

9.3 Convergence

• Consider the double supremum optimization problem in Section 9.1.

- Consider the double supremum optimization problem in Section 9.1.
- We first prove in general that if f is concave, then $f^{(k)} \to f^*$.

- Consider the double supremum optimization problem in Section 9.1.
- We first prove in general that if f is concave, then $f^{(k)} \to f^*$.
- We then apply this sufficient condition to prove the convergence of the BA algorithm for computing C.

- Consider the double supremum optimization problem in Section 9.1.
- We first prove in general that if f is concave, then $f^{(k)} \to f^*$.
- We then apply this sufficient condition to prove the convergence of the BA algorithm for computing C.
- The convergence of the BA algorithm for computing $R(D_s) sD_s$ can be proved likewise.

9.3.1 A Sufficient Condition

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

$$\mathbf{u}^{(k+1)} = (\underline{\mathbf{u}}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

$$\mathbf{u}^{(k+1)} = (\underline{\mathbf{u}_1^{(k+1)}}, \mathbf{u}_2^{(k+1)}) = (\underline{c_1(\mathbf{u}_2^{(k)})}, c_2(c_1(\mathbf{u}_2^{(k)})))$$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \underline{\mathbf{u}_2^{(k+1)}}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \underline{\mathbf{u}_2^{(k+1)}}) = (c_1(\mathbf{u}_2^{(k)}), \underline{c_2(c_1(\mathbf{u}_2^{(k)}))})$$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2).$$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2).$$

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\mathbf{u}^{(k)})$$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2).$$

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\mathbf{u}^{(k)})$$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2).$$

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\mathbf{u}^{(k)})$$

= $f(c_1(\mathbf{u}^{(k)}_2), c_2(c_1(\mathbf{u}^{(k)}_2))) - f(\mathbf{u}^{(k)}_1, \mathbf{u}^{(k)}_2)$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2).$$

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\underline{\mathbf{u}}^{(k)})$$

= $f(c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)}))) - f(\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2).$$

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\underline{\mathbf{u}}^{(k)})$$

= $f(c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)}))) - f(\underline{\mathbf{u}}_1^{(k)}, \mathbf{u}_2^{(k)})$

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2)$$

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\mathbf{u}^{(k)})$$

= $f(c_1(\mathbf{u}^{(k)}_2), c_2(c_1(\mathbf{u}^{(k)}_2))) - f(\mathbf{u}^{(k)}_1, \mathbf{u}^{(k)}_2)$
= $\Delta f(\mathbf{u}^{(k)}).$

We first prove that if f is concave, then the algorithm cannot be trapped at \mathbf{u} if $f(\mathbf{u}) < f^*$.

Lemma 9.4 Let f be concave. If $f^{(k)} < f^*$, then $f^{(k+1)} > f^{(k)}$.

 \mathbf{Proof}

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0$,

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0$,

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

 $f(\mathbf{u}_1,\mathbf{u}_2).$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2),\mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1,\mathbf{u}_2).$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2),\mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1,\mathbf{u}_2).$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2),\mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1,\mathbf{u}_2).$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

 $f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

 $f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \underline{\mathbf{u}}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0$,

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

 $f(c_1(\mathbf{u}_2), \underline{c_2(c_1(\mathbf{u}_2))}) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \underline{\mathbf{u}_2}) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

 $f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

 $f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$ii$$
) is tight \Rightarrow $\mathbf{u}_1 = c_1(\mathbf{u}_2)$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\underline{\mathbf{u}_1}, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$ii$$
) is tight \Rightarrow $\mathbf{u}_1 = c_1(\mathbf{u}_2)$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(\underline{c_1(\mathbf{u}_2)}, \mathbf{u}_2) \stackrel{ii)}{\geq} f(\underline{\mathbf{u}_1}, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$ii$$
) is tight \Rightarrow $\mathbf{u}_1 = c_1(\mathbf{u}_2)$
\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(\underline{c_1(\mathbf{u}_2)}, \mathbf{u}_2) \stackrel{ii)}{\geq} f(\underline{\mathbf{u}_1}, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

b. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

ii) is tight \Rightarrow $\mathbf{u}_1 = c_1(\mathbf{u}_2)$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \mathbf{u}_1 = c_1(\mathbf{u}_2) \\ i) \text{ is tight} & \Rightarrow & \mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1). \end{array}$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \underline{\mathbf{u}_2}) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \mathbf{u}_1 = c_1(\mathbf{u}_2) \\ i) \text{ is tight} & \Rightarrow & \mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1). \end{array}$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), \underline{c_2(c_1(\mathbf{u}_2))}) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \underline{\mathbf{u}_2}) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \mathbf{u}_1 = c_1(\mathbf{u}_2) \\ i) \text{ is tight} & \Rightarrow & \mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1). \end{array}$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), \underline{c_2(c_1(\mathbf{u}_2))}) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \underline{\mathbf{u}_2}) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \mathbf{u}_1 = c_1(\mathbf{u}_2) \\ i) \text{ is tight} & \Rightarrow & \underline{\mathbf{u}_2 = c_2(c_1(\mathbf{u}_2))} = c_2(\mathbf{u}_1). \end{array}$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

b. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \mathbf{u}_1 = \underline{c_1(\mathbf{u}_2)} \\ i) \text{ is tight} & \Rightarrow & \mathbf{u}_2 = \overline{c_2(c_1(\mathbf{u}_2))} = c_2(\mathbf{u}_1) \end{array}$$

.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

b. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \underline{\mathbf{u}_1} = \underline{c_1(\mathbf{u}_2)} \\ i) \text{ is tight} & \Rightarrow & \overline{\mathbf{u}_2} = \overline{c_2(c_1(\mathbf{u}_2))} = c_2(\mathbf{u}_1) \end{array}$$

.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \underline{\mathbf{u}_1} = \underline{c_1(\mathbf{u}_2)} \\ i) \text{ is tight} & \Rightarrow & \overline{\mathbf{u}_2} = \overline{c_2(c_1(\mathbf{u}_2))} = c_2(\mathbf{u}_1). \end{array}$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

b. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

ii) is tight
$$\Rightarrow$$
 $\mathbf{u}_1 = c_1(\mathbf{u}_2)$
i) is tight \Rightarrow $\mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1)$

.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

b. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \underline{\mathbf{u}_1 = c_1(\mathbf{u}_2)} \\ i) \text{ is tight} & \Rightarrow & \overline{\mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1)} \end{array}$$

.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

ii) is tight
$$\Rightarrow$$
 $\mathbf{u}_1 = c_1(\mathbf{u}_2)$
i) is tight \Rightarrow $\mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1).$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

b. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \mathbf{u}_1 = c_1(\mathbf{u}_2) \\ i) \text{ is tight} & \Rightarrow & \mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1) \end{array}$$

.

c. This also implies that if

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) = 0,$$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

a. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{i)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{ii)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both *i*) and *ii*) are tight.

b. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

$$\begin{array}{lll} ii) \text{ is tight} & \Rightarrow & \mathbf{u}_1 = c_1(\mathbf{u}_2) \\ i) \text{ is tight} & \Rightarrow & \mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1) \end{array}$$

c. This also implies that if

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) = 0,$$

then $\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)}$.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0$,

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0$,

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

 $\tilde{\boldsymbol{z}}$ unit vector in the direction of $\boldsymbol{v}-\boldsymbol{u}$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{lll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$

\mathbf{Proof}

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{lll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{lll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(\kappa+1)} - f^{(\kappa)} = \Delta f(\mathbf{u}^{(\kappa)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\nabla f \cdot \tilde{\mathbf{z}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0.$$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\underline{\nabla f \cdot \tilde{\mathbf{z}}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0.$$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\underline{\nabla f \cdot \tilde{\mathbf{z}}} = \alpha_1(\underline{\nabla f \cdot \mathbf{z}_1}) + \alpha_2(\nabla f \cdot \mathbf{z}_2) = 0.$$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- $\begin{array}{ll} \mathbf{z}_1 & \text{unit vector in the direction of} \\ (\mathbf{v}_1 \mathbf{u}_1, \mathbf{0}) \end{array} \end{array}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\underline{\bigtriangledown f \cdot \tilde{\mathbf{z}}} = \alpha_1(\underline{\bigtriangledown f \cdot \mathbf{z}_1}) + \alpha_2(\underline{\bigtriangledown f \cdot \mathbf{z}_2}) = 0.$$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$

d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\underline{\bigtriangledown f \cdot \tilde{\mathbf{z}}} = \alpha_1 (\bigtriangledown f \cdot \mathbf{z}_1) + \alpha_2 (\bigtriangledown f \cdot \mathbf{z}_2) = 0.$$

Lemma 9.4 Let f be concave. If $f^{(k)} < f^*$, then $f^{(k+1)} > f^{(k)}.$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $(h \mid 1)$ (\mathbf{l}_{a}) (h)0,

$$f^{(\kappa+1)} - f^{(\kappa)} = \Delta f(\mathbf{u}^{(\kappa)}) > 0$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $u_2 = c_2(u_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v}).$

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_1 unit vector in the direction of $(\mathbf{v}_1 - \mathbf{u}_1, 0)$
- unit vector in the direction of **Z**2 $(0, \mathbf{v}_2 - \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\underline{\nabla f \cdot \tilde{\mathbf{z}}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0.$$

j. Since f is concave along the line passing through **u** and \mathbf{v} , this implies $f(\mathbf{u}) > f(\mathbf{v})$, a contradiction.

Lemma 9.4 Let f be concave. If $f^{(k)} < f^*$, then $f^{(k+1)} > f^{(k)}$.

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\underline{\nabla f \cdot \tilde{\mathbf{z}}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0.$$

j. Since f is concave along the line passing through **u** and **v**, this implies $f(\mathbf{u}) \ge f(\mathbf{v})$, a contradiction.

Lemma 9.4 Let f be concave. If $f^{(k)} < f^*$, then $f^{(k+1)} > f^{(k)}.$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $(h \mid 1)$ (\mathbf{l}_{a}) (h)0,

$$f^{(\kappa+1)} - f^{(\kappa)} = \Delta f(\mathbf{u}^{(\kappa)}) > 0$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $u_2 = c_2(u_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v}).$

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_1 unit vector in the direction of $(\mathbf{v}_1 - \mathbf{u}_1, 0)$
- unit vector in the direction of **Z**2 $(0, \mathbf{v}_2 - \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\underline{\nabla f \cdot \tilde{\mathbf{z}}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0.$$

j. Since f is concave along the line passing through **u** and \mathbf{v} , this implies $f(\mathbf{u}) \geq f(\mathbf{v})$, a contradiction.

Lemma 9.4 Let f be concave. If $f^{(k)} < f^*$, then $f^{(k+1)} > f^{(k)}.$

Proof

It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have $(k \perp 1)$ (k)(k)0,

$$f^{(\kappa+1)} - f^{(\kappa)} = \Delta f(\mathbf{u}^{(\kappa)}) >$$

proving the lemma.

1. First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

2. Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

a. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .

b. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v}).$

c. Let

- $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v} \mathbf{u}$
- \mathbf{z}_1 unit vector in the direction of $(\mathbf{v}_1 - \mathbf{u}_1, 0)$
- unit vector in the direction of \mathbf{z}_{2} $(0, \mathbf{v}_2 - \mathbf{u}_2).$
- d. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

e. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.

f. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.

g. In particular, f attains its maximum value at **u** along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.

h. Therefore, by considering the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$, we see that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.

i. Then
$$\nabla f \cdot \tilde{\mathbf{z}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0.$$

j. Since f is concave along the line passing through **u** and \mathbf{v} , this implies $f(\mathbf{u}) \geq f(\mathbf{v})$, a contradiction.

k. Hence, $\Delta f(\mathbf{u}) > 0$.

Although $\Delta f(\mathbf{u}) > 0$ as long as $f(\mathbf{u}) < f^*$, $f^{(k)}$ does not necessarily converge to f^* because the increment in $f^{(k)}$ in each step may be arbitrarily small.

Theorem 9.5 If f is concave, then $f^{(k)} \to f^*$.

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \underline{\Delta f(\mathbf{u})},$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

\mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : \frac{f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

8. Thus for all sufficiently large k,

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma$$

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

8. Thus for all sufficiently large k,

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma$$

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

8. Thus for all sufficiently large k,

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma$$

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

8. Thus for all sufficiently large k,

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma$$

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

8. Thus for all sufficiently large k,

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma$$

9. No matter how small γ is, $f^{(k)}$ will eventually be greater than f', which is a contradiction to $f^{(k)} \to f'$.

 \mathbf{Proof}

1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.

2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \leq f(\mathbf{u}) \leq f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.

6. If $f' < f^*$, since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.

7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.

8. Thus for all sufficiently large k,

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma$$

9. No matter how small γ is, $f^{(k)}$ will eventually be greater than f', which is a contradiction to $f^{(k)} \to f'$. 10. Hence, $f^{(k)} \to f^*$.

9.3.2 Convergence to the Channel Capacity

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

Proof

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.

2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 - \lambda$. An application of the log-sum inequality gives

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$\frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\mathbf{\lambda} r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$
Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\varkappa r_1(x)}{\varkappa q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

3. Taking reciprocal in the logarithms yields

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)}{\lambda r_1(x) + \bar{\lambda} r_2(x)} \ge \lambda r_1(x) \log \frac{q_1(x|y)}{r_1(x)} + \bar{\lambda} r_2(x) \log \frac{q_2(x|y)}{r_2(x)}$$

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

3. Taking reciprocal in the logarithms yields

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)}{\lambda r_1(x) + \bar{\lambda} r_2(x)} \ge \lambda r_1(x) \log \frac{q_1(x|y)}{r_1(x)} + \bar{\lambda} r_2(x) \log \frac{q_2(x|y)}{r_2(x)}.$$

4. Multiplying by p(y|x) and summing over all x and y, we conclude that $f(\mathbf{r}, \mathbf{q})$ is concave.

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) \underline{p(y|x)} \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\lambda r_1(x)}{\lambda q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

3. Taking reciprocal in the logarithms yields

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)}{\lambda r_1(x) + \bar{\lambda} r_2(x)} \ge \lambda r_1(x) \log \frac{q_1(x|y)}{r_1(x)} + \bar{\lambda} r_2(x) \log \frac{q_2(x|y)}{r_2(x)}.$$

4. Multiplying by p(y|x) and summing over all x and y, we conclude that $f(\mathbf{r}, \mathbf{q})$ is concave.

Proposition

$$f(\mathbf{r}, \mathbf{q}) = \underbrace{\sum_{x} \sum_{y} r(x) \underline{p(y|x)}}_{r(x)} \log \frac{q(x|y)}{r(x)}$$

is concave.

\mathbf{Proof}

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. Let $0 \leq \lambda \leq 1$ and $\overline{\lambda} = 1 \lambda$. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \leq \lambda r_1(x) \log \frac{\varkappa r_1(x)}{\varkappa q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{\bar{\lambda} r_2(x)}{\bar{\lambda} q_2(x|y)}.$$

3. Taking reciprocal in the logarithms yields

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)}{\lambda r_1(x) + \bar{\lambda} r_2(x)} \ge \lambda r_1(x) \log \frac{q_1(x|y)}{r_1(x)} + \bar{\lambda} r_2(x) \log \frac{q_2(x|y)}{r_2(x)}.$$

4. Multiplying by p(y|x) and summing over all x and y, we conclude that $f(\mathbf{r}, \mathbf{q})$ is concave.