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How to Prove Convergence

Consider the double supremum optimization problem in Section 9.1.
We first prove in general that if f is concave, then f(¥) — f*.

We then apply this sufficient condition to prove the convergence of the
BA algorithm for computing C.

The convergence of the BA algorithm for computing R(D;) — sDs can be
proved likewise.
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e In the alternating optimization algorithm, we have
k+1 k-+1 k k
u D = @ uftY) = (e (u§?), ea (e (ul)))

for k£ > 0.

e Define
Af(u) = f(c1(uz),ca(cr(uz))) — f(ug, uz).

e Then

fERD — 0 = D) — f(u®)

= fler(uy”), ea(cr(ui))) — fF(ui™, ul?)
— Af(u(k)).



We first prove that if f is concave, then the algorithm cannot be trapped at u

if f(u) < f*.
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k. Hence, Af(u) > 0.
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Although Af(u) > 0 as long as f(u) < f*, f*) does not necessarily converge
to f* because the increment in f(*) in each step may be arbitrarily small.
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9. No matter how small ~ is, f(k) will eventually be
greater than ‘f/‘, which is a contradiction to f(k) — f/.
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v = min Af(u),
uc A’/
where A’ = {u e A: 5 —e < f(u) < f'}.

4. Since f has continuous partial derivatives, A f(u) is
a continuous function of u.

5. A is compact because it is the inverse image of a
closed interval under a continuous function and A is
bounded. Therefore v exists.

6. If f/ < f*, since f is concave, by Lemma 9.4,
Af(u) > 0 for all u € A’ and hence v > 0.

7. Since f(k) = f(u(k)) satisfies (1), u(k) e A,
8. Thus for all sufficiently large k,

pEHD — ) = Ap®)) > .

9. No matter how small ~ is, f(k) will eventually be
greater than f/, which is a contradiction to f(k) — f/.
10. Hence, f(k) — f*.

Lemma 9.4 Let f be concave. If f(k) < f*, then
p(k+1) 5 ¢(k),
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Channel Capacity



Concavity of f(r,q)

Proposition
q(z|y)

f(r,a) => > r(z)p(ylz)log
z Y r(x)

is concave.

Proof




Concavity of f(r,q)

Proposition
q(z|y)

f(r,a) => > r(z)p(ylz)log
z Y r(x)

is concave.

Proof
1. Consider (r1,qq) and (rg9,qo) in A.




Concavity of f(r,q)

Proposition

f(r,a) => > r(z)p(ylz)log %
T Y (X

is concave.

Proof
1. Consider (r1,qq) and (rg9,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives



Concavity of f(r,q)

Proposition

fr@) =323 r(@)p(yle) los %
T Yy r(x

is concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

Ary(@)+Arg(z) e (2) log 271(2)

AT (®) S () o 2T2(®)
a1 (zly)+Xxaz (z|y) = Nai (a]y) TAT2(x) log

Xag(z]y)

(Ar1(z)+Arg(2)) log <



Concavity of f(r,q)

Proposition

fr@) =323 r(@)p(yle) los %
T Yy r(x

is concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

Ary(@)tArg (=) e (2) log 271(2)

AT (®) S () o 2T2(®)
a1 (zly)+Xxaz (z|y) = Nai (a]y) TAT2(x) log

Xag(z]y)

(Ar1(z)+Ara(2)) log



Concavity of f(r,q)

Proposition

fra) = 3 r(@)p(yle) log %
T Y (X

1s concave.

Proof
1. Consider (rq1,qq) and (ro,qo) in A.
2. Let 0 < A < 1and A =1 — X\. An application of the log-sum inequality gives

A7y (z)+Arg () ATy ()

AT (®) S () o 2T2(®)
Aql(wly)+>\ 2(x)log

(Ar1(z)+ AT (x)) log m

< Arq(z) log



Concavity of f(r,q)

Proposition

fr@) =323 r(@)p(yle) los %
T Yy r(x

is concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

Ary(@)+Arg(z) e (2) log 271(2)

AT (®) S () o 2T2(®)
a1 (zly)+Xxaz (z|y) = Nai (a]y) TAT2(x) log

Xag(z]y)

(Ar1(z)+Arg(2)) log <



Concavity of f(r,q)

Proposition
q(z|y)

r(x)

f(r,a) => > r(z)p(ylz)log
Y
1s concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

(Ar1 (2)+Arg (x)) log Aqi"&%ii;gggy) < A (@) log LD 4 X (o) Log —AZQ%:E:T;>



Concavity of f(r,q)

Proposition
q(z|y)

r(x)

f(r,a) => > r(z)p(ylz)log
Y
1s concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

s (@ 3ra(e) s SEBFREES < o 1on L4 ara(o) s S8



Concavity of f(r,q)

Proposition
q(z|y)

r(x)

f(r,a) => > r(z)p(ylz)log
Y
1s concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

(Arp (2)+Arg(2)) log Aqi"&%ii;gggy) < Ml(gc>1og){;:1(—%+xr2(x>1og —;;;“2(;7;)



Concavity of f(r,q)

Proposition
q(z|y)

r(x)

f(r,a) => > r(z)p(ylz)log
Y
1s concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

A 0+ 3ra (o) los SAREIERIRELS < s (o) low ZHEL 4Ry () 108 Fo2 e



Concavity of f(r,q)

Proposition
q(z|y)

r(x)

f(r,a) => > r(z)p(ylz)log
Y
1s concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives

A 0+ 3ra (o) los SAREIERIRELS < s (o) low ZHEL 4Ry () 108 Fo2 e

3. Taking reciprocal in the logarithms yields

X Aqq (z]y)+Agg (=]y) () loe 1ZIY) 5y 0. 22(2]Y)
(Ar1(xz)+Arg(z)) log )xrl(a:)—l—S\rQ(a:) > Arq(z) log T () +Arg(x) log ro(x)



Concavity of f(r,q)

Proposition

q(x|y)

f(r,a) = er(w)p(ylw)log =

is concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives
X ATy (z)+Arg () X1 (x) Xra(z)
Arq(x)+Aro(x)) lo - < Arq(x)lo +Aro(x) log .
(e tarz (@) 108 X0 Gy T xag (aly) = 1198 Xay alyy TAT2(2)108 X0 Gty
3. Taking reciprocal in the logarithms yields
X g1 (z|y)+Aga(z]y) q1 (z|y) | 5 g2 (z|y)
Ar1(x)+Aro(x)) lo = > Ari(x) log =————=<~4+Aro(x) log =—=<~.
( 1( )+ 2(x)) log A1 (z)+Aro (@) = 1(x) log rl(m) + 2 (x) log ,,,.2(:2)
4. Multiplying by p(y|xz) and summing over all  and y, we conclude that f(r,q) is concave.



Concavity of f(r,q)

Proposition

q(x|y)

f(r,a) = er(w)p(ylw)log =

is concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives
X ATy (z)+Arg () X1 (x) Xra(z)
Arq(x)+Aro(x)) lo - < Arq(x)lo +Aro(x) log .
(e tarz (@) 108 X0 Gy T xag (aly) = 1198 Xay alyy TAT2(2)108 X0 Gty
3. Taking reciprocal in the logarithms yields
X g1 (z|y)+Aga(z]y) q1 (z|y) | 5 g2 (z|y)
Ar1(x)+Aro(x)) lo = > Ari(x) log =————=<~4+Aro(x) log =—=<~.
( 1( )+ 2(x)) log A1 (z)+Aro (@) = 1(x) log rl(m) + 2 (x) log ,,,.2(:2)
4. Multiplying by p(y|xz) and summing over all  and y, we conclude that f(r,q) is concave.



Concavity of f(r,q)

Proposition

q(x|y)

f(r,a) = er(w)p(ylw)log =

is concave.

Proof
1. Consider (ry,qq) and (ro,qo) in A.
2. Let 0 < A <1and A\ =1 — X\. An application of the log-sum inequality gives
X ATy (z)+Arg () X1 (x) Xra(z)
Arq(x)+Aro(x)) lo - < Arq(x)lo +Aro(x) log .
(A (@tAr2 (@) los X Gy Fxag (aly) = 1108 xg ety TAT2(0)108 X0 Gy
3. Taking reciprocal in the logarithms yields
— g1 (z]y)+Aga (z]y) a1 (zly) | 92 (z|y)
Ar1(x)+Aro(x)) lo = > Ari(x) log =————=<~4+Aro(x) log =—=<~.
( 1( )+ 2(x)) log A1 (z)+Aro (@) = 1(x) log rl(m) + 2 (x) log ,,,.2(33)
4. Multiplying by p(y|xz) and summing over all  and y, we conclude that f(r,q) is concave.



