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Abstract

The mathematical model for language competition developed by Abrams and Strogatz allows the

evolution of the numbers of monolingual speakers of two competing languages to be estimated. In this

paper, we extend the model to examine the role of bilingualism and social structure, neither of which are

addressed in the previous model. We consider the impact of two strategies for language maintenance:

(1) adjusting the status of the endangered language; and (2) adjusting the availability of monolingual and

bilingual educational resources. The model allows us to predict for which scenarios of intervention language

maintenance is more likely to be achieved. Qualitative analysis of the model indicates a set of intervention

strategies by which the likelihood of successful maintenance is expected to increase.
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1. Introduction

The 6000 or so languages spoken on our planet today are the products of numerous millennia of

cultural evolution. They encapsulate the experience and knowledge of diverse peoples collected in

widely different environments, and are a precious part of the human heritage. With the explosive

expansion of a few dominant languages in recent decades, at least half of the world’s languages are

critically endangered in that they will soon have no speakers and become extinct (Krauss, 1992;

Crystal, 2000). Pagel (1995) estimates that roughly 140,000 languages have ever existed (median

estimate), so it is the fate of the majority of languages to become extinct. Fishman (1991) argues that
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death of a language often leads to death of the underlying culture towhich it is linked. It is, therefore,

an important challenge to understand such situations as precisely as possible, and to recognize

whether there are measures that can help us preserve some of this heritage.

Much work has been carried out on both theoretical and empirical issues of achieving

language maintenance as evidenced by the numerous recent volumes on the subject

(e.g. Fishman, 1991; Grenoble and Whaley, 1998; Crystal, 2000; Nettle and Romaine, 2000;

Fishman, 2001; Bradley and Bradley, 2002; Grenoble and Whaley, 2006). Fishman (2001:1)

begins his treatise by stating:

What the smaller and weaker languages (and peoples and cultures) of the world need are

not generalized predictions of dire and even terminal illnesses but, rather, the development

of therapeutic understandings and approaches that can be adjusted so as to tackle

essentially the same illness in patient after patient.

Toward this end, Abrams and Strogatz (2003) have proposed a mathematical model for

studying language competition. The model predicts that whenever two languages compete for

speakers, one language will eventually become extinct, the language that dies depending on the

initial proportions of speakers of each language and their relative status. The model obtains a

good fit to a number of empirical data sets, tracing the relative abundance of speakers of several

endangered languages that have been undergoing competition with other, more prestigious

languages. However, it does not account for either bilingual individuals or the social structure of

the population within which the languages compete. The model also does not distinguish the

vertical and horizontal transmission of language, and ignores the impact of the behaviour of

individual speakers in the population, focusing instead on the expected aggregate behaviour of

the population as a whole. Despite these limitations, the model has stimulated a burst of research

into the dynamics of language competition and diversity (e.g., Patriarca and Leppänen, 2004;

Mira and Paredes, 2005; Wang and Minett, 2005; Schulze and Stauffer, 2006; Stauffer et al.,

2006), much of it performed by non-linguists.

In this paper, we extend the Abrams and Strogatz work to model bilingualism explicitly,

accounting for the fact that some individuals may speak both of the competing languages. Our

first step is to formulate a mathematical model that, like the Abrams and Strogatz model, deals

with the expected aggregate behaviour of the whole population—this model also predicts that

death of one of the two competing languages is inevitable (although the trajectories that lead to

this state differ from those of the previous model). However, in order to investigate the range of

possible trajectories that a system of two competing languages can potentially follow from the

same initial state, and to devise a method by which the probabilities associated with them can be

predicted, we also implement an agent-based model. In particular, we investigate the impact of

simple strategies for language maintenance, allowing us to estimate for different scenarios the

relative likelihood that a pair of competing languages can be maintained in a population comprising

both monolingual speakers of each language and bilingual speakers. We then examine the role of

social structure on the probabilities of maintenance, representing the social structure by a local-

world network (Li and Chen, 2003) to encapsulate the patterns of sociolinguistic interactions

among the individuals comprising the population.

The paper is laid out as follows: In section 2, we discuss deterministic models of language

competition, first briefly describing the Abrams and Strogatz model for a population in which two

languages compete for speakers, then introducing an extension of the model that incorporates

modelling of bilingualism. In section 3, we apply the extended model to investigate the efficacy of

simple strategies for language maintenance. The deterministic models that we discuss in sections 2
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and 3 allow us to determine the expected final state of a system in which two languages compete for

speakers. However, they do not reveal the variety of competing outcomes that are possible, the

likelihood that the system converges to each of them, or the impact of population size on the

likelihood of maintenance. Therefore, in section 4 we go on to derive an agent-based model for

language competition that allows such effects to be assessed. Our simulations suggest some general

principles for achieving maintenance. We then consider the impact of social structure on the

probability of successful maintenance in section 5. The paper concludes in section 6.

2. Deterministic models of language competition

2.1. The monolingual model of Abrams and Strogatz (2003)

Abrams and Strogatz (2003) (henceforth A&S) have developed a simple mathematical model

of language competition for a population in which two languages compete for speakers. The

model aims to trace the variation over time of the proportion of speakers of each language,

potentially allowing a language that is endangered to be identified at an early stage so that

appropriate action to maintain it can be planned.

In deriving their deterministic model, A&S make a number of simplifying assumptions, in

particular:

(i) Each individual is monolingual in one of the two languages, but no individual speaks both

languages.

(ii) Speakers of one language switch to speak the second language according to the

‘attractiveness’ of that second language.

(iii) The attractiveness of a language increases with both the proportion of speakers of that

language and its ‘status’, a global parameter that measures its inherent utility within the

community—we shall discuss status in section 3.

(iv) The population has a uniform social structure: individuals interact with each other at the

same rate, and influence the languages that they each use equally—we discuss social

structure in section 5.

(v) The population size remains constant.

Let us consider how these assumptions translate into a mathematical model. We write the

proportions of monolingual speakers of X and Y as x and y, respectively. Since each individual is

assumed to be monolingual in one of these two languages, the values of x and y must sum to 1

(i.e., x + y = 1). The rate at which speakers of one language switch to become speakers of the

second language depends on the attractiveness of that second language. In their most general

conception of attractiveness, A&S assume that a language has greater attractiveness the more

monolingual speakers it has and the greater its status. All such functional forms of attractiveness,

they state, give rise to the same qualitative dynamics as that of the following constrained model in

which the attractiveness of language X to speakers of Y is given by the power-law

PYX ¼ csXxa: (1)

In the above formula, sX denotes the status of language X, and a is a parameter that models how

the attractiveness of X scales with the proportion of speakers of X. The attractiveness of Y to

speakers of X can be stated similarly. For a = 1, the attractiveness of X increases linearly with its

proportion of speakers. For a greater 1, doubling the proportion of speakers more than doubles
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the attractiveness, and vice versa. The parameter c in (1) indicates the peak rate at which

speakers of Y switch to speak X. This can reflect, variously, the rate of contact between pairs of

individuals, the propensity for individuals to learn a new language based on their existing

linguistic skills, or the provision of language resources to children. The formula (1) therefore

provides a simple model for a variety of sociolinguistic factors that influence the attractiveness

of a language, and whose qualitative dynamics reflect those of the entire class of models in

which attractiveness increases monotonically with both the proportion of monolingual speakers

and status.

In this model, Y monolinguals switch language to become monolingual speakers of X at a rate

proportional to PYX. Likewise, X monolinguals become Y monolinguals at a rate proportional to

PXY (defined similarly to (1)). The rate at which the proportion of monolingual speakers of X

changes over time can therefore be written symbolically as

dx

dt
¼ yPYX � xPXY: (2)

Substituting for PYX and PXY in (2), we obtain the formula

dx

dt
¼ c½yxasX � xyasY�: (3)

The rates of change of the system are summarized in Fig. 1. We can make further simplifications to

the formula by assuming, as do A&S, that sX + sY = 1, and by substituting (1 – x) for y to obtain

dx

dt
¼ c½ð1� xÞxasX � xð1� xÞað1� sXÞ�: (4)

Because the proportions of speakers of X and Y sum to 1, there is no need to consider separately

the rate at which the proportion of Y monolinguals changes with time—this is just minus the rate

of change of the X monolinguals.

The dynamics of the model can be analyzed by seeking the values of x at which no change in

the proportion of X monolinguals is expected to take place. These points are termed ‘equilibria’,

and are of two types: stable and unstable.1 In order to locate the equilibria, we calculate the values

of x for which the rate of change of x is zero. Stable equilibria occur at x = 0 and at x = 1. A third

equilibrium occurs for an intermediate value of x, corresponding to a situation in which speakers

of both languages remain, but this equilibrium is unstable. Therefore, no matter what is the initial

state, the system will ultimately end up at one of the two stable equilibria. The significance for

language competition is that this model implies that one language will always acquire all the

speakers in the population, causing the language with which it competes to become extinct.

However, A&S suggest that a third stable equilibrium, corresponding to a state in which the two

competing languages are both maintained, can be achieved by appropriate control of the status of

the endangered language. The idea of controlling the status, as well as other model parameters, in

order to achieve maintenance forms the basis of the language maintenance strategies that we

pursue in section 3.
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A&S have tested the accuracy of their model by fitting it to diachronic data collected for three

endangered languages: Scottish Gaelic, Welsh and Quechua. The former two data sets are based

on census data, while the latter data derive from records of the languages used in religious

services in Peru. In each case, the set of values of the model parameters for which the

corresponding trajectory most closely matches the diachronic data can be calculated. In this way,

the status of Scottish Gaelic was estimated to be 0.33, half that of English with which it continues

to compete. Welsh was estimated to have a slightly higher status with respect to English, 0.4, but

the predicted trajectory for the proportion of speakers of Welsh throughout Wales nevertheless

shows a strong downward trend that fits the empirical data well. A&S also estimated the value of

parameter a for each data set, and found a to cluster about the mean value 1.31. This value of a

exceeds 1, indicating that the attractiveness of a language more than doubles as its proportion of

speakers doubles. We have therefore assumed that the parameter a takes a value no less than 1 in

the course of development of our own model.

The model of A&S appears to work well in modelling changes in the patterns of language

usage within a population in which two languages compete. However, the model deals only with

monolingual speakers. In practice, we observe that typically a speaker does not suddenly give up

one language completely in favour of another—it is extremely rare, for example, for children to

lose the ability to communicate with their parents. Almost always, speakers will maintain the

language acquired from their parents and, perhaps, learn additional languages to various degrees,

particularly while young. Such speakers may switch languages back and forth, depending on the

context, whether it be home, school, or workplace. The nature and extent of the bilingualism will

depend on a variety of societal factors. We therefore believe that the incorporation of

bilingualism is essential for realistic modelling of language death.

2.2. A bilingual model incorporating vertical and horizontal transmission

We here extend the A&S model by explicitly modelling bilingualism, which we accommodate

by introducing a third class of speakers, Z, who speak both X and Y. Whereas A&S model only

two types of transition (X! Y and Y! X), there are potentially six types of transition possible

among monolingual and bilingual speakers of two languages (X! Y, Y! X, X! Z, Z! X,

Y! Z, and Z! Y). The transitions X! Y and Y! X are exceedingly rare in practice,

whether as a result of vertical transmission or horizontal transmission. One would not expect a

child of monolingual speakers of X, say, to acquire only language Y. Nor would one expect an

adult who previously spoke only language X to then acquire Y and simultaneously forget how to

speak X. The other four types of transition, however, all occur frequently in practice. We

therefore model only transitions of the four types X! Z, Z! X, Y! Z, and Z! Y, as

suggested by Wang and Minett (2005).

Consider first vertical transmission. Children of monolingual parents necessarily acquire the

language of their parents as their first language. However, children of bilinguals may acquire
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either or both of the competing languages. For simplicity, we adopt a uniparental model of

transmission. We therefore adopt the following model for vertical transmission (V-Model):

� All children of monolingual parents acquire the language of their parents, that is X! X and

Y! Y.

� Children of bilingual parents acquire only language X from their parents, that is Z! X, at a

rate proportional to the attractiveness of X.

� Children of bilingual parents acquire only language Y from their parents, that is Z! Y, at a

rate proportional to the attractiveness of Y.

� All other children of bilingual parents acquire both languages from their parents so that they

too become bilingual, that is Z! Z.

We assume that the attractiveness of language X to a child of a bilingual parent increases

with both the status of X and the proportion of monolingual speakers of X. For a given

status, X is maximally attractive when the entire population is monolingual in X, and

minimally attractive when none of the population is monolingual in X. Given this, it follows

that the attractiveness of acquiring both languages to a child of a bilingual parent is maximal

when the entire population is bilingual, and minimal when the entire population (other

than the parent) is monolingual. Adopting the same functional form for attractiveness as

in (1) above, we write the attractiveness of being monolingual in X to children of bilingual

parents as

PZX ¼ cZXsXxa: (5)

A similar formula holds for the attractiveness of Y. Notice that in (5) we have defined a parameter,

cZX, which allows the peak attractiveness of X to be modelled independently from that of Y,

reflecting, for example, the different availability of educational resources in each language.

Control of these parameters will form the basis of a proposed strategy for language maintenance

that we discuss in section 3.

Symbolically, the V-Model for language competition can be written as

dx

dt
¼ zPZX

dy

dt
¼ zPZY

; (6)

where z denotes the proportion of bilingual speakers. Note that, for the bilingual model,

x + y + z = 1. The rate of change of the proportion of bilinguals is therefore simply minus

the sum of the rates of change of the proportions of monolingual speakers of X and Y. By

substituting for PZX and PZY in (6), we obtain the V-Model

dx

dt
¼ cZXsXð1� x� yÞxa

dy

dt
¼ cZYsYð1� x� yÞya

: (7)

What then of horizontal transmission? We have assumed that adults retain sufficient

knowledge of a language, once acquired, for that language to be available for transmission to any

offspring they might produce. That being the case, bilingual adults are assumed to remain
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bilingual throughout their lifetimes. Monolingual adults, however, may either remain

monolingual or subsequently become bilingual by acquiring the second language. We therefore

adopt the following model for horizontal transmission (H-Model):

� All bilingual adults remain bilingual, that is Z! Z.

� Adults speaking X only subsequently acquire language Y, that is X! Z, at a rate proportional

to the attractiveness of Y.

� Adults speaking Y only subsequently acquire language X, that is Y! Z, at a rate proportional

to the attractiveness of X.

� All other monolingual adults remain monolingual, that is X! X or Y! Y.

In addition to being able to communicate with both X monolinguals and bilinguals, the X

monolingual adult who subsequently acquires language Y can additionally communicate with Y

monolinguals. Therefore, we assume that the attractiveness of acquiring language Y, so

becoming bilingual, to monolingual speakers of X increases with both the status of Y and the

proportion of monolingual speakers of Y:

PXZ ¼ cXZsYya; (8)

a functional form consistent with (5). The attractiveness, PYZ, of becoming bilingual to

monolingual speakers of Y is defined similarly.

The H-Model can be written as

dx

dt
¼ �xPXZ

dy

dt
¼ �yPYZ

; (9)

which reduces to the following system after substituting for PXZ and PYZ:

dx

dt
¼ �cXZsYxya

dy

dt
¼ �cYZsXyxa

: (10)

To develop a unified bilingual model for language competition, encompassing both vertical

and horizontal transmission, we model the rates at which individuals follow the V-Model and H-

Model. We do so by defining a mortality rate, m, at which adults are replaced by children.

Children acquire languages from their parent according to the V-Model; surviving adults all

acquire languages according to the H-Model. The unified bilingual model can therefore be stated

explicitly as

dx

dt
¼ mcZXsXð1� x� yÞxa � ð1� mÞcXZsYxya

dy

dt
¼ mcZYsYð1� x� yÞya � ð1� mÞcYZsXyxa

: (11)

The rates of change of the unified bilingual model are summarized in Fig. 2. For convenience,

throughout the remainder of this paper, we will assume, without loss of generality, that

sX + sY = 1, allowing us to substitute sY with (1 � sX).
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In order to determine the dynamics of the unified bilingual model, and thereby draw

conclusions regarding the competition of two languages, we study the ‘direction field’2 of the

system (11) for different sets of values of the model parameters sX, cXZ, cYZ, cZX, and cZY. Fig. 3

shows the direction field for two values of the status of language X (sX = 0.5 and sX = 0.3). The

system has four equilibria: X* and Y* correspond to all individuals being monolingual in X and Y,

respectively; Z* corresponds to all individuals being bilingual; and U* corresponds to a state in

which there are some speakers of each type. It can easily be shown (by linearizing (11) about each

equilibrium) that X* and Y* are both stable, meaning that once the system has approached either

of these two states, it will remain nearby. However, both Z* and U* are unstable, meaning that

even if these states are approached, the system will subsequently tend to move away from them.

The position of U* shifts according to the values of the model parameters. For X having the

same status as Y (sX = 0.5, shown in panel a), the position of U* corresponds to a state in which

X and Y have the same numbers of monolingual speakers. However, as the status of X is reduced,

so the position of U* moves towards the stable equilibrium X*. As a result, fewer trajectories

converge on X*, meaning that language X will become extinct for a greater range of initial states.

In terms of the language competition, the model predicts that one of the two competing languages

will eventually acquire all the speakers, regardless of the initial conditions, resulting in a

monolingual system in which only one language is spoken.

2.3. The bilingual model of Mira and Paredes (2005)

A different approach to modelling bilingualism, in which the two languages that compete for

speakers are partially mutually intelligible, has been suggested by Mira and Paredes (2005). When

two languages are partially mutual intelligible, monolingual speakers of one language can

sometimes communicate effectively with monolingual speakers of the competing language. Such

communications potentially allow monolingual speakers to become bilingual. Monolingual

speakers of a language X, say, are therefore assumed to become bilingual at a rate that is

proportional both to the proportion of speakers of the competing language Y (as in our extension of

the A&S model) and to the degree of mutual intelligibility. Correspondingly, the greater the mutual

intelligibility, the lesser is the proportion of monolingual speakers of X attracted to become

monolingual in Y.

J.W. Minett, W.S-Y. Wang / Lingua 118 (2008) 19–4526

Fig. 2. Transition rates for the unified bilingual model. (a) Transition rates for the V-Model. (b) Transition rates for the

H-Model.
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called a ‘phase portrait’, additionally represents the rate of change at each point by the length of the arrow (longer arrows

indicate a faster rate of change).



Based on these amendments to the A&S model, Mira and Paredes derive the system

dx

dt
¼ c½ð1� kÞð1� xÞð1� yÞasX � xð1� xÞað1� sXÞ�

dy

dt
¼ c½ð1� kÞð1� yÞð1� xÞað1� sXÞ � yð1� yÞasX�

; (12)

where k, with value between 0 and 1, denotes the degree of mutual intelligibility between

languages X and Y. This system is noteworthy since, for sufficiently large k, a stable equilibrium

is introduced in which both bilingual speakers and monolingual speakers of the more prestigious

language survive. Although no monolingual speakers of the endangered language remain, that

language is preserved among the bilingual members of the population.

The model provides a good fit to data for the competition between the Castilian and Galician

dialects of Spanish during the period 1875–1975 (Mira and Paredes, 2005), but we doubt that it

can be usefully applied in its current form to general situations of language competition. Often,

competing languages are mutually unintelligible (k � 0), in which case the model reduces to the
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monolingual model of A&S, which, we have argued, is unsuited to modelling language

competition due to the lack of bilingual modelling. Also, even when the competing languages are

mutually intelligible dialects or closely genetically related languages, it is not clear that

individual speakers make the transition directly between monolingual use of one language to

monolingual use of the competing language (X! Yor Y! X) in any but the rarest of situations.

Moreover, there is no linguistic advantage conferred to a bilingual individual when no

monolingual speakers of one of the competing languages remain: in such a situation, one would

expect the bilinguals to be quickly replaced by monolinguals, resulting in the extinction of the

endangered language, behaviour that is reproduced by the model we have proposed in section 2.2.

Nevertheless, tweaking the model by constraining the transitions that are likely to occur in

practice, as we have done in the previous section, and by considering the impact of social

structure, as we will do in section 5, may result in a model that allows the dynamics of

competition between mutually intelligible, related languages to be better understood.

3. Language maintenance

Fishman has proposed the 8-stage Graded Intergenerational Disruption Scale (GIDS) by

which the prospects for the continuing usage of a particular language in a community can be

assessed (Fishman, 1991, 2001). The GIDS can be used to identify the contexts in which the

language is spoken, ranging from nationwide usage throughout the mass media and

governmental operations, to the language being taught as an option in literacy schools, to

sparse usage by socially isolated elderly people. By using this scale, languages that are threatened

with extinction can be detected.

Once a language has been identified as endangered, it must be decided whether or not an

attempt will be made to maintain it. It is well known that maintenance of an endangered language

can sometimes be achieved by top down processes like legislation or by bottom up movements

like ethnic pride. Sometimes, however, the socio-economic factors that led to a language

becoming endangered in the first place might discourage its speakers—and linguists—from

seeking to maintain it. As Mufwene writes, ‘‘Linguists concerned with rights of languages must

ask themselves whether these rights prevail over the rights of speakers to adapt competitively to

their new socioeconomic ecologies’’ (Mufwene, 2004:219). Our focus in this paper is not to

advocate language maintenance in all situations. Rather, we aim to develop quantitative models

that can assist in the identification of maintenance strategies that can be applied in certain

situations of language endangerment. It is for the community whose indigenous language is

endangered to decide whether maintenance should be undertaken.

Crystal (2000) has identified six main mechanisms of intervention by which maintenance may

be attempted:

(i) Increasing the prestige of its speakers.

(ii) Increasing the wealth of its speakers.

(iii) Increasing the power of its speakers.

(iv) Improving its presence in the educational system.

(v) Ensuring that the language can be written down.

(vi) Providing access to electronic technology to its speakers.

The first three mechanisms relate to the ‘status’ of the language, an assessment of the

socioeconomic advantages conferred to members of the community speaking that language.
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Bringing about an increase in the status of a language may serve to maintain it. The latter three

mechanisms relate to people’s ‘access’ to the language, the ease with which they can come to make

productive use of the language. For example, promoting the teaching of an endangered language at

school may enhance the fluency of its existing speakers and encourage bilingualism among

speakers of the language with which it competes, both of which may have impact on its viability.

3.1. Modelling language maintenance

We model the effects of adopting such mechanisms of intervention as adjustments to the

parameters sX, cXZ, cYZ, cZX, and cZY of the system (11). In particular, we seek strategies for

controlling these parameters such that an endangered language, X, and its competitor, Y, can both

be maintained. We make no attempt here to determine optimal strategies for language

maintenance—there is little value in doing so since, at this time, the precise quantitative

relationships among the various maintenance mechanisms and the parameters of models such as

the one proposed here are still only poorly understood. Rather, we investigate conditions under

which intervention that brings about significant changes to the model parameters of an

endangered language can lead to that language being maintained.

We suppose that the value of an arbitrary parameter, u, of system (11) can be represented as a

function, u(x), of the proportion of monolingual speakers of the endangered language X. In order

to obtain a model that is amenable to analysis, we assume that a community can bring about a

change in the value of the parameter whenever the proportion of monolingual speakers of X falls

below some threshold, x < thX. Symbolically, we write this as

uðxÞ ¼ u : x� thX

u0 : x< thX

�
; (13)

where u and u0 are both constants, u representing the value of the parameter prior to intervention,

and u0 representing its value after intervention. A graph of u(x) is shown in Fig. 4. In practice, the

extent to which a community can bring about a change in a parameter is likely to be limited, and

the speed with which it can do so constrained. However, a more realistic intervention model,

having less abrupt onset and offset (indicated in the figure by the dotted lines), generally gives

rise to the same qualitative behaviour as (13), which we now describe.

We assume that the system (11) is valid both pre- and post-intervention, but with different sets of

values of the parameters sX, cZX, cZY, cXZ, and cYZ. Fig. 5 illustrates the impact of an intervention

that brings about an increase in the status of a language. The first panel shows the direction field for

the system without intervention when the status of the language X is 0.4. The only stable states

correspond to death of either language X or language Y. The second panel shows the direction field

corresponding to language X having status 0.6. Again, the only stable states correspond to death of

one of the two competing languages. Panel (c), however, shows the direction field for the system in

which the pre-intervention status of X is increased from 0.4 to the post-intervention status 0.6

whenever the proportion of monolingual speakers of X falls below 30%. By intervening in this way,

an additional stable fixed point, S*, is created between the two unstable fixed points, U�1 and U�2.

We can better understand which strategies give rise to the stable fixed point S*, and so lead to

the potential maintenance of the two competing languages, by studying the ‘nullclines’ of the

system (11). The nullclines are lines along which the rate of change of either x or y is zero: that is,

dx/dt = 0 or dy/dt = 0. The system without intervention has two nullclines, shown superimposed

on the direction field in Fig. 6a. The nullclines intersect at the unstable equilibrium U* and
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partition the state space into four regions, each of which is characterized by a direction of change

of x (increasing or decreasing) and a direction of change of y (increasing or decreasing), as shown

in Fig. 6b. Trajectories that start in two of these regions —RU and RZ—initially move towards the

equilibrium U* but, because this equilibrium is unstable, then enter one of the two remaining

regions—RX and RY—after which the system converges to one of the two stable states, X* or Y*.

The nullclines thus provide a summary of the qualitative dynamics of the system.

Suppose that the proportion of monolingual speakers of an endangered language X having

status 0.2 has fallen to 30%, and that the community in which it is spoken is to intervene in order

to bring about its maintenance. How should the community intervene and what is the

corresponding effect on the nullclines? Fig. 7a shows the direction field for the system without

intervention. For x � 0.3, almost all trajectories converge to Y* (i.e., language X dies). Fig. 7b

shows the impact of increasing the status of X from 0.2 to 0.4 whenever the proportion of

monolingual speakers of X falls below 30%. This adjustment of the status of X leads to an

increase in the slopes of both of the post-intervention nullclines, bringing about a change in the

post-intervention dynamics. However, the post-intervention nullclines do not intersect, so no

stable equilibrium is introduced. Thus, intervening to increase the status of the endangered

language from 0.2 to 0.4 fails to achieve maintenance. Fig. 7c shows the impact of an alternative

strategy for intervention: increasing the peak rate, c0ZY, at which children of bilingual speakers

acquire only language Y. Increasing the value of this parameter has the effect of increasing the

proportion of monolingual speakers of Y. For this strategy, the slope of only one nullcline is

increased (dy/dt = 0). Again, the post-intervention nullclines do not intersect, and intervention

fails to bring about a stable state in which both languages are maintained.

Fig. 7d, however, shows the situation in which both the status of X and the peak transition rate,

c0ZY, are increased. In this case, the post-intervention nullclines are increased in slope sufficiently

that they intersect at x < 0.3. Region RY (see Fig. 6b) of the pre-intervention state space abuts

region RX of the post-intervention state space. This is sufficient to introduce a stable equilibrium,
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Fig. 4. Functional relationship between the proportion, x, of speakers of an endangered language X and an arbitrary

sociolinguistic parameter, u(x). The solid line models a population intervening to bring about a discrete increase in the

value of the parameter, from u to u0, as its proportion of speakers falls below a threshold, thX—this functional relationship

is assumed in the experiments throughout this paper. The dashed lines model a more gradual increase in the value of the

parameter at the onset of intervention, followed by a more gradual decrease in its value at the offset of intervention after

maintenance has been achieved.
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Fig. 5. Direction field of the system with intervention. Panels (a) and (b) show that, without intervention, language death

is inevitable. Panel (c) shows the creation, as a result of intervention, of a new stable equilibrium, S*, in which both

languages are spoken. When the proportion of speakers of X exceeds the threshold, x > thX, the dynamics follow that of

the system without intervention with sX = 0.4; panel (a). When the proportion of speakers of X falls below the threshold,

x < thX, the dynamics follow that of the system without intervention with sX = 0.6; panel (b). Thick solid lines indicate the

borders of the ‘basin of attraction’ of the stable equilibrium S*—all initial states within a particular basin of attraction tend

towards the associated equilibrium (a = 1.0; m = 2%; cXZ = cYZ = 0.035; cZX = cZY = 1.0): (a) without intervention

(sX = 0.4); (b) without intervention (sX = 0.6); and (c) with intervention (sX = 0.4; s0X = 0.6; thX = 0.3).



S*, in which both languages are spoken, at x = 0.3, y � 0.15, z � 0.55—trajectories to the left of

S* lie in region RX of the post-intervention state space and therefore approach S* from the left,

and trajectories to the right of S* lie in region RY of the pre-intervention state space and therefore

approach S* from the right. The greater are the slopes of the nullclines, the larger are the

corresponding regions RX and RY, which, in turn, enlarges the ‘basin of attraction’ of S*, i.e., the

range of initial states from which the system converges to S*.

This behaviour points to a set of general principles that can guide strategies for language

maintenance. Table 1 lists a set of mechanisms by which the slope of the post-intervention

nullclines can be increased in order that they intersect, so enlarging the basin of attraction of the

stable equilibrium, and thereby increasing the likelihood of successful maintenance. For a given

intervention threshold, thX, the likelihood of successful maintenance is increased by increasing

the post-intervention values of parameters s0X, c0ZX and c0ZY, and by decreasing the post-

intervention values of parameters c0XZ and c0YZ. In other words, the status of the endangered

language should be increased and the two languages isolated by encouraging monolingual

education of children.
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Fig. 6. Nullclines for the unified bilingual model. The nullclines segment the phase space into four regions, RX, RY, RU

and RZ, each characterized by a different direction of change. Calculating the nullclines provides a summary of the

qualitative dynamics of the system (a = 1.0; m = 2%; cXZ = cYZ = 0.035; cZX = cZY = 1.0; sX = 0.5): (a) nullclines and

direction field and (b) nullclines and qualitative dynamics.



4. An agent-based model of language competition

We now examine the dynamics of language competition from a different perspective,

introducing an agent-based model that allows us to estimate the likelihood that the system
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Fig. 7. Comparison of the impact of different strategies for language maintenance. Panel a shows a baseline situation with

no intervention. In this example, controlling only the status of an endangered language (panel b: s0X = 0.4) or only the peak

transition rates (panel c: c0ZY = 0.070) fails to bring about language maintenance, whereas controlling both the status and

the peak transition rates can succeed (panel d: s0X = 0.4; c0ZY = 0.070). Regions RY of the pre-intervention state space and

RX of the post-intervention state space abut, creating a ‘trapping region’ that contains a stable equilibrium, S*, at which

both languages are spoken (a = 1.0; m = 2%): (a) no intervention (sX = 0.2; cZY = 0.035); (b) controlling status sX only

(sX = 0.2; s0X = 0.4; thX = 0.3); (c) controlling peak transition rate cZY only (cZY = 0.035; c0ZY = 0.070; thX = 0.3); and (d)

controlling both status and peak transition rate (sX = 0.2; s0X = 0.4; cZY = 0.035; c0ZY = 0.070; thX = 0.3).

Table 1

Mechanisms to increase the slopes of the post-intervention nullclines, and thereby increase the likelihood of language

maintenance

� Increasing the post-intervention status, s0X, of endangered language X increases the slopes of the post-maintenance

nullclines dx/dt = 0 and dy/dt = 0

� Increasing the post-intervention peak transition rate c0ZX increases the slope of the post-maintenance nullcline dx/dt = 0

� Increasing the post-intervention peak transition rate c0ZY increases the slope of the post-maintenance nullcline dy/dt = 0

�Decreasing the post-intervention peak transition rate c0XZ increases the slope of the post-maintenance nullcline dx/dt = 0

�Decreasing the post-intervention peak transition rate c0YZ increases the slope of the post-maintenance nullcline dy/dt = 0



converges to each stable state. The model that we have introduced in sections 2 and 3 is

deterministic: given the initial state, its state at any future time is uniquely determined. The system

allows, in principle, the proportion of speakers in each state to be calculated (even if one is not

always able to establish an analytical expression for it). However, which particular speakers are

bilingual at some time and which of them produce monolingual offspring, for example, are not

addressed. The model does not trace the states of every single speaker, only the proportions of

speakers having each state. Thus, it specifies a model of the expected behaviour of the competition,

but not the range of behaviours that can result from a given initial state or their relative likelihoods.

Typically, the behaviour of an appropriately defined system of differential equations

approaches the actual behaviour of the underlying system being modelled when the population

size is large. However, the population sizes that are relevant in the context of language

endangerment and maintenance are often of the order of hundreds or thousands of individuals.

For such small populations, fluctuations in the language usage patterns of certain individuals may

lead to dynamics that diverge significantly from the expected behaviour. Even when we consider

the maintenance of an endangered or minority language having a considerable number of

speakers, it may often be the case that many of the speakers live in small, relatively isolated

communities or else form cliques within larger communities with which they have comparatively

little interaction. Deterministic models based on systems of differential equations, such as (11),

might be unable to capture the full range of possible behaviours of the underlying system.

In order to encapsulate variation caused by such factors, we adapt our model to investigate the

stochastic nature of the dynamics of language competition. To do so, we implement the system as

an agent-based simulation model, an approach that has found frequent application in language

evolution studies (e.g. Hurford, 1989; Nowak et al., 1999; Wang et al., 2004). An agent-based

simulation is a model in which discrete elements, called ‘agents’, represent selected entities or

groups of entities of the underlying system that is being modelled. Unlike dynamical systems

such as (11) in which the global behaviour of the entire system is determined by a single set of

differential equations, the dynamics of agent-based models are described locally in terms of how

individual agents interact with each other.

In the agent-based model of language competition that we introduce here, the agents correspond

to the individual speakers that comprise the population being modelled. Each of the n agents adopts

one of three possible states: monolingual in language X (state X), monolingual in language Y

(state Y), or bilingual (state Z). Whereas the deterministic model is described in terms of formulae

that specify the rates of change of the proportions of individuals having certain states, we design the

agent-based model to use those same formulae to specify the probabilities with which each agent

makes the transition from state to state. For example, in the deterministic model, Z-bilinguals

following the V-Model produce X-monolingual offspring at rate cZX sX xa (by Eq. (7)). In the agent-

based model we re-interpret this to mean that Z-bilingual agents produce X-monolingual offspring

with probability cZX sX xa, where x now denotes the proportion of an agent’s neighbours who are

X-monolingual. Throughout the current section we will assume that the agents are all neighbours of

each other, modelling a population having a fully connected social network. However, the

re-interpretation of the transition rates as probabilities allows us to model the impact of other social

structures on the dynamics of language competition, an idea that we pursue in section 5.

The transition probabilities of the V-Model are given by:

PrðX!XÞ ¼ 1; (14a)

PrðY!YÞ ¼ 1; (14b)
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PrðZ!XÞ ¼ cZXsXxa; (14c)

PrðZ!YÞ ¼ cZYsYya; (14d)

PrðZ!ZÞ ¼ 1� cZXsXxa � cZYsYya (14e)

where x, y and z denote, respectively, the proportions of an agent’s neighbours who are X-

monolingual, Y-monolingual and Z-bilingual. All other transitions, e.g., X! Z and X! Y, have

probability zero. The transition probabilities of the H-Model are:

PrðX!XÞ ¼ 1� cXZsYya; (15a)

PrðX!ZÞ ¼ cXZsYya; (15b)

PrðY!YÞ ¼ 1� cYZsXxa; (15c)

PrðY!ZÞ ¼ cYZsXxa (15d)

PrðZ!ZÞ ¼ 1: (15e)

All other transitions have probability zero. Agents undergo vertical transmission with probability

m, the mortality rate defined in section 2.2; otherwise, they undergo horizontal transmission.

The simulation is run as follows: The n agents that comprise the population are assigned initial

states according to the selected initial proportions of speakers of each type. We denote the initial

proportions of monolingual speakers of X and Y by x0 and y0, respectively. Having also specified

the values of the other parameters, sX, cZX, cZY, cXZ, cYZ, and m, we set the simulation running

iteratively. At each iteration, each agent samples the states of all its neighbours to determine its

transition probabilities according to equations (14) and (15). Its state is then randomly updated

accordingly using the roulette wheel procedure (Goldberg, 1989). Once the simulation has run

for a specified number of iterations, we identify the global state that emerges: X-Monolingual

(95% or more agents monolingual in X), Y-Monolingual (95% or more agents monolingual in Y),

or Z-Bilingual (a mixture of both monolingual and bilingual agents).

4.1. Dynamics of the agent-based model

We now explain our approach to estimating the probability that the system converges to each

global state by means of an example. Fig. 8a shows the evolution of the system during one run of

the simulation for a population of 1,000 agents of whom 35% are initially X-monolingual and

60% Y-monolingual, the remainder being bilingual. In this run, the system quickly converges to

the stable equilibrium S* at x � 0.30, y � 0.45, z � 0.25 about which it then oscillates. This

represents an endangered language X being maintained with about 30% monolingual and 25%

bilingual speakers. Notice that the trajectory, also shown in the figure, follows the phase portrait

of the deterministic system (11), on which it is superimposed, to a large degree, indicating that

the behaviour of the stochastic, agent-based model has not diverged significantly from that of the

deterministic system.
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The same initial conditions, however, sometimes lead to the system converging to the state Y*

in which only language Y has any speakers, as shown for a second run in Fig. 8b. Despite

converging to a different stable state, the trajectory again follows the direction field closely. This

variation in the final state of the system is due to the fact that the initial state (x0 = 35%, y0 = 60%)

lies close to the boundary between the basins of attraction of the stable equilibria Y* and S*.

Slight perturbations away from the expected trajectory, indicated by the phase portrait, can lead

to the system converging to stable equilibria that differ from that predicted by the deterministic

system. By calculating the relative frequency of convergence to each stable equilibrium over

many runs of the simulation, the likelihood that the system converges to each equilibrium can be

estimated.

Our primary concern is to determine not only what intervention should be undertaken but also

when intervention should be undertaken in order that an endangered language be maintained.

Consider Fig. 9a, which shows the impact on a population of 1,000 agents, initially consisting of

80% X-monolinguals and 20% Y-monolinguals, of intervening to increase the status of X from

sX = 0.2 to s0X = 0.3. The figure indicates that if the intervention is made after the proportion of
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Fig. 8. Each set of initial conditions produces multiple possible outcomes. The figure shows the trajectories that ensue

from the same set of initial conditions in two runs of the simulation. Not only do the trajectories differ, the system

converges to different stable states (a = 1.0; m = 2%; cXZ = cYZ = 0.035; cZX = cZY = 1.0; sX = 0.4; s0X = 0.6; thX = 0.3).

(a and b) In one run of the simulation, the system converges to a stable state at x � 0.30, y � 0.45, z � 0.25 after 600

iterations. Thereafter, the system oscillates about this state in which both languages are maintained. (c and d) In a second

run, the system converges to a different stable state at x = 0, y = 1, z = 0. Language Y quickly acquires all speakers, and the

endangered language X dies.



monolingual speakers of X has fallen to 0.3 or lower (thX � 0.3), then only language Y can be

maintained. Maintenance of the two competing languages is possible if the intervention is made

on the interval 0.3 < thX < 0.8, and is inevitable only for intervention on the interval

0.5 � thX � 0.6. Fig. 9b, however, shows the effects of intervention whereby the status of X is

enhanced from sX = 0.2 to s0X = 0.4. In this case, both languages can be maintained with non-

negligible probability on the interval 0.2 < thX < 0.8, the probability rising to 1 on the interval

0.4 � thX � 0.6.

We observe that increasing the post-intervention status of an endangered language broadens

the range of values of the intervention threshold, thX, for which the endangered language and the
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Fig. 9. The impact of the intervention threshold, thX, and status, s0X, on the frequencies of convergence. Increasing the post-

intervention status, s0X, of an endangered language X broadens the range of values of the intervention threshold for which a

bilingual state is maintained with high frequency (n = 1000; x0 = 80%; y0 = 20%; a = 1; m = 2%; cXZ = cYZ = 0.035;

cZX = cZY = 1.0; 100 runs per point): (a) status: sX = 0.2; s0X = 0.3 and (b) status: sX = 0.2; s0X = 0.4.



language with which it competes are both maintained. In particular, the lower bound on thX is

decreased but the upper bound undergoes no significant change. We observe the same qualitative

behaviour for other sets of parameter values. This suggests that the more efficiently a community

can bring about an increase in the status of an endangered language—or, more generally,

implement any of the strategies proposed earlier in Table 1 —the later such intervention may take

place in order that maintenance be achieved.

Even when such intervention is expected ultimately to fail, the extinction of an endangered

language is not immediate. The rate at which a language loses speakers depends on the values of

the system parameters. Fig. 10 exemplifies the impact of population size, n, plotting the

frequency of language maintenance as a function of time for four different values of population

size. For all populations sizes, both languages are maintained within 500 time steps. As t is

increased beyond 500 time steps, however, the frequency of maintenance diminishes for all

population sizes, the fall in frequency being greater for smaller populations. We observe the same

qualitative behavior for other sets of parameter values. We therefore conclude that the probability

of maintenance over a fixed duration for a fully connected population increases with population

size. This result does not imply, however, that the probability of maintenance necessarily

increases with population size for arbitrary social structures. The behavior of the system for

qualitatively different social structures must be analyzed case by case. In the following section,

we introduce the method by which social structures other than the fully connected can be

modelled.

5. The impact of social structure on the probability of language maintenance

Our simulations in the previous section were based on the assumption that each agent has

complete knowledge of, and is influenced by, the states of all other speakers in the population
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Fig. 10. Frequency of occurrence of language maintenance as a function of time for different population sizes (x0 = 80%;

y0 = 20%; a = 1; m = 2%; cXZ = cYZ = c0XZ = 0.035; c0YZ = 0.070; cZX = cZY = 1.0; sX = 0.2; s0X = 0.4; thX = 0.3; 100 runs

per point).



undergoing language competition. In effect, this is equivalent to assuming that the underlying

social structure is fully connected. Here, we investigate the impact of other selected social

structures on the probability of language maintenance. We represent social structure as a network

whose nodes represent the individual speakers comprising the population. The edges of the

network connect individuals who communicate with each other. In particular, we model the

social structure as a local-world network (Li and Chen, 2003). Local-world networks integrate

into a single paradigm both the random networks of Erdős and Rényi (1959) and the scale-free

networks of Barabási and Albert (1999), which, together with ‘small-world’ (Watts and Strogatz,

1998) and other network structures, are now finding application in studies of social and

sociolinguistic systems (e.g., Moody, 2001; Smith, 2002; Ohtsuki et al., 2006; Castelló et al.,

2006).

Local-world networks are constructed recursively, adding nodes to the network one at a time.

As with scale-free networks, they are constructed using preferential attachment: when a node is

added to the network, it is assigned a greater probability of being connected to extant nodes

having numerous connections than to nodes having few connections. This reflects an assumption

that individuals prefer to interact with those speakers who themselves interact with many other

speakers. Unlike in scale-free networks, however, when a node is added to a local-world network

it is connected preferentially only to nodes within a randomly selected subset of all extant nodes,

its ‘local-world’. Thus individuals have local, rather than global, knowledge of the language

usage patterns of other speakers in the population and only interact with a fraction of the other

speakers comprising the population. The procedure we use for constructing local-world networks

is described in Appendix A.

We now analyze the effect of the initial proportions of monolingual speakers on the

probability of maintenance, starting with fully connected social structures. Fig. 11 shows the

behaviour of the system for a population of 1,000 agents, with parameter values set to a = 1.0 and

sX = 0.4, with no intervention. The figure plots the estimated probability of convergence to each

state as a function of the initial proportion of monolingual speakers of X; the remaining speakers
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Fig. 11. The impact of the initial proportion of endangered language monolinguals on the frequencies of convergence for

a fully connected population without intervention (n = 1,000; a = 1; sX = 0.4; 100 runs per point).



initially all speak Y. The figure clearly indicates that a state in which both languages are

maintained can be achieved only with negligible probability. Furthermore, for most initial

proportions of speakers, x � 0.7 or x � 0.8, the system behaves in the same manner as the

deterministic system (11), with just one language acquiring all speakers with probability 1.

However, when the initial proportion of monolingual speakers of X lies in the range

0.7 � x � 0.8, there is a gradual transition in the probabilities. This transition reflects the

stochastic aspect of the interactions among the agents, this effect being particularly prominent

when the initial conditions of the system are located close to the boundary between two basins of

attraction (as was the case for the simulation illustrated previously in Fig. 8). As the population

size increases, so the transition zone contracts, and the behaviour of the system converges to that

of the deterministic system (11) for all initial conditions.

For a locally connected population, the behaviour is indistinguishable from that of the fully

connected network shown in Fig. 11. We observe the same lack of impact of social structure on

the probabilities of convergence for other values of parameters n, a and s0. We therefore conclude

that, in the absence of intervention, local-world social structure has no significant influence on

which language is maintained and which language dies.

When the population intervenes to attempt to maintain both competing languages, however,

we find that the underlying social structure does affect the behaviour. Fig. 12 shows examples of

the behaviour for a population of 1,000 agents that intervenes to increase the status of the

endangered language X from 0.4 to 0.6 whenever the proportion of monolingual speakers of X

falls below 0.5. Fig. 12a highlights the behaviour for a fully connected population, clearly

indicating the range of initial proportions of monolingual speakers of the endangered language

that allow both languages to be maintained, 0.2 � x0 � 0.8, with maintenance being virtually

certain for 0.3 � x0 � 0.7. The same qualitative behaviour, in which a single stable state emerges

with probability 	1 over a broad range of initial conditions, is observed for other values of

parameters n, a and s0 for a fully connected population.

For a locally connected population, however, the behaviour is less regular. Fig. 12b shows the

graph for a local-world size of 50 agents, with the number of connections between each new node

and its local-world set to 20. We observe that the range of values for which both languages can

possibly be maintained is the same as for the fully connected population: 0.2 � x0 � 0.8.

However, the peak probability is somewhat less than 90% (for x0 = 0.3). The probability of

maintenance decays gradually for larger initial proportions of monolingual speakers of the

endangered language to about 50% for x0 = 0.7. The probability then decays rapidly to zero as x0

approaches 0.8, as is the case for the fully connected population. From this behaviour we infer

that maintenance is more difficult to achieve within societies having an underlying local-world

structure. Furthermore, the probability of maintenance appears to be maximal when intervention

is undertaken ‘‘at the last moment’’, but not so late that the opportunity is missed. Intervention is

best implemented when the state of the system is closest to the position of the stable equilibrium

S* that would be introduced by such enhancement; doing otherwise increases the probability that

the system diverges from this equilibrium.

These results suggest that for initial conditions in which death of the endangered language is

not inevitable, the probability of maintenance is greater for fully connected populations than for

locally connected populations. One reason why this is so may be that for the fully connected

population, the impact of a randomly selected individual on the evolution of the entire population

is generally the same as any other. But for a locally connected population, there are a few

particular individuals, called ‘hubs’, that connect to many more other individuals than is typical,

and so exert greater influence over the evolution of the entire population. Once these hubs have
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acquired a monolingual state, the convergence to a global monolingual state over the entire

population is hastened. Another reason may be that individuals within a fully connected

population sample the states of a greater number of neighbouring individuals than within a

locally connected population. As a result, variance in the behaviour of the locally connected

population is greater, resulting in rapid transitions toward the death of the endangered language

occurring more frequently for locally connected population than for fully connected populations.

We have yet to investigate language maintenance on social structures that differ qualitatively

from the fully connected or locally connected network models discussed above. However, the

model imposes no restrictions on the social structure other than that it can be represented as a
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Fig. 12. The impact of the initial proportion of endangered language monolinguals and the social structure on the

frequencies of convergence for a population with intervention (n = 1000; a = 1; sX = 0.4; s0X = 0.6; thX = 0.5; 100 runs per

point): (a) fully connected social structure. (b) locally connected social structure (nLW = 50; eLW = 20).



network of nodes, representing the members of the population, and edges, representing the

communicative interactions among members. It is possible, therefore, to model language

competition on a population comprised of two distinct, weakly interacting sub-populations, the

sub-populations modelled as two separate networks having sparse inter-connectivity. Doing so

may shed light on the empirical observation that small, culturally isolated populations can often

maintain a minority language for many generations, one example being the maintenance of

Pennsylvania German among the Mennonite (Burridge, 1997), Amish (Huffines, 1980) and other

Anabaptist groups in North America since their arrival from Europe in the 17th century.

Until the predictions of the model have been fitted to empirical data, we hesitate to claim that

the probabilities quoted here indicate precisely the likelihood of language maintenance being

achieved within an actual community. However, we do maintain that comparison of the estimated

probabilities of convergence for different sets of parameter values and initial conditions reveal

the qualitative behaviour of the system, and so inform us how better to intervene in order that an

endangered language be maintained.

6. Discussion

We have introduced an extension of the Abrams and Strogatz (2003) model for language

competition in which we explicitly model bilingualism and social structure. In the absence of

intervention, the qualitative dynamics of the system are, in most cases, identical to those of the

Abrams and Strogatz system—when two languages compete for speakers, eventual extinction of

one language is inevitable. However, we have shown that by appropriate increase in the status of

an endangered language or by adjusting the availability of educational resources in each of the

competing languages, for example, the dynamics can be altered such that both languages are

maintained with non-negligible probability. Such intervention should be undertaken within a

certain time window, enhancing the viability of the endangered language before it becomes

moribund. For all but the simplest social structures that we have modelled, the peak probability of

successful maintenance is obtained by implementing the maintenance strategy as late as possible.

We have yet to demonstrate, however, that the dynamics of the model presented here fit the

empirical data any better than those of others models, such as those developed by Abrams and

Strogatz (2003), and Mira and Paredes (2005). This task remains a necessary future step.

Nevertheless, the model introduced here does account for a number of factors that influence

language competition and maintenance, including language status, proportions of speakers,

population size, and the availability of monolingual and bilingual educational resources. The model

is sufficiently flexible that the sociolinguistic particulars of the environment in which language

competition takes place can be modelled by appropriate selection of the model parameters and

network structure. For example, situations in which two or more communities interact, each

initially having distinct language patterns of its own, may be conveniently modelled by merging

multiple networks, one for each community. One could then examine how the degree of isolation of

an endangered language impacts upon its viability. In this way, the competition between

Pennsylvania German and English among Anabaptist communities within North America could be

modelled by considering the impact of communicative interactions between one sub-population

comprising both German monolinguals and German-English bilinguals, representing an

Anabaptist community, and another sub-population comprising mainly English monolinguals,

representing that community’s neighbours, between which there is only sparse interconnectivity.

A number of aspects of the model proposed here can be refined. We have not explicitly

modelled the geographic distribution of the individuals comprising a population. Network
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models have been proposed that account for the distances between the nodes making up the

network (e.g., Kleinberg, 2000), an approach that could be applied to model the geographic

distribution of speakers. However, the geographic distribution of speakers within a population is

not necessarily an indication of the likely social connections that obtain among them, particularly

in urban environments. A recently proposed modification of the local-world paradigm (Gong

et al., 2004), in which the local-world of each node is re-assessed at each time step, may serve to

model the dynamic aspects of interaction among speakers within a community, obviating the

need to explicitly model geographic distribution.

We have made no attempt to model code-switching, which often leads to an endangered

language adopting features of the language with which it competes. Rather, we have assumed

implicitly that such language shift, if it occurs, does not impact the attractiveness of a language.

Code-switching and language shift might be incorporated into the model by treating the

languages as consisting of multiple components, e.g. the lexicon and the syntax, each having its

own status and attractiveness, and each of which may be learned independently by each speaker.

The loss of individual components may then be traced as the system evolves. It is likely that such

a model would predict the fall of an endangered language, slowly at first as the first few

components of the endangered language come to be replaced by their more prestigious

counterparts, and then increasingly rapidly as the remnants of the dying language vanish. As the

two competing languages come to resemble each other ever more closely, their degree of mutual

intelligibility would increase. A first step toward modelling the impact of code switching and

language shift might therefore be to introduce into the system (11) an additional variable that

measures the degree of mutual intelligibility (cf. parameter k in the model of Mira and Paredes,

2005), and which varies as a function of the proportion of components that the competing

languages have in common.
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Appendix A. Algorithm for constructing local-world networks

We use the following recursive algorithm to construct local-world networks (Li and Chen,

2003). The parameters of the algorithm comprise:

� the population size, n, which corresponds to the number of nodes in the network;

� the initial proportions of agents monolingual in X, x0, and Y, y0;

� the size of the local-world, nLW;

� the number of nodes in the local world to which each new node is connected, eLW.

The algorithm proceeds as follows:

1. Build a random network consisting of nLW nodes, starting with a network consisting of a single

initial node.

a. Add a new node.

b. Connect the new node to one randomly selected existing node.

c. Repeat steps a–b until the network consists of nLW nodes.
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2. Add the remaining (n � nLW) nodes to the network by preferential attachment:

a. Add a new node.

b. Randomly select nLW existing nodes to be the local-world of the new node.

c. Connect the new node to eLW nodes within its local-world by preferential attachment, i.e.,

the node connects to eLW nodes in its local-world with probability proportional to their

degree (i.e., the number of nodes to which they are already connected).

d. Repeat steps a–c until the network consists of n nodes.

3. Randomly assign the state of each node according to the initial proportions of monolingual

speakers of each language, x0 and y0.

Scale-free networks can be constructed using the same algorithm by setting the size of the

local-world to the total number of nodes that exist in the network at each step.
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