&% P X X %
The Chinese University of Hong Kong

9.2 The Algorithms



% b X k&

The Chinese University of Hong Kong

9.2.1 Channel Capacity






Lemma 9.1 Let r(x)p(y|x) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then



Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

max Y Y r(z)p(y|x) log (ig)

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

max Y Y r(z)p(y|x) log (ig)

where the maximization is taken over all q such that

q(x|ly) =0 if and only if p(y|z) =0,

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

maXYY’r p(y|x) log YYT p(y|x) log T((Z‘)y),

where the maximization is taken over all q such that

q(x|ly) =0 if and only if p(y|z) =0,

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

maXYY’r p(y|x) log YYT p(y|x) log T((Z‘)y),

where the maximization is taken over all q such that
q(x|ly) =0 if and only if p(y|z) =0,

and

\ _ r(x)p(ylr)
) = S (e

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

maXYY’r p(y|x) log YYT p(y|x) log T((Z‘)y),

where the maximization is taken over all q such that
q(x|ly) =0 if and only if p(y|z) =0,

and

\ _ r(x)p(ylr)
) = S (e

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

maXYY’r p(y|x) log YYT p(y|x) log T((Z‘)y),

where the maximization is taken over all q such that
q(x|ly) =0 if and only if p(y|z) =0,

and

\ _ r(x)p(ylr)
) = S (e

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

maXYY’r p(y|x) log YYT p(y|x) log 1((2‘5),

where the maximization is taken over all q such that
q(x|ly) =0 if and only if p(y|z) =0,

and

7 (xly) = " BPWIT)
2 (@ )p(ylz’)
i.e., the maximizing q is the one which corresponds to the input distribution r
and the transition matrix p(y|z).

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

maXYY’r p(y|x) log YYT p(y|x) log 1((2‘5),

axv(z,y)
where the maximization is taken over all q such that

q(x|ly) =0 if and only if p(y|z) =0,

and

7 (xly) = " BPWIT)
2 (@ )p(ylz’)
i.e., the maximizing q is the one which corresponds to the input distribution r
and the transition matrix p(y|z).

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

maXYY’r p(y|x) log YYT p(y|x) log 1((2‘5),

axy(z,y)
axy (z,y)

where the maximization is taken over all q such that R OE qiy)(x,zz))
ax (T ax\T)qy Yy

q(x|ly) =0 if and only if p(y|z) =0,

and

7 (xly) = " BPWIT)
2 (@ )p(ylz’)
i.e., the maximizing q is the one which corresponds to the input distribution r
and the transition matrix p(y|z).

X ~or(r) —f plylz) — Y




Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

max Y Y r(z)p(y|x) log (zg)

DM

q"(zly)

)1

where the maximization is taken over all q such that

q(x|ly) =0 if and only if p(y|z) =0,

and

r(z)p(y|z)

) = S (e

I[(X:Y)

i.e., the maximizing q is the one which corresponds to the input distribution r

and the transition matrix p(y|z).

X ~r(r) —

p(y|z)




Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)
max r(x x)log ——
2 Zx:zy: (z)p(y|x) log o)

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)
max r(x x)log ——
2 Zx:zy: (z)p(y|x) log o)

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)
max r(x x)log ——
2 Zx:zy: (z)p(y|x) log o)

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)
max r(x x)log ——
2 Zx:zy: (z)p(y|x) log o)

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and

,  r(@pyle)

q (x|y)—w.w(y) (2)
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)
max r(x x)log ——
2 Zx:zy: (z)p(y|x) log o)

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and

,  r(@pyle)

q (x|y)—w.w(y) (2)
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some =z € X.



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)

mc?x za:: zy: r(z)p(y|zx) log m

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
\  r(@)p(yle)
q (.’,U'?J) — Zm/ - CB, w(y) (2)

Proof
1. In (2), let

w(y) = r(z)pylz’).
/

X

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some =z € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)

mc?x za:: zy: r(z)p(y|zx) log m

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
\  r(@)p(yle)
q (z|ly) = S w(y) @

Proof
1. In (2), let

w(y) = r(z)pylz’).
/

X

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)

mc?x za:: zy: r(z)p(y|zx) log m

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).
/

X

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)

mc?x za:: zy: r(z)p(y|zx) log m

Y Y r(@)p(yle) log Y
r Yy

r(x)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).
/

X

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).

5. For any q satisfying (1), consider



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

maxz Z r(xz)p(y|x) log (( li)
a*(z|y)

= er(w)p(ylw)log )

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).

5. For any q satisfying (1), consider

Z Z r(z)p(y|z) log ——

q* (z]y
r(x)

)

-3 Z r(z)p(y|@) log q(( “;)



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

maxz Z r(xz)p(y|x) log (( |’.§)
q (fvly)

= er(w)p(ylw)log o)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).

5. For any q satisfying (1), consider

Z Z r(z)p(y|z) log ——

q* (z]y
r(x)

)

-3 Z r(z)p(y|@) log q(( “;)




Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

maxz Z r(xz)p(y|x) log (( li)
q (fvly)

= er(w)p(ylw)log o)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).

5. For any q satisfying (1), consider

q
Z Z r(z)p(y|z) log ——
)

“(x

Y)

-3 Z r(z)p(y|@) log q(( “;)



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

maxz Z r(xz)p(y|x) log (( li)
q (fvly)

= er(w)p(ylw)log o)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).

5. For any q satisfying (1), consider

> Z r(2)p(y|z) log ——~

“(x

|y) q(x
— r(x)p(y|x) log ————

Y)



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y) er(w)p(ylw)logq “(ely )—;gr(w)p(?ﬂm)log@
max r(x)p(y|x) lo
2.3 r@p(yle)log = o
- er(w)p(ylx)log
q (fvly) (2 0)

= er(w)p(ylw)log o)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y) er(w)p(ylw)logq “(ely )—;gr(w)p(?ﬂm)log@
max r(x)p(y|x) lo
2.3 r@p(yle)log = o
- er(w)p(ylx)log
q (fvly) (2 0)

= er(w)p(ylw)log o)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y) er(w)p(ylw)logq “(ely )—;gr(w)p(?ﬂm)log@
max r(x)p(y|x) lo
2.3 r@p(yle)log = o
- er(w)p(ylx)log
q (fvly) (2 0)

= er(w)p(ylw)log o)

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)
r(x)

- er<w>p<y|w>1og ! ((x')y)

max Z Z r(z)p(y|lxz) log —

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).

5. For any q satisfying (1), consider

> Z (2)p(y] ) Tog LY

= Z Z r(z)p(y|z) log ———

= Z Z w(y)q” (z]y) log ———

g™ (z]y)

q(z|y)

q* (z|y)
q(z|y)

|y) q(x
— r(x)p(y|x) log ————

Y)



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

25 r@pln o 0 - 35 @yl 1os T
S r@plo! 2=v) (=) ()
max r(z)p(y|z) log —
- “(ely) = 23 r@pylo)log . ((’”"y))
q (xz|y a(z |y
= r(x)p(y|x) lo
O e #* ely)

= > > wwaq (z|y)log
Yy €T

q(x|y)
where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q™ (z|y)

2.2 r@plyle)log — 7= = 3 3 r(@)p(yle) log ately)

r(x) r(x)
maxZZr(m)p(y|x) log ((l?j) * (zly)
r(x q (T|Y
“ (a]y) = er(w)p(ylw)log olp)
x a\x|y
= L r@r(vle) los - - )y -
S wiw)e* (aly) log L)
Yy x q(z|y)
where the maximization is taken over all q such a* (z|y)
that = Zw(y)Zq*(a}|y) log ————
Yy x q(z|y)
q(x|y) = 0 if and only if p(y|lz) =0, (1)
e (2)p(y|2)
)= (2)
> r@)p(ylz)
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q™ (z|y)

2.2 r@plyle)log — 7= = 3 3 r(@)p(yle) log ately)

r(x) r(x)

maxzzr(fﬁ)p(fﬂx) log ((li) *(x|y)

r(x qQ (T|Yy

o , = er(w)p(ylw)log 2(ol)

q (T|Y v
= er(w)p(ylw) log ————

r() = L wa el o . (( |'y))

g\r|y
where the maximization is taken over all q such q*(w|y)
that = > w Y d (zly)log ——
7 T q(x|y)

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(wm(mwﬂog “zlv) ZZWW(?JI@IO%M
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ———— (2) (z|y)
o — ermp(ymlogq( |y)
x q\r|y
— er(w)p(ylw)log & .y )y *(z]y)
= E X wa el L
q(x|y)
where the maximization is taken over all q such q*(w|y)
that = > ww) >, q (z|y)log ———
Y x q(xz|y)
g(z|y) = 0 if and only if p(ylz) =0, (1) = > w(y)D(d" (z]y)lla(zly))
Yy
and (2)p(y])
q*(:c|y)= LAt . (2)
> ! r(xz")p(ylz’)
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(m)p(y|w) log ——— " (=]y) — er(w)p(ylw) log M
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ———— (2) *(x|y)
r(x qQ (T|Yy
ol = er(w)p(ylw)log o)
x a Ty
= T @yl los ‘aly)
= T e’ (w]y) log 122
q(x|y)
where the maximization is taken over all q such q*(w|y)
that — Zw(y) Zq*(wly) log ———
Y T q(z|y)
q(x|ly) = 0 if and only if p(yle) =0, (1) = Y w)D@*(zly)llaz]y))
Yy
and > 0.
o (xly) = (z)p(y|z) - 2)
> ! r(xz")p(ylz’)
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(m)p(y|w) log ——— " (=]y) — er(w)p(ylw) log M
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ———— (2) *(x|y)
r(x qQ (T|Yy
ol = er(w)p(ylw)log o)
x a Ty
= T @yl los ‘aly)
= T e’ (w]y) log 122
q(x|y)
where the maximization is taken over all q such q*(w|y)
that — Zw(y) Zq*(wly) log ———
Y T q(z|y)
q(x|ly) = 0 if and only if p(yle) =0, (1) = Y w)D@*(zly)lla(z]y))
Yy
and > 0.
o (xly) = (z)p(y|z) - 2)
> ! r(xz")p(ylz’)
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(wm(mw)logq ety )—ZZ?“(w)p(wa)log )
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ———— (2) *(x|y)
r(x qQ (T|Yy
ol = er(w)p(ylw)log o)
x a Ty
— er(w)p(ylw)logq .y )y *(z]y)
= T e’ (ly) log =2
q(x|y)
where the maximization is taken over all q such q*(w|y)
that = > ww) >, q (z|y)log ———
Y T q(z|y)
q(x|ly) = 0 if and only if p(yle) =0, (1) = Y w)D@*(zly)lla(z]y))
Yy
and > 0.
ey = TE@P@I) o)

PINENCVICIEN

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

er(w)p(ylw)log (1Y) —er(w)p(ylw)log 12ly)
a(@|y) r(@) r)
maxZZr(m)p(y|x) log —— () * (2|y)
r(x q (T|Y
“ (a]y) = er(w)p(ylw)log olp)
x a\x|y
— erm)p(ym)logq - )y loly)
- T wwd (x]y) log ——— 22
q(z|y)
where the maximization is taken over all q such q*(w|y)
that = > ww > q (z|ly)log ——
Yy x q(z|y)
a(@ly) =0 if and only if p(yle) =0, (1) = Y wD(* (=) la(z]y))
Yy
and > 0.
o (oly) = — W) (2)
Zm’ TAL 6. The proof is completed by noting in (2) that q™

w(y) >0 satisfies (1) because r > 0.
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

er(w)p(ylw)log () —er(w)p(ym)log q(z|y)
q(z|y) () -
maxZZr(m)p(y|x) log ———— ) o
r(x ol
“(zly). = XX r@ple)los —
q (T|Y -
- er(w)p(yh;) log ———~
" = Zzw(y)q (xz|y) log d (( ||y))
q x|y
where the maximization is taken over all q such )
— wly q (x|y)log ———
- 2wy a” (=ly)
Y T a(z|y)

q(x|ly) = 0 if and only if p(yle) =0, (1) = Y w)D@*(zly)lla(z]y))

<R ’
and > 0.

o (xly) = r(z)p(ylx) - 2)
Zaz/ r(x!

6. The proof is completed by noting in (2) that q*

w(y) >0 satisfies (1) because r > 0.

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

er(w)p(ylw)log () —er(w)p(ym)log q(z|y)
q(z|y) () -
maxZZr(m)p(y|x) log ———— ) o
r(x ol
“(zly). = XX r@ple)los —
q (T|Y -
- er(w)p(yh;) log ———~
" = Zzw(y)q (xz|y) log d (( ||y))
q x|y
where the maximization is taken over all q such )
— wly q (x|y)log ———
- 2wy a” (=ly)
Y T a(z|y)

q(x|ly) = 0 if and only if p(yle) =0, (1) = Y w)D@*(zly)lla(z]y))

<R ’
and > 0.

o (xly) = r(z)p(ylx) - 2)
Zaz/ r(x!

6. The proof is completed by noting in (2) that q*

w(y) >0 satisfies (1) because r > 0.

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

er(w)p(ylw)log () —er(w)p(ym)mg q(z|y)
q(z|y) () -
maxZZr(m)p(y|x) log ———— ) o
r(x ol
“(zly). = XX r@ple)los —
q (T|Y -
- er(w)p(yh;) log ———~
" = Zzw(y)q (xz|y) log d (( ||y))
q x|y
where the maximization is taken over all q such )
— wly q (x|y)log ———
- 2wy a” (=ly)
Y T a(z|y)

q(x|ly) = 0 if and only if p(yle) =0, (1) = Y w)D@*(zly)lla(z]y))

<R ’
and > 0.

Gl = —DBIE )
Zm/rm’

6. The proof is completed by noting in (2) that q*

w(y) >0 satisfies (1) because r > 0.

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some =z € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

er(w)p(ylw)log () —er(w)p(ym)log q(z|y)
q(z|y) () -
maxZZr(m)p(y|x) log ———— ) o
r(x ol
“(zly). = XX r@ple)los —
q (T|Y -
- er(w)p(yh;) log ———~
" = Zzw(y)q (xz|y) log d (( ||y))
q x|y
where the maximization is taken over all q such )
— wly q (x|y)log ———
- 2wy a” (=ly)
Y T a(z|y)

q(x|ly) =0 if and only if p(yle) =0, (1) = Y w)D@*(zly)lla(z]y))

<R ’
and > 0.

Gl = —DBIE )
Zm/rm’

6. The proof is completed by noting in (2) that q*

w(y) >0 satisfies (1) because r > 0.

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (xz|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

er(w)p(ylw)logq el )—er(w)p(ym)log q(z|y)
S r@plo! ately) () ()
max r(x)p(y|z) log —— =~

r(x) *
*(zly) = 22 rerlimies q <( ||y>)
> g x|y
= > > r(z)p(yl=)log %’ *(z|y)
= = S e elos 8
q(z|y)
where the maximization is taken over all q such q*(w|y)
that = > w(y) > 4 (z|y)log ———
7 T q(z|y)
q(aj|y) =0 if and Ol’lly if ’p(ylzc) =0, (1) — Zw(y)D(q*(x|y)||q(CB|y))
Yy
and > 0.
S laly) = T@PWID) )

PINENCVICIEN

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

er(w)p(ylw)logq el )—er(w)p(ym)log q(z|y)
S r@plo! ately) () ()
max r(z)p(y|z) log —

r(x) *
*(zly) = 22 rerlimies q <( ||y>)
> g x|y
= > > r(z)p(yl=)log %’ *(z|y)
= = S e elos 8
q(z|y)
where the maximization is taken over all q such q*(w|y)
that = > w(y) > 4 (z|y)log ———
7 T q(z|y)
q(aj|y) =0 if and Ol’lly if ’p(ylzc) =0, (1) — Zw(y)D(q*(x|y)||q(CB|y))
Yy
and > 0.
S laly) = T@PWID) )

PINENCVICIEN

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.
Proof

1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(wm(mw)logq ety )—ZZ?“(w)p(wa)log )
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ———— (2) *(x|y)
r(x qQ (T|Yy
ol = er(w)p(ylw)log o)
x a Ty
— er(w)p(ylw)logq .y )y *(z]y)
= T e’ (ly) log =2
q(x|y)
where the maximization is taken over all q such q*(w|y)
that = > ww) >, q (z|y)log ———
Y T q(z|y)
q(x|ly) = 0 if and only if p(yle) =0, (1) = Y w)D@*(zly)lla(z]y))
Yy
and > 0.
ey = TE@P@I) o)

PINENCVICIEN

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.

Proof
1. In (2), let Remark The maximizing q in Lemma 9.1 is unique.

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(wm(mwﬂog ) —ZZNw)p(ylWog )
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ——— (2) ( |y)
r(x q (T|Y
ol = er(w)p(ylw)log o)
x q\r|y
— er(w)p(ylw)logq .y )y *(z|y)
= T e’ (ly) log =2
q(z|y)
where the maximization is taken over all q such q*(w|y)
that = > w(y) > 4 (z|y)log ———
Y x q(xz|y)
a(@ly) =0 if and enly if  p(yle) =0, (1) — S w)D(d" (=ly)llalz]y))
Yy
and > 0.
ey = TE@P@I) o)

PINENCVICIEN

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.

Proof
1. In (2), let Remark The maximizing q in Lemma 9.1 is unique.

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(wm(mwﬂog ) —ZZNw)p(ylWog )
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ——— (2) ( |y)
r(x q (T|Y
ol = er(w)p(ylw)log o)
x q\r|y
— er(w)p(ylw)logq .y )y *(z|y)
= T e’ (ly) log =2
q(z|y)
where the maximization is taken over all q such q*(w|y)
that = > w(y) > 4 (z|y)log ———
Y x q(xz|y)
a(@ly) =0 if and enly if  p(yle) =0, (1) — S w)D(d" (=ly)llalz]y)
Yy
and > 0.
ey = TE@P@I) o)

PINENCVICIEN

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.

Proof
1. In (2), let Remark The maximizing q in Lemma 9.1 is unique.

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis- 5. For any q satisfying (1), consider
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

ZZr(wm(mwﬂog ) —ZZNw)p(ylWog )
a(z|v) r(x) r(x)
maxzzr(fﬁ)p(fﬂx) log ——— (2) ( |y)
r(x q (T|Y
ol = er(w)p(ylw)log o)
x q\r|y
— er(w)p(ylw)logq .y )y *(z|y)
= T e’ (ly) log =2
q(z|y)
where the maximization is taken over all q such q*(w|y)
that = > w(y) > 4 (z|y)log ———
Y x q(xz|y)
a(@ly) =0 if and enly if  p(yle) =0, (1) — S w)D(d* (=ly)lla(z]y)
Yy
and > 0.
ey = TE@P@I) o)

PINENCVICIEN

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.

Proof
1. In (2), let Remark The maximizing q in Lemma 9.1 is unique.

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).



Lemma 9.1 Let r(xz)p(y|xz) be a given joint dis-
tribution on X X Y such that r > 0, and let q be
a transition matrix from Y to X. Then

q(z|y)
r(x)

- er<w>p<y|w>1og ! ((x')y)

max Z Z r(z)p(y|lxz) log —

where the maximization is taken over all q such
that

q(x|y) = 0 if and only if p(y|lz) =0, (1)

and
i (aly) = — P
> r@)p(ylz)

Proof
1. In (2), let

w(y) = r(z)pylz’).

x!

2. Assume w.l.o.g. that for all y € YV, p(y|lz) > 0
for some x € X.

3. Since r > 0, w(y) > 0 for all y, and hence
q* (x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(ylz) = w(y)a™ (z|y).

5. For any q satisfying (1), consider

Z Z r(z)p(y|z) log

>

q* (z|y )—ZZr(w)p(y|m)log q(z|y)
r(x) r(x)
erm)p(mx)logq "(=lw)
q(z|y)
Zzww)q (w]y) log L EW)
q(z|y)
Zw(y)Zq*(wly)long'y)
Yy x q(z|y)
Zw(y)D(q*($|y)||Q($|y)) Vy
Y
0.

6. The proof is completed by noting in (2) that q*
satisfies (1) because r > 0.

Remark The maximizing q in Lemma 9.1 is unique.
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3. In f(r,q), the double summation by conven-
tion is over all = such that r(xz) > 0 and all y
such that p(y|xz) > 0.
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where
1. A, is a convex subset of R™i for ¢ = 1, 2.
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is such that

e f is continuous and has continuous partial
derivatives on A7 X Ao

e For all up € Ao, there exists a unique
c1(ug) € A1 such that
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and for all u; € A7, there exists a unique
co(uy) € Ag such that

f(uyp, ca(uy)) = max f(U1,u/2)-
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Cast the computation of C into this optimization prob-
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1. Let
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2. Let
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and
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q(xly) > 0 iff p(y|lz) > 0, >, q(z|ly) =1Vy € YV}
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(zly) — r(z)p(y|z) | (1)
> m(x)p(ylz’)

2. By Lagrange multipliers, it can be shown that for

any given q € A9, the unique input distribution r that
maximizes f is given by
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9.2.2 The Rate-Distortion Function
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i.e., the minimizing t is the one which corresponds to the input distribution p
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and

Ay = {(t(@d),& € X):t(z)>0}.

3. The double infimum now becomes

Q(Z|x)
inf inf = inf inf T e
lenAl ténAg f(Q,t) lenAl téri% Ex E@ p(z)Q(Z|z) log £(3)

535 p(@)Q(2|2)d(x, 3) | |
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5. It will be shown in Section 9.3 that f(k) =
FQF), e(k)y - §* = R(Ds) - sDs.




