONS

Clearly, not all desired polymer properties can be ex-
pressed as the inverse Laplace transform of a closed form an-
alytical expression. Thus, we use the example of the partition
function (and, hence, Aconfine) Of a 3-arm star polymer to il-
lustrate how these situations can still be treated with Laplace-
Green’s function methods, albeit at the expense of additional
computational effort. The partition function for a 3-arm star
polymer with arms of equal length N may be expressed as
integrals over G(r,r;N),

Z3-am(N) = /dl‘ |:{/dl'] G(r, rl;N)}
X {/drz G(r, rz;N)} {/dr, r; G(r, r3;N)}i|
3
=fdr{/dr1 G(r, rl;N)} 20

where the second equality follows from the equivalence of
the three arms. The Laplace transform of Zs (V) with re-
spect to N is intractable, but the transform f dry G(r,ri;E) of
[dry G(r,r;N) is available in closed form and may be numer-
ically Laplace inverse transformed to obtain [dr; G(r,ry;N)
as a function of r, y, and N. Specializing, for simplicity, to
a system with purely repulsive walls (y — —o0), and using
the variables w and x defined before Eq. (18), this integral is
obtained as

/ driG(r,ri; E) = (6R*/1x*){1 — [Jo(xw)/ Jo(x)1}/x*.

(22)

Numerical Laplace inversion of Eq. (22) for fixed N
yields a numerical function f{(w, §) with § = NI/612. The func-
tion f(w, §) for fixed § can be fit quite well to the quartic func-
tion of (w — 1), thus enabling the integral [dw w{f(w,t} to be
evaluated analytically. The final result yields the free energy
of confinement over the range 0.1 <§ <1 as

Aconfine = kT [—0.1358 + 5.743d], per arm, (23)

with the coefficient 5.74 of § close, as expected, to the ground
state dominance limit of 5.78.
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The calculations are readily performed using the same
methods for surfaces with finite y and for polymers with n
arms of different lengths.

VI. DISCUSSION

The benefits of the Laplace-Green’s function method for
describing polymer systems confined by interacting bound-
aries are explored further by considering more challenging
systems whose boundaries have more complicated shapes
than the simplest geometries (slits and boxes) treated in
Paper I. Specifically, the illustrations consider cylindrical sys-
tems. The quantities evaluated (confinement free energy, drag
force, chain density profile) are pertinent to describe the flow
of polymers through nanopores. Because our purpose here is
to illustrate the advantages of the Laplace-Green’s function
methods over the traditional eigenfunction expansion meth-
ods for systems with interacting boundaries, the comparison
of these calculated properties with experiment will be pre-
sented elsewhere.

The evaluation of the drag force provides the most strik-
ing difference between the Laplace-Green’s function and the
traditional eigenfunction expansion methods for systems with
general polymer-surface interactions (arbitrary y). The more
complicated eigenfunction expansion methods begin by re-
quiring the numerical solution of a transcendental equation
to enable introduction of the eigenfunctions. The final re-
sults involve doubly infinite expansions in eigenfunctions for
the general case, and the radial integrals in the double sum
must then be evaluated numerically. In contrast, the Laplace-
Green’s function method simply requires a single numerical
Laplace inversion of a closed form analytical function.

Prior applications of the Laplace-Green’s function ap-
proach to renormalization group calculations of polymers at-
tached to a sphere further illustrate the methods for a system
where all integrals can be evaluated analytically. Numerical
calculations for systems with interacting spherical boundaries
are far simpler than those for cylindrical confinement since
the former involve spherical Bessel functions that are analyt-
ically far more tractable than ordinary Bessel functions.
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