From Fountain to BATS: Realization of Network Coding

Shenghao Yang

Jan 26, 2015 Shenzhen

Outline

- Outline
- 2 Single-Hop: Fountain Codes
 - LT Codes
 - Raptor codes: achieving constant complexity
- Multi-Hop: BATS Codes
 - Random Linear Network Coding
 - BATS Codes

File Transmission through Packet Networks

Network features

- Many wireless links
- Loss due to interference/fading
- Limited feedbacks
- Node capability constraint
- Multiple destinations
- ..

Single-hop Network

The network link has a packet loss rate 0.2.

- Capacity: 1 0.2 = 0.8.
- Capacity achieving approaches:
 - retransmission
 - forward error correction

Jan 26, 2015

Single-hop Network

The network link has a packet loss rate 0.2.

- Capacity: 1 0.2 = 0.8.
- Capacity achieving approaches:
 - retransmission
 - fountain codes

Multi-hop Networks

 $\begin{array}{ccc} \text{Intermediate Operation} & \text{Maximum Rate} \\ & \text{forwarding} & 0.8^n \rightarrow 0 \\ & \text{network coding} & 0.8 \end{array}$

Outline

- Fountain codes and BATS codes
 - rateless
 - capacity achieving
 - low encoding/decoding complexity
 - (for BATS) low network coding complexity
- BATS Protocol
 - real-world issues
 - experimental results

Outline

- Outline
- Single-Hop: Fountain Codes
 - LT Codes
 - Raptor codes: achieving constant complexity
- Multi-Hop: BATS Codes
 - Random Linear Network Coding
 - BATS Codes

What are fountain codes?

- ullet Transmit a file of K packets: $b_1, b_2, \ldots, b_K \in \mathbb{F}_q^T$.
- Encoder generates potentially infinite number of coded packets.
- ullet The file can be recovered from any subset of N coded packets, where N is slightly larger than K.
- Also known as rateless codes.

Random linear codes

- Encoding: $x_j = \sum_{i=1}^K \alpha_{j,i} b_i$ where $\alpha_{j,i}$ are randomly chosen from \mathbb{F}_q .
- Coefficient vector: $[\alpha_{j,1}, \alpha_{j,2}, \dots, \alpha_{j,K}]^{\top}$.
- ullet Decoding: collects K coded packets with linearly independent coding vectors.

Classes of fountain codes

- Complexities of random linear codes
 - Encoding: O(KT) per packet
 - Decoding: $O(K^2 + KT)$ per packet
- LT codes (Luby 1998): $O(T \log K)$ per packet
- Raptor codes (Shokrollahi 2000): O(T) per packet

LT codes: encoding

- pick a degree d by sampling a degree distribution $\Psi = (\Psi_1, \Psi_2, \dots, \Psi_K)$.
- ② uniformly at random pick d input packets.
- $oldsymbol{\circ}$ generate a coded packet by linearly combinate of the d input packets.

LT codes: encoding

- pick a degree d by sampling a degree distribution $\Psi = (\Psi_1, \Psi_2, \dots, \Psi_K)$.
- ② uniformly at random pick d input packets.
- lacktriangle generate a coded packet by linearly combinate of the d input packets.
- repeat 1 3.

- find a coded packet with degree one, which recovers the corresponding input packet.
- Substitute the recovered input packet into the other coded packets that it involves.
- orepeat 1 2 until there is no coded packets with degree one.

- find a coded packet with degree one, which recovers the corresponding input packet.
- Substitute the recovered input packet into the other coded packets that it involves.
- orepeat 1 2 until there is no coded packets with degree one.

- find a coded packet with degree one, which recovers the corresponding input packet.
- Substitute the recovered input packet into the other coded packets that it involves.
- orepeat 1 2 until there is no coded packets with degree one.

- find a coded packet with degree one, which recovers the corresponding input packet.
- Substitute the recovered input packet into the other coded packets that it involves.
- orepeat 1 2 until there is no coded packets with degree one.

- find a coded packet with degree one, which recovers the corresponding input packet.
- Substitute the recovered input packet into the other coded packets that it involves.
- orepeat 1 2 until there is no coded packets with degree one.

- find a coded packet with degree one, which recovers the corresponding input packet.
- Substitute the recovered input packet into the other coded packets that it involves.
- orepeat 1 2 until there is no coded packets with degree one.

Degree distribution of LT codes

Proposition

For an LT code with K input packets and n coded packets, if there exists a decoding algorithm with $P_e \leq K^{-c}$, then $\mathbb{E}[\Psi] \geq c' \frac{K}{n} \ln K$.

- So when n is close to K, $\mathrm{E}[\Psi] \geq c' \ln K$.
- Luby showed that there exists a degree distribution such that

 - ${f 2}$ the BP decoding succeeds with vanishing error probability for n coded packets, and

Soliton distribution

Ideal soliton distribution

$$\rho(1) = 1/K$$

$$\rho(d) = \frac{1}{d(d-1)}, \quad d = 2, 3, \dots, K.$$

• Robust soliton distribution: ho(d) + au(d) with normalization

$$\tau(d) = \begin{cases} \frac{S}{K} \frac{1}{d} & \text{for } d = 1, 2, \dots, (K/S) - 1 \\ \frac{S}{K} \log(S/\delta) & \text{for } d = K/S \\ 0 & \text{for } d > K/S \end{cases}$$

where $S = c \log(K/\delta) \sqrt{K}$.

Raptor codes

- The original inputs packets are first encoded by a precode (an erasure correction code).
- The intermediate coded packets are further encoded by an LT code (with different degree distribution from the original one).
- BP decoder recovers a fraction of the intermediate coded packets, from which the precode can recover the original input packets.

Degree distribution of Raptor codes

- ullet BP decoding recovers at least η fraction of the (intermediate) input packets.
- The maximum degree $D \leq 1/(1-\eta)$. So $E[\Psi] = O(1)$.
- The gap $\frac{n-K}{K}$ can be any positive value but is not vanishing for a fixed degree distribution when $K \to \infty$.

Performance analysis

- Asymptotic analysis: performance when $K \to \infty$.
 - Tree analysis [LMS98]
 - Differential equation approach (see [Wor99])
- Finite-length analysis: performance when K is relative small.
 - Iterative formula for the distribution of the decoder status

- [LMS98] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, "Analysis of Random Processes via And-Or Tree Evaluation", in Proc. SODA, 1998, pp. 364-373.
- N. C. Wormald, "The differential equation method for random graph processes and greedy algorithms," Karonsky and [Wor99] Proemel, eds., Lectures on Approximation and Randomized Algorithms PWN, Warsaw, pp. 73-155, 1999.

Degree distribution optimization

To guarantee the success of decoding with high probability, we require

$$\Psi'(y) + \theta \ln(1-y) > 0$$
, for $y \in [0, 1-\eta]$.

• Let $D = |1/(1-\eta)| - 1$. For any $\theta < 1$, the degree distribution

$$\Psi(x) = \theta \left((1/\theta - 1)x + \sum_{i=2}^{D-1} \frac{x^i}{(i-1)i} + \frac{x^D}{D-1} \right)$$

satisfies the above requirement.

Outline

- Outline
- Single-Hop: Fountain Codes
 - LT Codes
 - Raptor codes: achieving constant complexity
- Multi-Hop: BATS Codes
 - Random Linear Network Coding
 - BATS Codes

Two-hop network

Both links have a packet loss rate 0.2.

Intermediate Operation	Maximum Rate
forwarding	0.64
network coding	8.0

Random linear network coding

Shenghao Yang Jan 26, 2015 21 / 35

Coefficient vector overhead

Shenghao Yang Jan 26, 2015 22 / 35

Coefficient vector overhead

Shenghao Yang Jan 26, 2015 22 / 35

Complexity of linear network coding

- K: number of input packets
- Encoding: $\mathcal{O}(K)$ per packet.
- Decoding: $\mathcal{O}(K^2)$ per packet.
- ullet Network coding: $\mathcal{O}(K)$ per packet. Buffer K packets.

Shenghao Yang Jan 26, 2015 23 / 35

Previous approach 1

Sparse encoding: Modifying fountain codes [PFS05, CHKS09, GS08, TF11]

- Network coding changes the degree distribution.
- Cannot reduce Coefficient vector overhead.

Shenghao Yang Jan 26, 2015 24 / 35

Previous approach 2

Chunked encoding [CWJ03, MHL06, SZK09, HB10, LSS11]

- Disjoint chunks are not efficient.
- Heuristic designs of overlapped chunks.

Shenghao Yang Jan 26, 2015 25 / 35

New approach: coding for network coding

- BATS codes [YY11, YY14]
 - Combine fountain codes with chunks.
 - Rateless codes.
- Coding-based chunked codes [Tang12, MAB12, YT14]
 - Using LDPC codes to construct chunks.
 - Fixed-rate codes.

[YY11] S. Yang and R. W. Yeung, "Coding for a network coded fountain," ISIT 2011.

[YY14] S. Yang and R. W. Yeung, "Batched sparse codes," IEEE Trans. Inform. Theory, vol. 60, no. 9, Sep. 2014.

[Tang12] B. Tang, S. Yang, Y. Yin, B. Ye and S. Lu, "Expander graph based overlapped chunked codes", ISIT 2012.

[YT14] S. Yang and B. Tang, "From LDPC to chunked network codes", ITW 2014.

Shenghao Yang Jan 26, 2015

26 / 35

New approach: coding for network coding

- BATS codes [YY11, YY14]
 - Combine fountain codes with chunks.
 - Rateless codes.
- Coding-based chunked codes [Tang12, MAB12, YT14]
 - Using LDPC codes to construct chunks.
 - Fixed-rate codes.

[YY11] S. Yang and R. W. Yeung, "Coding for a network coded fountain," ISIT 2011.

[YY14] S. Yang and R. W. Yeung, "Batched sparse codes," IEEE Trans. Inform. Theory, vol. 60, no. 9, Sep. 2014.

[Tang12] B. Tang, S. Yang, Y. Yin, B. Ye and S. Lu, "Expander graph based overlapped chunked codes", ISIT 2012.

[YT14] S. Yang and B. Tang, "From LDPC to chunked network codes", ITW 2014.

Shenghao Yang Jan 26, 2015

26 / 35

Batched Sparse (BATS) Codes

Shenghao Yang Jan 26, 2015 27 / 35

Outer Code

- Apply a "matrix fountain code" at the source node:
 - **1** Obtain a degree d by sampling a degree distribution Ψ .
 - Pick d distinct input packets randomly.
 - $oldsymbol{3}$ Generate a batch of M coded packets using the d packets.
- Transmit the batches sequentially.

Shenghao Yang Jan 26, 2015

28 / 35

Inner Code

- The batches traverse the network.
- Encoding at the intermediate nodes forms the inner code.
- Linear network coding is applied in a causal manner within a batch.

Shenghao Yang Jan 26, 2015 29 / 35

Belief Propagation Decoding

- Find a check node i with degree_i = rank($\mathbf{G}_i\mathbf{H}_i$).
- ② Decode the *i*th batch.
- Update the decoding graph. Repeat 1).

The linear equation associated with a check node: $\mathbf{Y}_i = \mathbf{B}_i \mathbf{G}_i \mathbf{H}_i$.

Shenghao Yang Jan 26, 2015 30 / 35

Asymptotic Analysis

Theorem

Consider a sequence of decoding graph $BATS(K, n, \Psi)$ with constant $\theta = K/n$. The BP decoder is asymptotically error free if the degree distribution satisfies

$$\Omega(x) + \theta \ln(1-x) > 0$$
 for $x \in (0, 1-\eta)$,

where $\Omega(x)$ is related to degree distribution Ψ and the rank distribution of the transfer matrices.

Shenghao Yang Jan 26, 2015 31 / 35

Degree-Distribution Optimization

$$\begin{array}{ll} \max & \theta \\ \text{s.t.} & \Omega(x) + \theta \ln(1-x) \geq 0, \quad 0 < x \leq 1 - \eta \\ & \Psi_d \geq 0, \quad d = 1, \cdots, D \\ & \sum_d \Psi_d = 1. \end{array}$$

- $D = \lceil M/\eta \rceil$
- Solver: Linear programming by sampling x.

Shenghao Yang Jan 26, 2015 32 / 35

Practical Design

- Precode: achieve constant complexity
- ullet Inactivation decoding: reduce coding overhead when K is small
- Finite-length analysis [NY13]

[NY13] T. C. Ng and S. Yang, Finite length analysis of BATS codes, in Proc. IEEE NetCod 2013.

Shenghao Yang Jan 26, 2015 33 / 35

Complexity

Source node encoding		$\mathcal{O}(1)$ per packet
Destination node decoding		$\mathcal{O}(1)$ per packet
Intermediate Node	buffer	$\mathcal{O}(1)$
	network coding	$\mathcal{O}(1)$ per packet
Coeff. vector overhead		${\cal M}$ symbols per packet

Shenghao Yang Jan 26, 2015 34 / 35

Achievable Rates for Line Networks

Shenghao Yang Jan 26, 2015 35 / 35