
9.3 Convergence



How to Prove Convergence

• Consider the double supremum optimization problem in Section 9.1.

• We first prove in general that if f is concave, then f (k) ! f⇤
.

• We then apply this su�cient condition to prove the convergence of the

BA algorithm for computing C.

• The convergence of the BA algorithm for computing R(Ds)� sDs can be

proved likewise.
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9.3.1 A Sufficient Condition
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We first prove that if f is concave, then the algorithm cannot be trapped at u
if f(u) < f⇤

.

Lemma 9.4 Let f be concave. If f (k) < f⇤
, then f (k+1) > f (k)
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Although �f(u) > 0 as long as f(u) < f⇤
, f (k)

does not necessarily converge

to f⇤
because the increment in f (k)

in each step may be arbitrarily small.

Theorem 9.5 If f is concave, then f (k) ! f⇤
.



Theorem 9.5 If f is concave, then f(k) ! f⇤.

Proof

1. f(k) necessarily converges, say to f0, because f(k)

is nondecreasing and bounded from above.

2. Hence, for any ✏ > 0 and all sufficiently large k,

f0 � ✏  f(k)  f0. (1)

3. Let
� = min

u2A0
�f(u),

where A0 = {u 2 A : f0 � ✏  f(u)  f0}.

4. Since f has continuous partial derivatives, �f(u) is
a continuous function of u.

5. A0 is compact because it is the inverse image of a
closed interval under a continuous function and A is
bounded. Therefore � exists.

6. If f0 < f⇤, since f is concave, by Lemma 9.4,
�f(u) > 0 for all u 2 A0 and hence � > 0.

7. Since f(k) = f(u(k)) satisfies (1), u

(k) 2 A0.

8. Thus for all sufficiently large k,

f(k+1) � f(k)
= �f(u

(k)
) � �.

9. No matter how small � is, f(k) will eventually be

greater than f0, which is a contradiction to f(k) ! f0.
10. Hence, f(k) ! f⇤.
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9.3.2 Convergence to the 
Channel Capacity
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