

9.2 The Algorithms

9.2.1 Channel Capacity

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} \frac{r(x)p(y|x) \log \frac{q(x|y)}{r(x)}}{r(x)}$$

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} \frac{r(x)p(y|x)}{p(y|x)} \log \frac{q(x|y)}{r(x)}$$

where the maximization is taken over all \mathbf{q} such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$,

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$,

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$,

and

$$q^*(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}$$

$$X \sim r(x) \longrightarrow p(y|x) \longmapsto Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

q(x|y) = 0 if and only if p(y|x) = 0,

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} = \frac{q_{XY}(x,y)}{q_{Y}(y)}$$

$$X \sim r(x) \longrightarrow p(y|x) \longmapsto Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

q(x|y) = 0 if and only if p(y|x) = 0,

and

$$q^*(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} = \frac{q_{XY}(x,y)}{q_Y(y)} = q_{X|Y}(x|y)$$

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} such that

q(x|y) = 0 if and only if p(y|x) = 0,

and

$$q^*(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} = \frac{q_{XY}(x,y)}{q_Y(y)} = q_{X|Y}(x|y)$$

i.e., the maximizing **q** is the one which corresponds to the input distribution **r** and the transition matrix p(y|x).

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} \frac{r(x)p(y|x) \log \frac{q(x|y)}{r(x)}}{r(x)} = \sum_{x} \sum_{y} \frac{r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)}}{r(x)},$$

where the maximization is taken over all \mathbf{q} such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$,

and

$$q^*(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} = \frac{q_{XY}(x,y)}{q_Y(y)} = q_{X|Y}(x|y)$$

i.e., the maximizing **q** is the one which corresponds to the input distribution **r** and the transition matrix p(y|x).

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

the maximization is taken over all **q** such that
$$q_{XY}(x,y) = \frac{q_{XY}(x,y)}{q_{X}(x)} = \frac{q_{XY}(x,y)}{q_{X}(x)q_{Y}(y)}$$

where the maximization is taken over all \mathbf{q} such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$,

and

$$q^*(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} = \frac{q_{XY}(x,y)}{q_Y(y)} = q_{X|Y}(x|y)$$

i.e., the maximizing \mathbf{q} is the one which corresponds to the input distribution \mathbf{r} and the transition matrix p(y|x).

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)}$$

where the maximization is taken over all ${\bf q}$ such that

q(x|y) = 0 if and only if p(y|x) = 0,

and

$$q^*(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} = \frac{q_{XY}(x,y)}{q_Y(y)} = q_{X|Y}(x|y)$$

i.e., the maximizing **q** is the one which corresponds to the input distribution **r** and the transition matrix p(y|x).

$$X \sim r(x) \longrightarrow p(y|x) \longrightarrow Y$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} \cdot w(y) \quad (2)$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} \cdot w(y) \quad (2)$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} \cdot w(y) \quad (2)$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.

3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')} \cdot w(y) \quad (2)$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)}$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

 $\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$ $= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

 $\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$ $= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

 $r(x)p(y|x) = w(y)q^*(x|y).$

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

 $r(x)p(y|x) = w(y)q^*(x|y).$

$$\sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} \frac{r(x) p(y|x)}{p(x)} \log \frac{q^*(x|y)}{q(x|y)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

 $r(x)p(y|x) = w(y)q^*(x|y).$

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} \frac{r(x)p(y|x)}{r(x)} \log \frac{q^*(x|y)}{q(x|y)}$$
$$= \sum_{y} \sum_{x} \frac{w(y)q^*(x|y)}{r(x)} \log \frac{q^*(x|y)}{q(x|y)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$
$$= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$
$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$
$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$
$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$
$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \underline{D(q^*(x|y) \| q(x|y))}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \underline{D}(q^*(x|y)||q(x|y))$$

$$\geq 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

\mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(q^*(x|y) \|q(x|y)) \\ &\geq 0. \end{split}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)
$$w(y) > 0$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$, (1)

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)
$$w(y) > 0$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$, (1)

> 0

and

$$\frac{q^{*}(x|y)}{\sum_{x'} r(x')p(y|x)} = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)
$$w(y) > 0$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$, (1)

and

$$\frac{q^{*}(x|y)}{\sum_{x'} r(x')p(y|x)} = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)
$$w(y) > 0$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and
$$\underline{q^*(x|y)} = \frac{\overbrace{r(x)p(y|x)}}{\sum_{x'} r(x')p(y|x')}. \quad (2)$$
$$w(y) > 0$$

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)}$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$, (1)

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(q^*(x|y) \|q(x|y)) \\ &\geq 0. \end{split}$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)}$$

where the maximization is taken over all ${\bf q}$ such that

$$rac{q(x|y)=0}{q(x|y)=0}$$
 if and only if $p(y|x)=0,$ (1)

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{r(x)} - \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} \sum_{x} w(y)q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)}$$

$$= \sum_{y} w(y)D(q^*(x|y)||q(x|y))$$

$$\ge 0.$$

6. The proof is completed by noting in (2) that \mathbf{q}^* satisfies (1) because $\mathbf{r} > 0$.

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(q^*(x|y) \|q(x|y)) \\ &\geq 0. \end{split}$$

6. The proof is completed by noting in (2) that \mathbf{q}^* satisfies (1) because $\mathbf{r} > 0$.

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

Proof

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(q^*(x|y) \| \underline{q}(x|y)) \\ &\geq 0. \end{split}$$

6. The proof is completed by noting in (2) that \mathbf{q}^* satisfies (1) because $\mathbf{r} > 0$.

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(\underline{q^*(x|y)} \| \underline{q}(x|y)) \\ &\geq 0. \end{split}$$

6. The proof is completed by noting in (2) that \mathbf{q}^* satisfies (1) because $\mathbf{r} > 0$.

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

Proof

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(\underline{q^*(x|y)} \| \underline{q}(x|y)) \ \forall y \\ &\geq 0. \end{split}$$

6. The proof is completed by noting in (2) that \mathbf{q}^* satisfies (1) because $\mathbf{r} > 0$.

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \quad (1)$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (2)

 \mathbf{Proof}

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. For any \mathbf{q} satisfying (1), consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(\underline{q^*(x|y)} \| \underline{q}(x|y)) \ \forall y \Rightarrow \mathbf{q} = \mathbf{q}^* \\ &\geq 0. \end{split}$$

6. The proof is completed by noting in (2) that \mathbf{q}^* satisfies (1) because $\mathbf{r} > 0$.

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \stackrel{I(X;Y)}{}$$

$$C = \sup_{\mathbf{r} > 0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \stackrel{I(X;Y)}{}$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

 \mathbf{Proof}

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

 \mathbf{Proof}

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

\mathbf{Proof}

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where **r** is the input distribution and **p** denotes the transition matrix of the generic channel p(y|x). Then

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

\mathbf{Proof}

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where **r** is the input distribution and **p** denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \sup_{\mathbf{r} > 0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

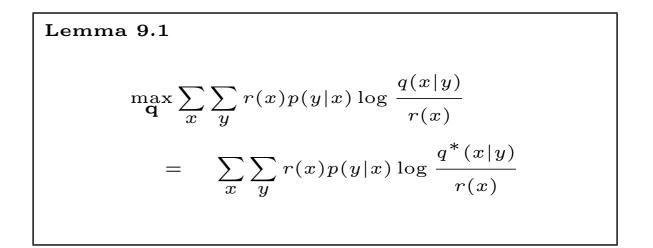
where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

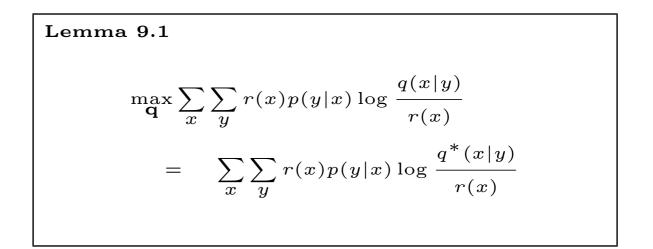
where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \frac{I(\mathbf{r}, \mathbf{p})}{r(x)}$$

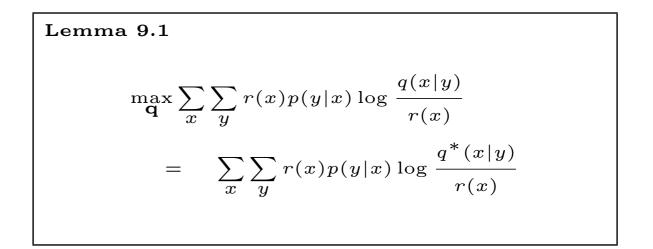
where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

\mathbf{Proof}

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \frac{I(\mathbf{r}, \mathbf{p})}{r(x)}$$

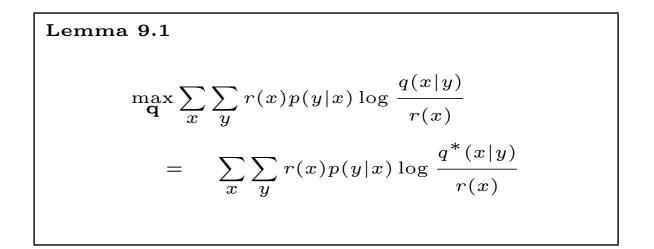
where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \frac{I(\mathbf{r}, \mathbf{p})}{r(x)}$$

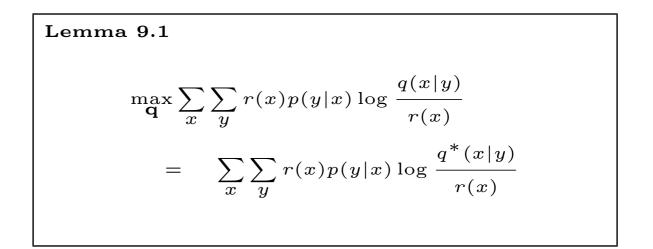
where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

\mathbf{Proof}

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \frac{I(\mathbf{r}, \mathbf{p})}{r(x)}$$

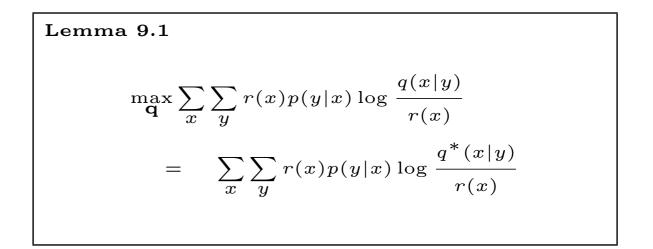
where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where **r** is the input distribution and **p** denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

\mathbf{Proof}

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

- 3. Let \mathbf{r}^* achieves C.
- 4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

\mathbf{Proof}

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

- 3. Let \mathbf{r}^* achieves C.
- 4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

- 3. Let \mathbf{r}^* achieves C.
- 4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

- 3. Let \mathbf{r}^* achieves C.
- 4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\| < \delta.$$

$$C = \sup_{\mathbf{r} > 0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}} - \mathbf{r}^*\| < \delta.$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

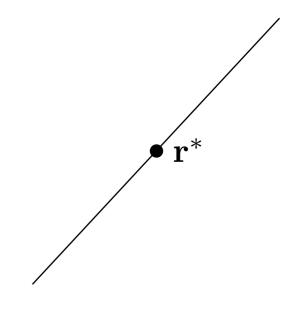
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}} - \mathbf{r}^*\| < \delta.$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

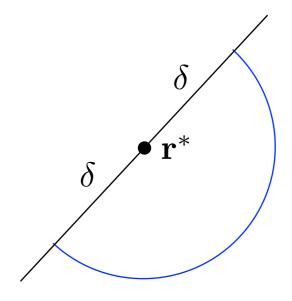
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\| < \delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}} - \mathbf{r}^*\| < \delta.$$

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

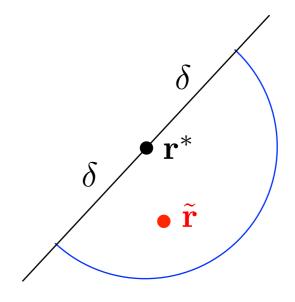
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\| < \delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



 $C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} that satis-

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \epsilon.$$

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

 $C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

fies (1) in Lemma 9.1.

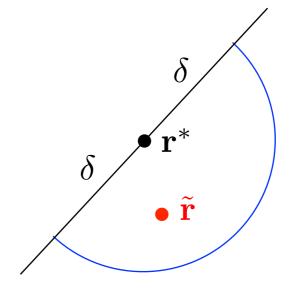
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\| < \delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



 $C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} that satis-

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \epsilon.$$

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

 $C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

fies (1) in Lemma 9.1.

4. If $r^* > 0$, then

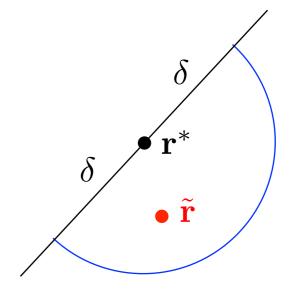
$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p})$$

•

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\| < \delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \epsilon.$$

0 \mathbf{r}^* δ • r̃

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X;Y) as $I(\mathbf{r},\mathbf{p})$ where **r** is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

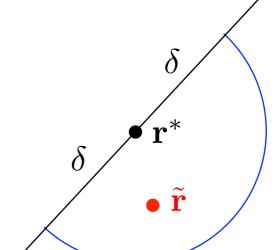
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in **r**, for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



 $C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} that satis-

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the

 $C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \epsilon$$

2. By Lemma 9.1, we need to prove that $C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$

3. Let \mathbf{r}^* achieves C.

fies (1) in Lemma 9.1.

generic channel p(y|x). Then

Proof

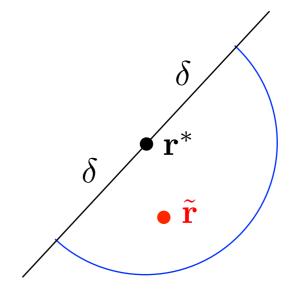
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p})$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



 $C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} that satis-

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge \underline{I(\tilde{\mathbf{r}}, \mathbf{p})} > C - \epsilon.$$

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

fies (1) in Lemma 9.1.

Proof

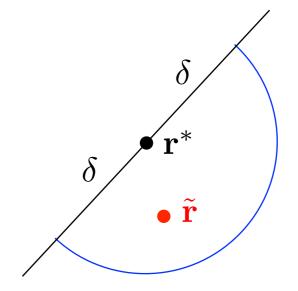
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p})$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



 $C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} that satis-

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge \underline{I(\tilde{\mathbf{r}}, \mathbf{p})} > C - \epsilon.$$

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

fies (1) in Lemma 9.1.

Proof

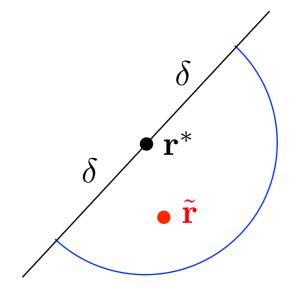
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p})$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$



 $C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} that satis-

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge \underline{I(\tilde{\mathbf{r}}, \mathbf{p})} > C - \epsilon.$$

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

fies (1) in Lemma 9.1.

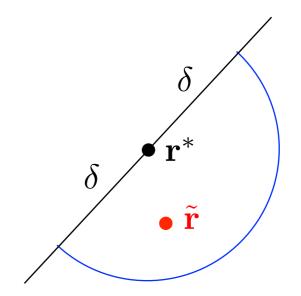
Proof

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p})$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$



 $C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$

where the maximization is taken over all \mathbf{q} that satis-

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge \underline{I(\tilde{\mathbf{r}}, \mathbf{p})} > \underline{C - \epsilon}.$$

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

fies (1) in Lemma 9.1.

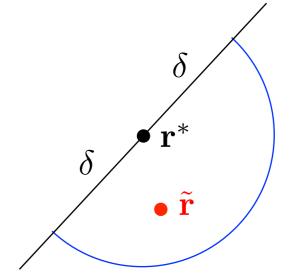
Proof

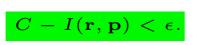
4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p})$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$





$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

then

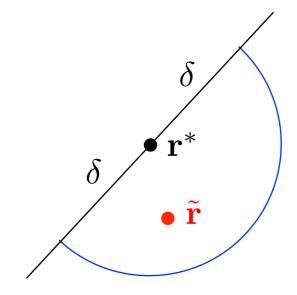
$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \epsilon.$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\| < \delta,$$

then

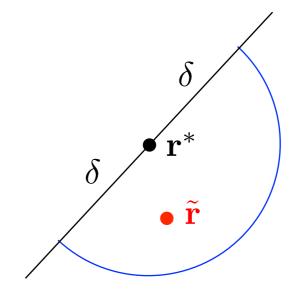
$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \mathscr{A}.$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

then

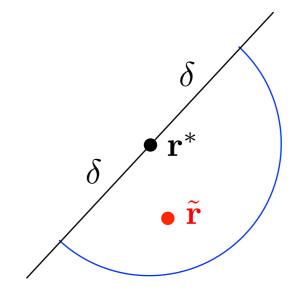
$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$

6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \mathscr{A}.$$



$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

1. Write I(X; Y) as $I(\mathbf{r}, \mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

2. By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

3. Let \mathbf{r}^* achieves C.

4. If $r^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

5. Next, consider $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r}-\mathbf{r}^*\| < \delta,$$

then

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon.$$

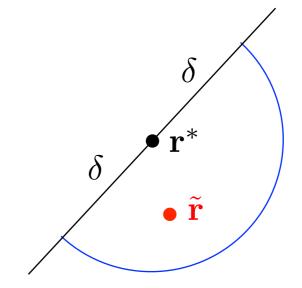
6. In particular, there exists $\tilde{\mathbf{r}} > 0$ such that

$$\|\tilde{\mathbf{r}}-\mathbf{r}^*\|<\delta.$$

7. Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \mathscr{A}.$$

$$C = \sup_{\mathbf{r}>0} I(\mathbf{r}, \mathbf{p}).$$



Recall the double supremum in Section 9.1:

 $\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$

Recall the double supremum in Section 9.1:

 $\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

Recall the double supremum in Section 9.1:

 $\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

Recall the double supremum in Section 9.1:

 $\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

Recall the double supremum in Section 9.1:

$$\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

Recall the double supremum in Section 9.1:

$$\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Recall the double supremum in Section 9.1:

$$\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Recall the double supremum in Section 9.1:

Cast the computation of C into this optimization problem:

 $\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

• f is continuous and has continuous partial derivatives on $A_1 \times A_2$

• For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Recall the double supremum in Section 9.1:

 $\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2),$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

Recall the double supremum in Section 9.1:

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let

$$A_1 = \{(r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1\} \subset \Re^{|\mathcal{X}|}$$

Recall the double supremum in Section 9.1:

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let $\mathbf{1}$

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Recall the double supremum in Section 9.1:

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let $\mathbf{1}$

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Recall the double supremum in Section 9.1:

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

Recall the double supremum in Section 9.1:

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

1. Both A_1 and A_2 are convex.

Recall the double supremum in Section 9.1:

where

 \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

1. Both A_1 and A_2 are convex.

Recall the double supremum in Section 9.1:

where

 \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f: A_1 \times A_2 \to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

1. Both A_1 and A_2 are convex.

2. f is bounded from above.

Recall the double supremum in Section 9.1:

where

 \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from above and is such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of C into this optimization problem:

1. Let

$$\begin{aligned}
\leq I(X;Y) \leq H(X) \leq \log |\mathcal{X}| \\
\\
f(\mathbf{r}, \mathbf{q}) &= \sum_{x} \sum_{y} \frac{r(x)p(y|x) \log \frac{q(x|y)}{r(x)},
\end{aligned}$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

1. Both A_1 and A_2 are convex.

2. f is bounded from above.

Recall the double supremum in Section 9.1:

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2. ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is <u>bounded from above</u> and is such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of C into this optimization problem:

1. Let

$$\begin{aligned}
\leq I(X;Y) \leq H(X) \leq \log |\mathcal{X}| \\
\\
f(\mathbf{r}, \mathbf{q}) &= \sum_{x} \sum_{y} \frac{r(x)p(y|x) \log \frac{q(x|y)}{r(x)},
\end{aligned}$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

1. Both A_1 and A_2 are convex.

2. f is bounded from above.

Recall the double supremum in Section 9.1:

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2. ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is <u>bounded from above</u> and is such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from above.

3. In $f(\mathbf{r}, \mathbf{q})$, the double summation by convention is over all x such that r(x) > 0 and all y such that p(y|x) > 0.

Recall the double supremum in Section 9.1:

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2. ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is <u>bounded from above</u> and is such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from above.

3. In $f(\mathbf{r}, \mathbf{q})$, the double summation by convention is over all x such that r(x) > 0 and all y such that p(y|x) > 0.

4. Since q(x|y) > 0 whenever p(y|x) > 0, all the probabilities involved in the double summation are positive.

Recall the double supremum in Section 9.1:

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2. ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is <u>bounded from above</u> and is such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from above.

3. In $f(\mathbf{r}, \mathbf{q})$, the double summation by convention is over all x such that r(x) > 0 and all y such that p(y|x) > 0.

4. Since q(x|y) > 0 whenever p(y|x) > 0, all the probabilities involved in the double summation are positive.

Recall the double supremum in Section 9.1:

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2. ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is <u>bounded from above</u> and is such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) \frac{p(y|x)}{p(y|x)} \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from above.

3. In $f(\mathbf{r}, \mathbf{q})$, the double summation by convention is over all x such that r(x) > 0 and all y such that p(y|x) > 0.

4. Since q(x|y) > 0 whenever p(y|x) > 0, all the probabilities involved in the double summation are positive.

Recall the double supremum in Section 9.1:

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2. ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is <u>bounded from above</u> and is such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of ${\cal C}$ into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

1. Both A_1 and A_2 are convex.

2. f is bounded from above.

3. In $f(\mathbf{r}, \mathbf{q})$, the double summation by convention is over all x such that r(x) > 0 and all y such that p(y|x) > 0.

4. Since q(x|y) > 0 whenever p(y|x) > 0, all the probabilities involved in the double summation are positive.

5. Therefore, f is continuous and has continuous partial derivatives on $A = A_1 \times A_2$.

Recall the double supremum in Section 9.1:

where

- \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- ✓ 2. $f : A_1 × A_2 → \Re$ is <u>bounded from above</u> and is such that
- $\checkmark \bullet f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

1. Both A_1 and A_2 are convex.

2. f is bounded from above.

3. In $f(\mathbf{r}, \mathbf{q})$, the double summation by convention is over all x such that r(x) > 0 and all y such that p(y|x) > 0.

4. Since q(x|y) > 0 whenever p(y|x) > 0, all the probabilities involved in the double summation are positive.

5. Therefore, f is continuous and has continuous partial derivatives on $A = A_1 \times A_2$.

Recall the double supremum in Section 9.1:

where

- \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is bounded from above and is such that
- $\checkmark \bullet f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{(r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1\} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Recall the double supremum in Section 9.1:

where

- \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is bounded from above and is such that
- $\checkmark \bullet f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let \mathbf{Let}

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

3. The double supremum now becomes

$$\sup_{\mathbf{r}\in A_1}\sup_{\mathbf{q}\in A_2}f(\mathbf{r},\mathbf{q}) = \sup_{\mathbf{r}\in A_1}\sup_{\mathbf{q}\in A_2}\sum_{x}\sum_{y}r(x)p(y|x)\log\frac{q(x|y)}{r(x)},$$

Recall the double supremum in Section 9.1:

where

- \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is bounded from above and is such that
- $\checkmark \bullet f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

3. The double supremum now becomes
$$= I(\mathbf{r}, \mathbf{p})$$

$$\sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q}) = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the supremum over all $\mathbf{q} \in A_2$ is in fact a maximum by Lemma 9.1, and by Theorem 9.2,

Recall the double supremum in Section 9.1:

where

- \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is bounded from above and is such that
- $\checkmark \bullet f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of C into this optimization problem:

1. Let

$$f(\mathbf{r},\mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

2. Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

 A_2

$$= \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) \ge 0, \\ q(x|y) > 0 \text{ iff } p(y|x) > 0, \sum_{x} q(x|y) = 1 \ \forall y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

3. The double supremum now becomes

$$\sup_{\mathbf{r}\in A_1} \sup_{\mathbf{q}\in A_2} f(\mathbf{r}, \mathbf{q}) = \sup_{\mathbf{r}\in A_1} \sup_{\mathbf{q}\in A_2} \sum_x \sum_y r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the supremum over all $\mathbf{q} \in A_2$ is in fact a maximum by Lemma 9.1, and by Theorem 9.2,

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q}) = C.$$

 $f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

 $f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q}) \qquad \qquad f(\mathbf{r}, \mathbf{q})$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$
$$f(\mathbf{r}, \mathbf{q}) = \sum_x \sum_y r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r}\in A_1,$ the unique $\mathbf{q}\in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$
$$f(\mathbf{r}, \mathbf{q}) = \sum_x \sum_y r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r}\in A_1,$ the unique $\mathbf{q}\in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$
$$f(\mathbf{r}, \mathbf{q}) = \sum_x \sum_y r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r}\in A_1,$ the unique $\mathbf{q}\in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

6. Likewise, it can be verified from (2) that if $\mathbf{q}^{(k)} \in A_2$, then $\mathbf{r}^{(k+1)} > 0$, i.e., $\mathbf{r}^{(k+1)} \in A_1$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

6. Likewise, it can be verified from (2) that if $\mathbf{q}^{(k)} \in A_2$, then $\mathbf{r}^{(k+1)} > 0$, i.e., $\mathbf{r}^{(k+1)} \in A_1$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

6. Likewise, it can be verified from (2) that if $\underline{\mathbf{q}^{(k)}} \in \underline{A_2}$, then $\mathbf{r}^{(k+1)} > 0$, i.e., $\mathbf{r}^{(k+1)} \in A_1$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

6. Likewise, it can be verified from (2) that if $\mathbf{q}^{(k)} \in A_2$, then $\mathbf{r}^{(k+1)} > 0$, i.e., $\mathbf{r}^{(k+1)} \in A_1$.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. By Lemma 9.1, for any given $\mathbf{r} \in A_1$, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

6. Likewise, it can be verified from (2) that if q^(k) ∈ A₂, then r^(k+1) > 0, i.e., r^(k+1) ∈ A₁.
7. Therefore, r^(k) ∈ A₁ and q^(k) ∈ A₂ for all k ≥ 0.

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q})$$

1. By Lemma 9.1, for any given
$$\mathbf{r} \in A_1$$
, the unique $\mathbf{q} \in A_2$ that maximizes f is given by

$$q(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')}.$$
 (1)

2. By Lagrange multipliers, it can be shown that for any given $\mathbf{q} \in A_2$, the unique input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$
(2)

where \prod_y is over all y such that p(y|x) > 0.

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

3. Let $\mathbf{r}^{(0)}$ be an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be computed according to (1). This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.

4. Compute $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It can be verified from (1) that if $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$, then $q^{(k)}(x|y) > 0$ iff p(y|x) > 0, i.e., $\mathbf{q}^{(k)} \in A_2$.

6. Likewise, it can be verified from (2) that if q^(k) ∈ A₂, then r^(k+1) > 0, i.e., r^(k+1) ∈ A₁.
7. Therefore, r^(k) ∈ A₁ and q^(k) ∈ A₂ for all k ≥ 0.
8. It will be shown in Section 9.3 that f^(k) = f(r^(k), q^(k)) → f^{*} = C.

Maximizing f(r,q) for a Fixed q

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

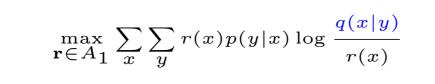
$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

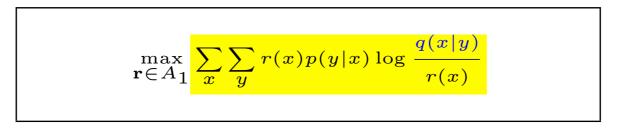
$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x)$$

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

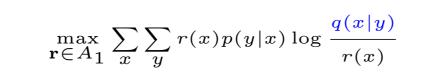
1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

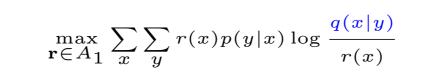
and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

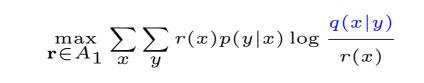
$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

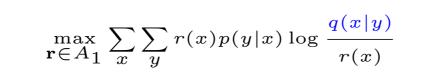
$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

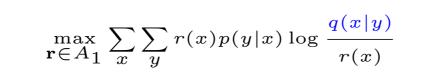
$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

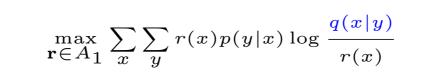
$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \underline{\log r(x)} - 1 - \lambda.$$



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

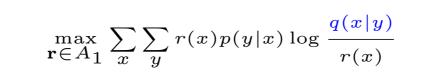
2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \underline{\log r(x)} - 1 - \lambda.$$

$$\underline{\log r(x)} = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$



1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

or

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

 $r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = \underline{e^{-(\lambda+1)}}_{y} \prod_{y} q(x|y)^{p(y|x)}.$$

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = \underline{e^{-(\lambda+1)}} \prod_{y} q(x|y)^{p(y|x)}.$$

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x)$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = \frac{e^{-(\lambda+1)}}{y} \prod_{y} q(x|y)^{p(y|x)}$$

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x)$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = \underline{e^{-(\lambda+1)}} \prod_{y} q(x|y)^{p(y|x)}.$$

$$r(x) = \frac{\prod_{y} q(x|y)^{p}(y|x)}{\sum_{x'} \prod_{y} q(x'|y)^{p}(y|x')}.$$
 (3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = \underline{e^{-(\lambda+1)}} \prod_{y} q(x|y)^{p(y|x)}.$$

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = \underline{e^{-(\lambda+1)}} \prod_{y} q(x|y)^{p(y|x)}.$$

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} q(x|y) \underline{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y) \underline{p(y|x')}}.$$
 (3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} \underline{q(x|y)}^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
(3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} \underline{q(x|y)}^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
(3)

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

4. The above product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all such y. This implies that both the numerator and the denominator on the right hand side above are positive, and therefore r(x) > 0.

5. In other words, the \mathbf{r} thus obtained happen to satisfy the positivity constraints in (2) although these constraints were ignored when we set up the Lagrange multipliers.

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

4. The above product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all such y. This implies that both the numerator and the denominator on the right hand side above are positive, and therefore r(x) > 0.

5. In other words, the **r** thus obtained happen to satisfy the positivity constraints in (2) although these constraints were ignored when we set up the Lagrange multipliers.

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (3)

4. The above product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all such y. This implies that both the numerator and the denominator on the right hand side above are positive, and therefore r(x) > 0.

5. In other words, the \mathbf{r} thus obtained happen to satisfy the positivity constraints in (2) although these constraints were ignored when we set up the Lagrange multipliers.

6. We will show in Section 9.3.2 that f is concave. Then **r** as given in (3), which is unique, indeed achieves the maximum of f for a given $\mathbf{q} \in A_2$ because **r** is in the interior of A_1 .

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
(3)

4. The above product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all such y. This implies that both the numerator and the denominator on the right hand side above are positive, and therefore r(x) > 0.

5. In other words, the \mathbf{r} thus obtained happen to satisfy the positivity constraints in (2) although these constraints were ignored when we set up the Lagrange multipliers.

6. We will show in Section 9.3.2 that f is concave. Then **r** as given in (3), which is unique, indeed achieves the maximum of f for a given $\mathbf{q} \in A_2$ because **r** is in the interior of A_1 .

$$\max_{\mathbf{r} \in A_1} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

1. The constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{1}$$

and

$$r(x) > 0$$
 for all $x \in \mathcal{X}$. (2)

2. Use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints on \mathbf{r} in (2). Let

$$J = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda.$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda,$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$

3. By considering the normalization constraint in (1), we can eliminate λ and obtain

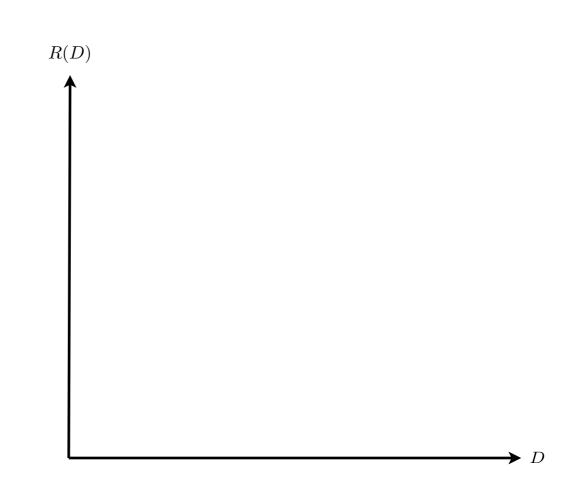
$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
(3)

4. The above product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all such y. This implies that both the numerator and the denominator on the right hand side above are positive, and therefore r(x) > 0.

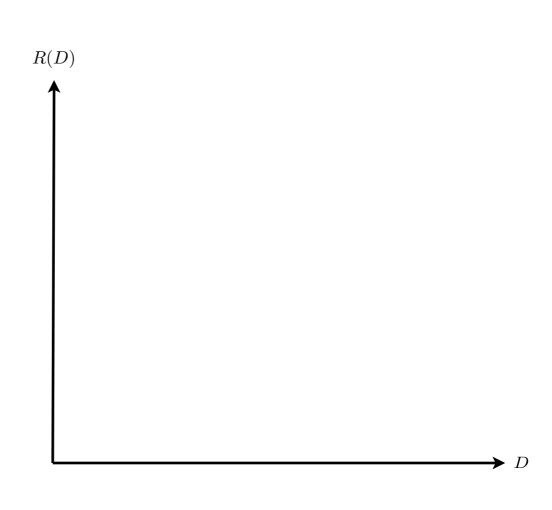
5. In other words, the \mathbf{r} thus obtained happen to satisfy the positivity constraints in (2) although these constraints were ignored when we set up the Lagrange multipliers.

6. We will show in Section 9.3.2 that \underline{f} is concave. Then \mathbf{r} as given in (3), which is unique, indeed achieves the maximum of f for a given $\mathbf{q} \in A_2$ because \mathbf{r} is in the interior of A_1 .

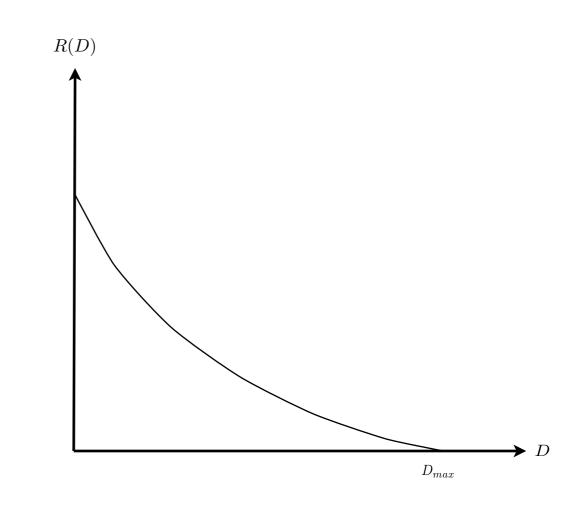
9.2.2 The Rate-Distortion Function



1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

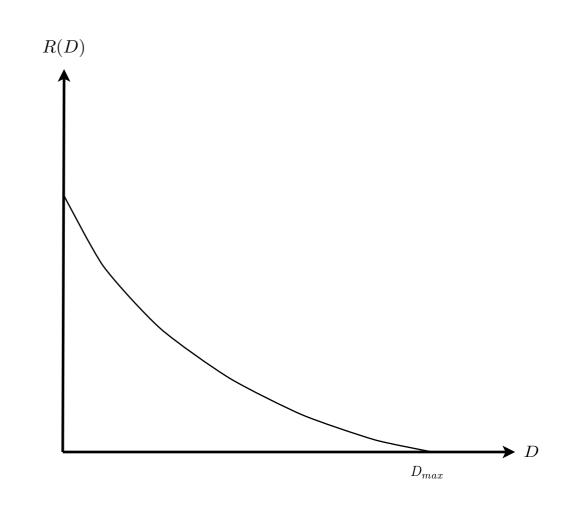


1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.



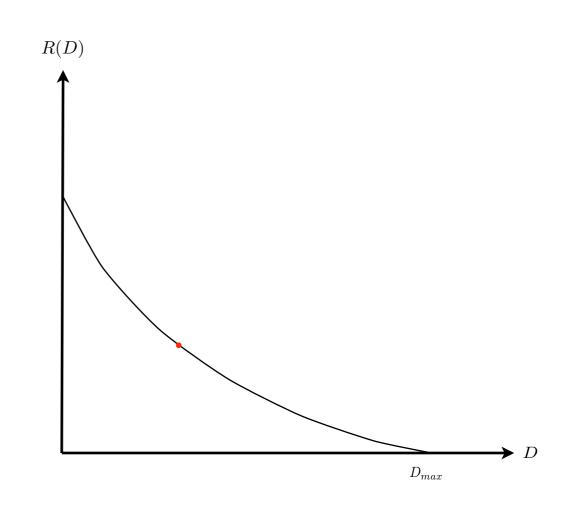
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.



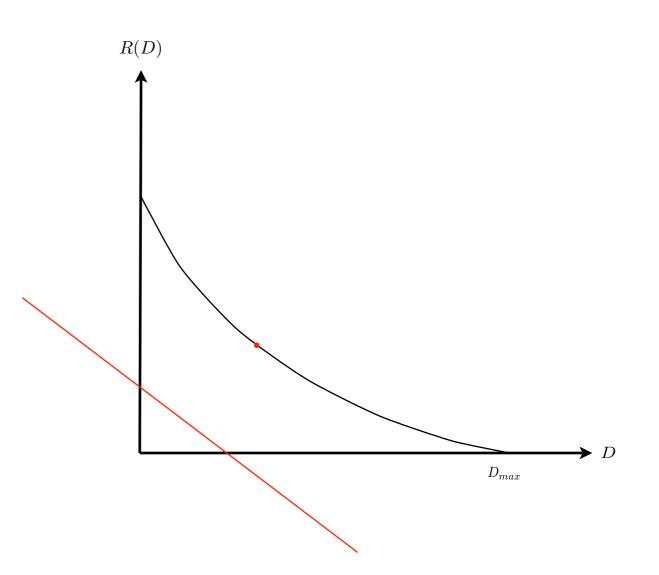
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.



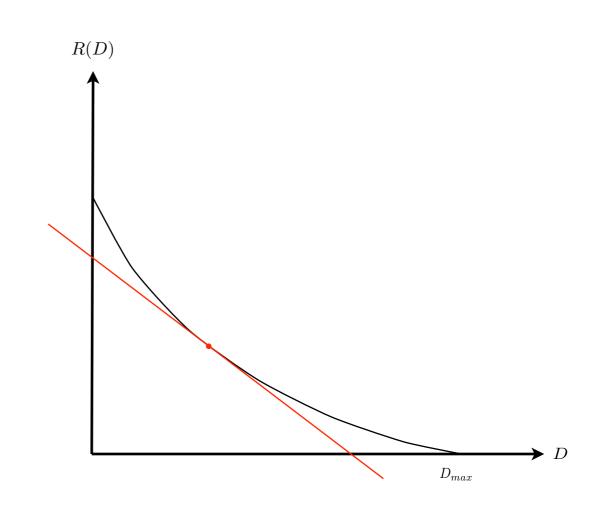
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.



1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.



1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

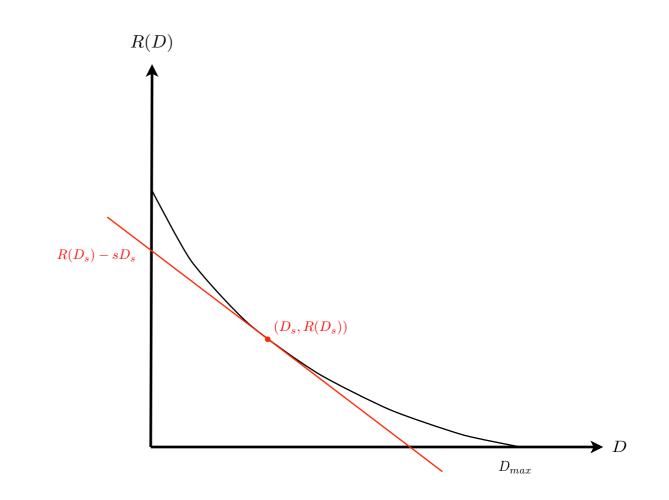


1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.



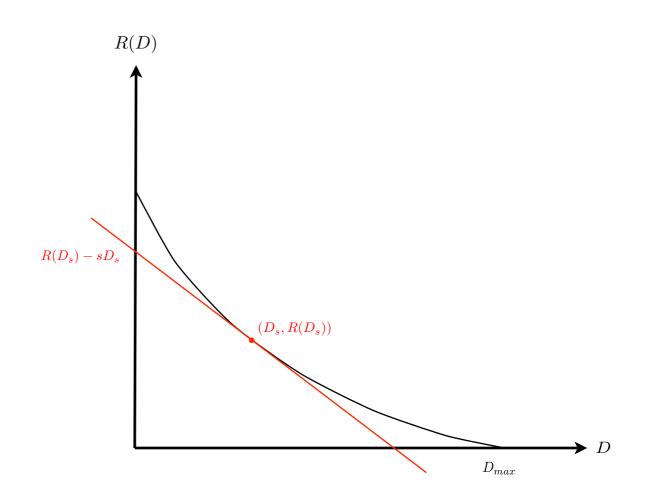
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.

5. Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where \mathbf{p} is the distribution for X and \mathbf{Q} is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .



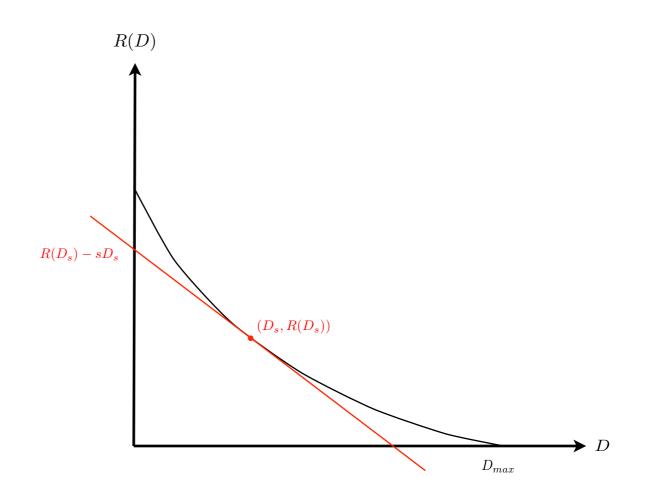
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.

5. Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where **p** is the distribution for X and **Q** is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .



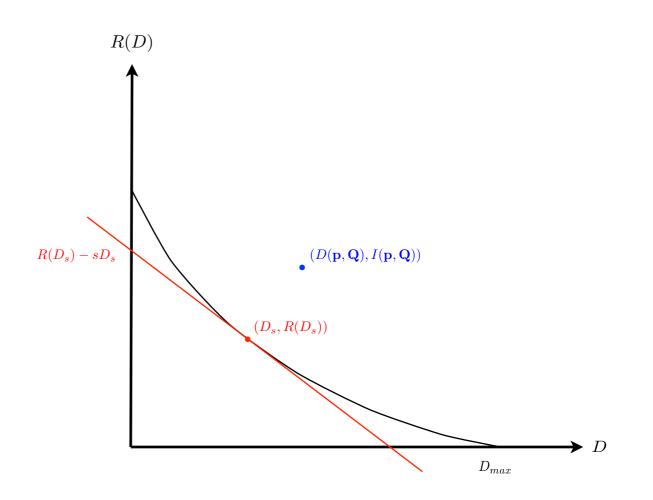
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.

5. Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where **p** is the distribution for X and **Q** is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .



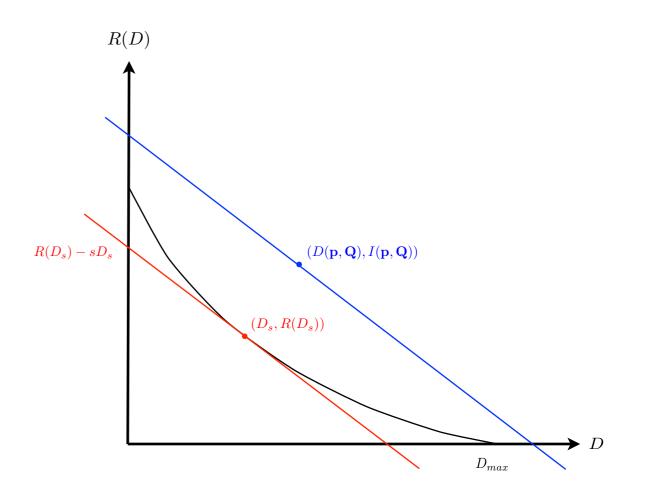
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.

5. Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where **p** is the distribution for X and **Q** is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .



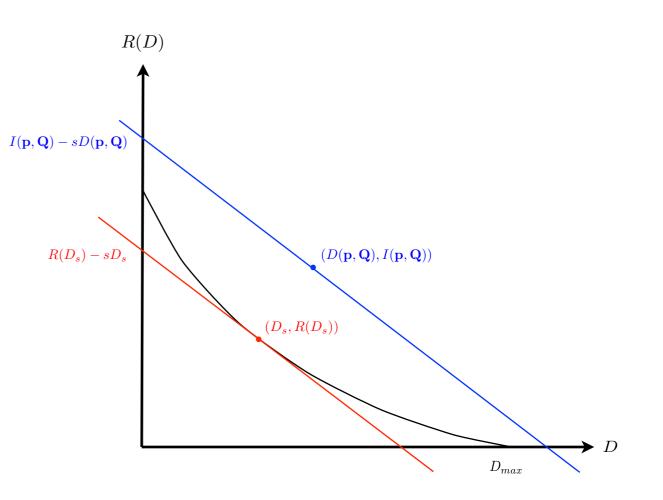
1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.

5. Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where **p** is the distribution for X and **Q** is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .



1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

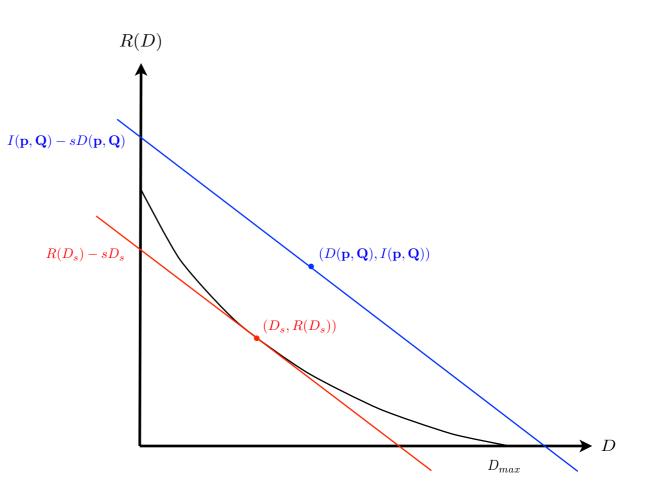
3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.

5. Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where **p** is the distribution for X and **Q** is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .

6. For any \mathbf{Q} , $(D(\mathbf{p}, \mathbf{Q}), I(\mathbf{p}, \mathbf{Q}))$ is a point in the ratedistortion region, and the line with slope *s* passing through $(D(\mathbf{p}, \mathbf{Q}), I(\mathbf{p}, \mathbf{Q}))$ intersects the ordinate at $I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})$.

$$R(D_{\mathcal{S}}) - sD_{\mathcal{S}} = \min_{\mathbf{Q}} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$



1. Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.

2. Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.

3. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.

4. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$.

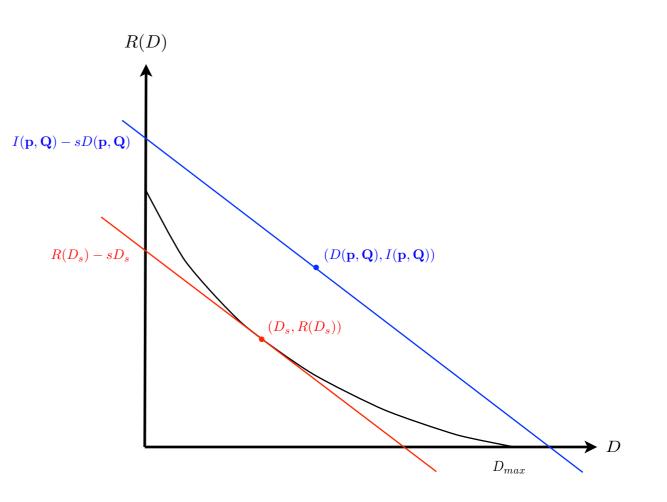
5. Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where **p** is the distribution for X and **Q** is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .

6. For any \mathbf{Q} , $(D(\mathbf{p}, \mathbf{Q}), I(\mathbf{p}, \mathbf{Q}))$ is a point in the ratedistortion region, and the line with slope *s* passing through $(D(\mathbf{p}, \mathbf{Q}), I(\mathbf{p}, \mathbf{Q}))$ intersects the ordinate at $I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})$.

7. Then

$$\frac{R(D_s) - sD_s}{\mathbf{Q}} = \min_{\mathbf{Q}} \left[I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q}) \right].$$

8. By varying over all $s \leq 0$, we can then trace out the whole R(D) curve.



$$\min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log rac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log rac{Q(\hat{x}|x)}{t^*(\hat{x})},$$

where

$$t^*(\hat{x}) = \sum_x p(x)Q(\hat{x}|x),$$

i.e., the minimizing \mathbf{t} is the one which corresponds to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

$$\min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log rac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log rac{Q(\hat{x}|x)}{t^*(\hat{x})},$$

where

$$t^*(\hat{x}) = \sum_x p(x)Q(\hat{x}|x),$$

i.e., the minimizing \mathbf{t} is the one which corresponds to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

Proof

• Similar to Lemma 9.1.

$$\min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t^*(\hat{x})},$$

where

$$t^*(\hat{x}) = \sum_x p(x)Q(\hat{x}|x),$$

i.e., the minimizing \mathbf{t} is the one which corresponds to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

- Similar to Lemma 9.1.
- Note that t^{*} > 0 because Q > 0, so that it suffices to minimize over all t > 0 instead of t ≥ 0.

$$\min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log rac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log rac{Q(\hat{x}|x)}{t^*(\hat{x})},$$

where

$$t^*(\hat{x}) = \sum_x p(x)Q(\hat{x}|x),$$

i.e., the minimizing \mathbf{t} is the one which corresponds to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

- Similar to Lemma 9.1.
- Note that t^{*} > 0 because Q > 0, so that it suffices to minimize over all t > 0 instead of t ≥ 0.

$$\min_{\mathbf{t} \ge 0} \sum_x \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_x \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t^*(\hat{x})},$$

where

$$t^*(\hat{x}) = \sum_x p(x)Q(\hat{x}|x),$$

i.e., the minimizing \mathbf{t} is the one which corresponds to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

- Similar to Lemma 9.1.
- Note that t^{*} > 0 because Q > 0, so that it suffices to minimize over all t > 0 instead of t ≥ 0.

$$\min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t^*(\hat{x})}, I(\mathbf{p}, \mathbf{Q})$$

where

$$t^*(\hat{x}) = \sum_x p(x)Q(\hat{x}|x),$$

i.e., the minimizing \mathbf{t} is the one which corresponds to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

- Similar to Lemma 9.1.
- Note that t^{*} > 0 because Q > 0, so that it suffices to minimize over all t > 0 instead of t ≥ 0.

$$R(D_{\mathcal{S}}) - sD_{\mathcal{S}} = \min_{\mathbf{Q}} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

$$R(D_s) - sD_s = \min_{\mathbf{Q}} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

3. Then

 $R(D_s) - sD_s$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

$$R(D_s) - sD_s$$

= $\inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})]$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

$$R(D_s) - sD_s$$

=
$$\inf_{\mathbf{Q}>0} [\underline{I(\mathbf{p}, \mathbf{Q})} - sD(\mathbf{p}, \mathbf{Q})]$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

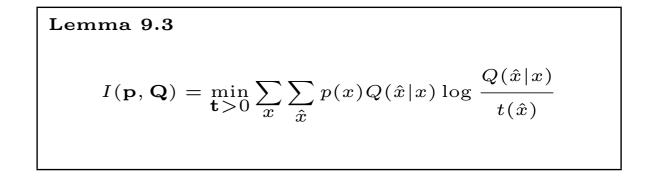
1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

$$R(D_s) - sD_s$$

=
$$\inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})]$$



$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

Lemma 9.3

$$I(\mathbf{p}, \mathbf{Q}) = \min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$

$$\begin{aligned} R(D_s) &- sD_s \\ &= \inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})] \\ &= \inf_{\mathbf{Q}>0} \left[\min_{\mathbf{t}>0} \sum_{x, \hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x, \hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}) \right] \end{aligned}$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

Lemma 9.3

$$I(\mathbf{p}, \mathbf{Q}) = \min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$

$$\begin{aligned} R(D_s) &- sD_s \\ &= \inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - s\underline{D}(\mathbf{p}, \mathbf{Q})] \\ &= \inf_{\mathbf{Q}>0} \left[\min_{\mathbf{t}>0} \sum_{x, \hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x, \hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}) \right] \end{aligned}$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

Lemma 9.3

$$I(\mathbf{p}, \mathbf{Q}) = \min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$

$$\begin{aligned} R(D_s) &- sD_s \\ &= \inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - s\underline{D}(\mathbf{p}, \mathbf{Q})] \\ &= \inf_{\mathbf{Q}>0} \left[\min_{\mathbf{t}>0} \sum_{x, \hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x, \hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}) \right] \end{aligned}$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

Lemma 9.3

$$I(\mathbf{p}, \mathbf{Q}) = \min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$

$$\begin{aligned} R(D_s) &- sD_s \\ &= \inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - s\underline{D(\mathbf{p}, \mathbf{Q})}] \\ &= \inf_{\mathbf{Q}>0} \left[\min_{\mathbf{t}>0} \sum_{x, \hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x, \hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}) \right] \end{aligned}$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

Lemma 9.3

$$I(\mathbf{p}, \mathbf{Q}) = \min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$

$$\begin{aligned} R(D_{\mathcal{S}}) &- sD_{\mathcal{S}} \\ &= \inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})] \\ &= \inf_{\mathbf{Q}>0} \left[\min_{\underline{\mathbf{t}}>0} \sum_{x,\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x,\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}) \right] \end{aligned}$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

Lemma 9.3

$$I(\mathbf{p}, \mathbf{Q}) = \min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$

$$\begin{split} R(D_s) &- sD_s \\ &= \inf_{\mathbf{Q}>0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})] \\ &= \inf_{\mathbf{Q}>0} \left[\min_{\mathbf{t}>0} \sum_{x,\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x,\hat{x}} p(x)Q(\hat{x}|x)d(x,\hat{x}) \right] \\ &= \inf_{\mathbf{Q}>0} \min_{\mathbf{t}>0} \left[\sum_{x,\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x,\hat{x}} p(x)Q(\hat{x}|x)d(x,\hat{x}) \right]. \end{split}$$

$$R(D_s) - sD_s = \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$

1. Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , the minimum over all \mathbf{Q} can be replaced by the infimum over all $\mathbf{Q} > 0$ (cf. Theorem 9.2).

2. Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x})$$

Lemma 9.3

$$I(\mathbf{p}, \mathbf{Q}) = \min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$

$$\begin{split} R(D_{s}) &- sD_{s} \\ &= \inf_{\mathbf{Q} > 0} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})] \\ &= \inf_{\mathbf{Q} > 0} \left[\min_{\mathbf{t} > 0} \sum_{x, \hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x, \hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}) \right] \\ &= \inf_{\mathbf{Q} > 0} \min_{\mathbf{t} > 0} \left[\sum_{x, \hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x, \hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}) \right]. \end{split}$$

The BA Algorithm for Computing $R(D_s) - sD_s$

The BA Algorithm for Computing $R(D_s) - sD_s$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

The BA Algorithm for Computing $R(D_s) - sD_s$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- 2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

- $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

- $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

- $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Recall the double infimum in Section 9.1:

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- 1. A_i is a convex subset of \Re^{n_i} for i = 1, 2.
- 2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that
- $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

- $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

• For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

$$\begin{split} A_1 &= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ &\sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \quad \subset \quad \Re^{|\mathcal{X}||\hat{\mathcal{X}}|} \end{split}$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

• For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

• For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

• For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.

2. $f:A_1\times A_2\to \Re$ is bounded from below and is such that

 $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$

• For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

Remarks

1. Both A_1 and A_2 are convex.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and
 - is such thatf is continuous and has continuous partial
 - derivatives on $A_1 \times A_2$ • For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

Remarks

1. Both A_1 and A_2 are convex.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and
 - is such that $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and
 - is such that $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and is such that
 - $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

Let
$$\geq I(\mathbf{p}, \mathbf{Q}) \geq 0$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

1.

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and is such that
 - $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

0

Let
$$\geq I(\mathbf{p}, \mathbf{Q}) \geq$$

$$f(\mathbf{Q},\mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x,\hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

1.

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of ℜⁿi for i = 1, 2.
 ✓ 2. f : A₁ × A₂ → ℜ is bounded from below and is such that
 - $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

Let
$$(\geq I(\mathbf{p}, \mathbf{Q}) \geq 0$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

1.

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of ℜⁿi for i = 1, 2.
 ✓ 2. f : A₁ × A₂ → ℜ is bounded from below and is such that
 - $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

2. Let

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

Remarks

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

3. In $f(\mathbf{Q}, \mathbf{t})$, since $\mathbf{Q} \in A_1$ and $\mathbf{t} \in A_2$, $Q(\hat{x}|x) > 0$ and $t(\hat{x}) > 0$ for all x and \hat{x} in the double summations.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of ℜⁿi for i = 1, 2.
 ✓ 2. f : A₁ × A₂ → ℜ is bounded from below and is such that
 - $\bullet~f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\substack{\mathbf{u}_2' \in A_2}} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

2. Let

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

Remarks

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

3. In $f(\mathbf{Q}, \mathbf{t})$, since $\mathbf{Q} \in A_1$ and $\mathbf{t} \in A_2$, $Q(\hat{x}|x) > 0$ and $t(\hat{x}) > 0$ for all x and \hat{x} in the double summations.

4. Therefore, f is continuous and has continuous partial derivatives on $A = A_1 \times A_2$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- ✓ 1. A_i is a convex subset of ℜⁿi for i = 1, 2.
 ✓ 2. f : A₁ × A₂ → ℜ is bounded from below and is such that
- \checkmark f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

2. Let

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}}$$

and

 $A_2 \quad = \quad \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$

Remarks

- 1. Both A_1 and A_2 are convex.
- 2. f is bounded from below because $s \leq 0$.

3. In $f(\mathbf{Q}, \mathbf{t})$, since $\mathbf{Q} \in A_1$ and $\mathbf{t} \in A_2$, $Q(\hat{x}|x) > 0$ and $t(\hat{x}) > 0$ for all x and \hat{x} in the double summations.

4. Therefore, f is continuous and has continuous partial derivatives on $A = A_1 \times A_2$.

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- ✓ 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and is such that
- \checkmark f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}'_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}'_2).$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- \checkmark 1. A_i is a convex subset of $\Re^n i$ for i = 1, 2.
- ✓ 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and is such that
- \checkmark f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}$$

3. The double infimum now becomes

$$\begin{split} \mathbf{q}_{\boldsymbol{\in}A_{1}} \inf_{\mathbf{t} \in A_{2}} f(\mathbf{Q}, \mathbf{t}) &= \inf_{\mathbf{Q} \in A_{1}} \inf_{\mathbf{t} \in A_{2}} \left[\sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}) \right], \end{split}$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- $\checkmark 1. A_i \text{ is a convex subset of } \Re^n i \text{ for } i = 1, 2.$
- ✓ 2. $f: A_1 \times A_2 \rightarrow \Re$ is bounded from below and is such that
- $\checkmark \bullet f$ is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}$$

3. The double infimum now becomes

$$\begin{aligned} \mathbf{q}_{\boldsymbol{\in}A_{1}} \inf_{\mathbf{t} \in A_{2}} f(\mathbf{Q}, \mathbf{t}) &= \inf_{\mathbf{Q} \in A_{1}} \inf_{\mathbf{t} \in A_{2}} \left[\sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}) \right], \end{aligned}$$

where the infimum over all $\mathbf{t} \in A_2$ is in fact a minimum, and

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- $\checkmark 1. A_i \text{ is a convex subset of } \Re^n i \text{ for } i = 1, 2.$
- ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is bounded from below and is such that
- \checkmark f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

$$A_{1} = \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}.$$

3. The double infimum now becomes
$$I(\mathbf{p}, \mathbf{Q})$$
$$\mathbf{Q} \stackrel{\text{inf}}{\in} A_1 \underset{x \to x}{\inf} f(\mathbf{Q}, \mathbf{t}) = \inf_{\mathbf{Q} \in A_1} \left[\inf_{\mathbf{t} \in A_2} \left[\sum_{x \to \hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x \to \hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}) \right],$$

where the infimum over all $\mathbf{t} \in A_2$ is in fact a minimum, and

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2).$$

where

- $\checkmark 1. A_i \text{ is a convex subset of } \Re^n i \text{ for } i = 1, 2.$
- ✓ 2. $f : A_1 \times A_2 \rightarrow \Re$ is bounded from below and is such that
- \checkmark f is continuous and has continuous partial derivatives on $A_1 \times A_2$
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \min_{\substack{\mathbf{u}_1' \in A_1}} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

1. Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

 $2. \ Let$

 A_1

$$= \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \\ \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\} \subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0\}$$

3. The double infimum now becomes

$$\begin{split} \mathbf{q}_{\boldsymbol{\in}A_{1}} \inf_{\mathbf{t} \in A_{2}} f(\mathbf{Q}, \mathbf{t}) &= \inf_{\mathbf{Q} \in A_{1}} \inf_{\mathbf{t} \in A_{2}} \left[\sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} \right] \\ &- s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}) \right], \end{split}$$

where the infimum over all $\mathbf{t} \in A_2$ is in fact a minimum, and

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t}) = R(D_s) - sD_s$$

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

2. By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizes f is given by

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

2. By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizes f is given by

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0, \qquad (2)$$

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

2. By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizes f is given by

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0, \qquad (2)$$

and so $\mathbf{Q} \in A_1$.

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

2. By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizes f is given by

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0, \qquad (2)$$

and so $\mathbf{Q} \in A_1$.

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

2. By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizes f is given by

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0, \qquad (2)$$

and so $\mathbf{Q} \in A_1$.

3. Let $\mathbf{Q}^{(0)}$ be an arbitrarily chosen strictly positive transition matrix in A_1 . Then $\mathbf{t}^{(0)} \in A_2$ can be determined accordingly. This forms $(\mathbf{Q}^{(0)}, \mathbf{t}^{(0)})$.

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

2. By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizes f is given by

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0, \qquad (2)$$

and so $\mathbf{Q} \in A_1$.

3. Let $\mathbf{Q}^{(0)}$ be an arbitrarily chosen strictly positive transition matrix in A_1 . Then $\mathbf{t}^{(0)} \in A_2$ can be determined accordingly. This forms $(\mathbf{Q}^{(0)}, \mathbf{t}^{(0)})$.

4. Compute $\mathbf{Q}^{(1)}$, $\mathbf{t}^{(1)}$, $\mathbf{Q}^{(2)}$, $\mathbf{t}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

$$f^* = \inf_{\mathbf{Q} \in A_1} \inf_{\mathbf{t} \in A_2} f(\mathbf{Q}, \mathbf{t})$$

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}),$$

1. By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, the unique $\mathbf{t} \in A_2$ that minimizes f is given by

$$t^{*}(\hat{x}) = \sum_{x} p(x) Q(\hat{x} | x).$$
(1)

2. By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizes f is given by

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0, \qquad (2)$$

and so $\mathbf{Q} \in A_1$.

3. Let $\mathbf{Q}^{(0)}$ be an arbitrarily chosen strictly positive transition matrix in A_1 . Then $\mathbf{t}^{(0)} \in A_2$ can be determined accordingly. This forms $(\mathbf{Q}^{(0)}, \mathbf{t}^{(0)})$.

4. Compute $\mathbf{Q}^{(1)}$, $\mathbf{t}^{(1)}$, $\mathbf{Q}^{(2)}$, $\mathbf{t}^{(2)}$, \cdots iteratively by applying (2) and (1) alternately.

5. It will be shown in Section 9.3 that $f^{(k)} = f(\mathbf{Q}^{(k)}, \mathbf{t}^{(k)}) \rightarrow f^* = R(D_s) - sD_s.$