
9.2 The Algorithms



9.2.1 Channel Capacity



Lemma 9.1 Let r(x)p(y|x) be a given joint distribution on X ⇥ Y such that

r > 0, and let q be a transition matrix from Y to X . Then
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r(x)
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,

where the maximization is taken over all q such that

q(x|y) = 0 if and only if p(y|x) = 0,

and

q

⇤
(x|y) =

r(x)p(y|x)P
x

0 r(x

0
)p(y|x0

)

=

q

XY

(x, y)

q

Y

(y)

= q

X|Y (x|y)

i.e., the maximizing q is the one which corresponds to the input distribution r
and the transition matrix p(y|x).
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Lemma 9.1 Let r(x)p(y|x) be a given joint dis-
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where the maximization is taken over all q such

that
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and
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1. In (2), let
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0
r(x
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)p(y|x0).

2. Assume w.l.o.g. that for all y 2 Y, p(y|x) > 0

for some x 2 X .

3. Since r > 0, w(y) > 0 for all y, and hence

q

⇤
(x|y) is well-defined.

4. Rearranging (2), we have

r(x)p(y|x) = w(y)q
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5. For any q satisfying (1), consider

X

x

X

y

r(x)p(y|x) log

q

⇤
(x|y)

r(x)

�
X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

=

X

x

X

y

r(x)p(y|x) log

q

⇤
(x|y)

q(x|y)

=

X

y

X

x

w(y)q

⇤
(x|y) log

q

⇤
(x|y)

q(x|y)

=

X

y

w(y)

X

x

q

⇤
(x|y) log

q

⇤
(x|y)

q(x|y)

=

X

y

w(y)D(q

⇤
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� 0.

6. The proof is completed by noting in (2) that q

⇤
satisfies (1) because r > 0.

Remark The maximizing q in Lemma 9.1 is unique.
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Theorem 9.2 For a discrete memoryless channel p(y|x),

C = sup
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q(x|y)

r(x)

,

where the maximization is taken over all q that satisfies (1) in Lemma 9.1.
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Proof

1. Write I(X; Y ) as I(r, p) where r is the input dis-

tribution and p denotes the transition matrix of the

generic channel p(y|x). Then

C = max

r�0

I(r, p).

2. By Lemma 9.1, we need to prove that

C = max

r�0

I(r, p) = sup

r>0

I(r, p).

3. Let r

⇤
achieves C.

4. If r

⇤
> 0, then

C = max

r�0

I(r, p) = max

r>0

I(r, p) = sup

r>0

I(r, p).

5. Next, consider r

⇤ � 0. Since I(r, p) is continuous

in r, for any ✏ > 0, there exists � > 0 such that if

kr � r

⇤k < �,

then

C � I(r, p) < ✏.

6. In particular, there exists

˜

r > 0 such that

k˜r � r

⇤k < �.

7. Then

C = max

r�0

I(r, p) � sup

r>0

I(r, p) � I(

˜

r, p) > C � ✏.

8. Let ✏ ! 0 to conclude that

C = sup

r>0

I(r, p).
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The BA Algorithm for Computing C

Recall the double supremum in Section 9.1:

sup

u
1

2A

1

sup

u
2

2A

2

f(u
1

, u
2

),

where

1. A

i

is a convex subset of <n

i

for i = 1, 2.

2. f : A

1

⇥ A

2

! < is bounded from above and

is such that

• f is continuous and has continuous partial

derivatives on A

1

⇥ A

2

• For all u
2

2 A

2

, there exists a unique

c

1

(u
2

) 2 A

1

such that

f(c

1

(u
2

), u
2

) = max

u0
1

2A

1

f(u0
1

, u
2

),

and for all u
1

2 A

1

, there exists a unique

c

2

(u
1

) 2 A

2

such that

f(u
1

, c

2

(u
1

)) = max

u0
2

2A

2

f(u
1

, u0
2

).

Cast the computation of C into this optimization prob-

lem:

1. Let

f(r, q) =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

,

where u
1

 r and u
2

 q.

2. Let

A

1

=

˘
(r(x), x 2 X) : r(x) > 0 and

P
x

r(x) = 1

¯
⇢ <|X|

and

A

2

= {(q(x|y), (x, y) 2 X ⇥ Y) : q(x|y) > 0 iff p(y|x) > 0,

and

P
x

q(x|y) = 1 for all y 2 Y}

⇢ <|X||Y|.

3. The double supremum now becomes

sup

r2A

1

sup

q2A

2

f(r, q) = sup

r2A

1

sup

q2A

2

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

,

where the supremum over all q 2 A

2

is in fact a max-

imum, and

f

⇤
= sup

r2A

1

sup

q2A

2

f(r, q) = C.
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Remarks

1. Both A

1

and A

2

are convex.

2. f is bounded from above.

3. In f(r, q), the double summation by conven-

tion is over all x such that r(x) > 0 and all y

such that p(y|x) > 0.

4. Since q(x|y) > 0 whenever p(y|x) > 0, all the

probabilities involved in the double summation

are positive.

5. Therefore, f is continuous and has continuous

partial derivatives on A = A

1

⇥ A

2

.
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1. By Lemma 9.1, for any given r 2 A

1

, the unique

q 2 A

2

that maximizes f is given by

q(x|y) =

r(x)p(y|x)

P
x

0 r(x

0
)p(y|x0

)

. (1)

2. By Lagrange multipliers, it can be shown that for

any given q 2 A

2

, the unique input distribution r that

maximizes f is given by

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0
)

, (2)

where

Q
y

is over all y such that p(y|x) > 0.

3. Let r(0) be an arbitrarily chosen strictly positive

input distribution in A

1

. Then q(0) 2 A

2

can be

computed according to (1). This forms (r(0), q(0)

).

4. Compute r(1), q(1)

, r(2), q(2)

, · · · iteratively by

applying (2) and (1) alternately.

5. It can be verified from (1) that if r(k) 2 A

1

, i.e.,

r(k)

> 0, then q

(k)

(x|y) > 0 iff p(y|x) > 0, i.e.,

q(k) 2 A

2

.

6. Likewise, it can be verified from (2) that if q(k) 2
A

2

, then r(k+1)

> 0, i.e., r(k+1) 2 A

1

.

7. Therefore, r(k) 2 A

1

and q(k) 2 A

2

for all k � 0.

8. It will be shown in Section 9.3 that f

(k)

=

f(r(k)

, q(k)

) ! f

⇤
= C.

Algorithm Details

f(r, q) =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

f⇤ = sup
r2A1

sup
q2A2

f(r, q)
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1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

______________________



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

0



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

0

______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

0

______

______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_______

__



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_____



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

_____

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_____



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

_____

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

_____

_______



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

____________
______________________________



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)



1. The constraints on r are

X

x

r(x) = 1 (1)

and

r(x) > 0 for all x 2 X . (2)

2. Use the method of Lagrange multipliers to find

the best r by ignoring temporarily the positivity con-

straints on r in (2). Let

J =

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

� �

X

x

r(x).

For convenience sake, we assume that the logarithm is

the natural logarithm. Differentiating with respect to

r(x) gives

@J

@r(x)

=

X

y

p(y|x) log q(x|y) � log r(x) � 1 � �.

Upon setting

@J

@r(x)

= 0, we have

log r(x) =

X

y

p(y|x) log q(x|y) � 1 � �,

or

r(x) = e

�(�+1)

Y

y

q(x|y)

p(y|x)

.

3. By considering the normalization constraint in (1),

we can eliminate � and obtain

r(x) =

Q
y

q(x|y)

p(y|x)

P
x

0
Q

y

q(x

0|y)

p(y|x0)
. (3)

4. The above product is over all y such that p(y|x) > 0,

and q(x|y) > 0 for all such y. This implies that both

the numerator and the denominator on the right hand

side above are positive, and therefore r(x) > 0.

5. In other words, the r thus obtained happen to sat-

isfy the positivity constraints in (2) although these

constraints were ignored when we set up the Lagrange

multipliers.

6. We will show in Section 9.3.2 that f is concave.

Then r as given in (3), which is unique, indeed achieves

the maximum of f for a given q 2 A

2

because r is in

the interior of A

1

.

Maximizing f(r,q) for a Fixed q

max

r2A

1

X

x

X

y

r(x)p(y|x) log

q(x|y)

r(x)

___________



9.2.2 The Rate-Distortion Function



1. Assume R(0) > 0, so that R(D) is strictly decreas-

ing for 0  D  D

max

.

2. Since R(D) is convex, for any s  0, there exists a

point on the R(D) curve for 0  D  D

max

such that

the slope of a tangent to the R(D) curve at that point

is equal to s.

3. Denote such a point on the R(D) curve by

(D

s

, R(D

s

)), which is not necessarily unique.

4. Then this tangent intersects with the ordinate at

R(D

s

) � sD

s

.

5. Write I(X;

ˆ

X) and Ed(X,

ˆ

X) as I(p, Q) and

D(p, Q), respectively, where p is the distribution for

X and Q is the transition matrix from X to

ˆX defining

ˆ

X.

6. For any Q, (D(p, Q), I(p, Q)) is a point in the rate-

distortion region, and the line with slope s passing

through (D(p, Q), I(p, Q)) intersects the ordinate at

I(p, Q) � sD(p, Q).

7. Then

R(D

s

) � sD

s

= min

Q
[I(p, Q) � sD(p, Q)].

8. By varying over all s  0, we can then trace out the

whole R(D) curve.
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Lemma 9.3 Let p(x)Q(x̂|x) be a given joint distribution on X ⇥ ˆX such that

Q > 0, and let t be any distribution on

ˆX such that t > 0. Then

min

t>0

X

x

X

x̂

p(x)Q(x̂|x) log

Q(x̂|x)

t(x̂)

=

X

x

X

x̂

p(x)Q(x̂|x) log

Q(x̂|x)

t

⇤
(x̂)

,

where

t

⇤
(x̂) =

X

x

p(x)Q(x̂|x),

i.e., the minimizing t is the one which corresponds to the input distribution p

and the transition matrix Q.

Proof

• Similar to Lemma 9.1.

• Note that t⇤ > 0 because Q > 0, so that it su�ces to minimize over all

t > 0 instead of t � 0.
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1. Since I(p, Q) and D(p, Q) are continuous in Q, the

minimum over all Q can be replaced by the infimum

over all Q > 0 (cf. Theorem 9.2).

2. Note that

D(p, Q) =

X
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p(x)Q(x̂|x)d(x, x̂).

3. Then
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[I(p, Q) � sD(p, Q)]
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4
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p(x)Q(x̂|x) log
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4
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p(x)Q(x̂|x)d(x, x̂)

3

5
.

An Expression for R(Ds) - sDs

R(Ds) � sDs = min
Q

[I(p, Q) � sD(p, Q)].
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Remarks

1. Both A

1

and A

2

are convex.

2. f is bounded from below because s  0.

3. In f(Q, t), since Q 2 A

1

and t 2 A

2

,

Q(x̂|x) > 0 and t(x̂) > 0 for all x and x̂ in

the double summations.

4. Therefore, f is continuous and has continuous

partial derivatives on A = A

1

⇥ A

2
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