

Chapter 9 The Blahut-Arimoto Algorithms

© Raymond W. Yeung 2014 The Chinese University of Hong Kong

• For a DMC p(y|x), the capacity

$$C = \max_{r(x)} I(X;Y),$$

where r(x) is the input distribution, gives the maximum asymptotically achievable rate for reliable communication as the blocklength $n \to \infty$.

• For a DMC p(y|x), the capacity

$$C = \max_{r(x)} I(X;Y),$$

where r(x) is the input distribution, gives the maximum asymptotically achievable rate for reliable communication as the blocklength $n \to \infty$.

• This characterization of C, in the form of an optimization problem, is called a single-letter characterization because it involves only p(y|x) but not n.

• For a DMC p(y|x), the capacity

$$C = \max_{r(x)} I(X;Y),$$

where r(x) is the input distribution, gives the maximum asymptotically achievable rate for reliable communication as the blocklength $n \to \infty$.

- This characterization of C, in the form of an optimization problem, is called a single-letter characterization because it involves only p(y|x) but not n.
- Similarly, the rate-distortion function

$$R(D) = \min_{\substack{Q(\hat{x}|x): Ed(X, \hat{X}) \le D}} I(X; \hat{X})$$

for an i.i.d. information source $\{X_k\}$ is a single-letter characterization.

• When the alphabets are finite, C and R(D) are given as solutions of finitedimensional optimization problems.

- When the alphabets are finite, C and R(D) are given as solutions of finitedimensional optimization problems.
- However, these quantities cannot be expressed in closed-forms except for very special cases.

- When the alphabets are finite, C and R(D) are given as solutions of finitedimensional optimization problems.
- However, these quantities cannot be expressed in closed-forms except for very special cases.
- Even computing these quantities is not straightforward because the associated optimization problems are nonlinear.

- When the alphabets are finite, C and R(D) are given as solutions of finitedimensional optimization problems.
- However, these quantities cannot be expressed in closed-forms except for very special cases.
- Even computing these quantities is not straightforward because the associated optimization problems are nonlinear.
- So we have to resort to numerical methods.

- When the alphabets are finite, C and R(D) are given as solutions of finitedimensional optimization problems.
- However, these quantities cannot be expressed in closed-forms except for very special cases.
- Even computing these quantities is not straightforward because the associated optimization problems are nonlinear.
- So we have to resort to numerical methods.
- The Blahut-Arimoto (BA) algorithms are iterative algorithms devised for this purpose.

• A general alternating optimization algorithm

- A general alternating optimization algorithm
- The Blahut-Arimoto algorithms for computing
 - 1. the channel capacity ${\cal C}$
 - 2. the rate-distortion function R(D)

- A general alternating optimization algorithm
- The Blahut-Arimoto algorithms for computing
 - 1. the channel capacity ${\cal C}$
 - 2. the rate-distortion function R(D)
- Convergence of the alternating optimization algorithms

Consider the double supremum

 $\sup_{\mathbf{u}_1\in A_1}\sup_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

Consider the double supremum

 $\sup_{\mathbf{u}_1\in A_1}\sup_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

• A_i is a convex subset of \Re^{n_i} for i = 1, 2.

Consider the double supremum

 $\sup_{\mathbf{u}_1\in A_1}\sup_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

- A_i is a convex subset of \Re^{n_i} for i = 1, 2.
- $f: A_1 \times A_2 \to \Re$ is bounded from above, such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$

Consider the double supremum

 $\sup_{\mathbf{u}_1\in A_1}\sup_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

• A_i is a convex subset of \Re^{n_i} for i = 1, 2.

• $f: A_1 \times A_2 \to \Re$ is bounded from above, such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$ - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

Consider the double supremum

 $\sup_{\mathbf{u}_1\in A_1}\sup_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

- A_i is a convex subset of \Re^{n_i} for i = 1, 2.
- $f: A_1 \times A_2 \to \Re$ is bounded from above, such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$ - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

• Let $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ and $A = A_1 \times A_2$. Then the double supremum can be written as

 $\sup_{\mathbf{u}\in A}f(\mathbf{u}).$

• Let $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ and $A = A_1 \times A_2$. Then the double supremum can be written as

$$\sup_{\mathbf{u}\in A} f(\mathbf{u}).$$

• In other words, the supremum of f is taken over a subset of $\Re^{n_1+n_2}$ which is equal to the Cartesian product of two convex subsets of \Re^{n_1} and \Re^{n_2} .

• Let $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ and $A = A_1 \times A_2$. Then the double supremum can be written as

$$\sup_{\mathbf{u}\in A} f(\mathbf{u}).$$

• In other words, the supremum of f is taken over a subset of $\Re^{n_1+n_2}$ which is equal to the Cartesian product of two convex subsets of \Re^{n_1} and \Re^{n_2} .

• Let

$$f^* = \sup_{\mathbf{u} \in A} f(\mathbf{u}).$$

• Let $\mathbf{u}^{(k)} = (\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$ for $k \ge 0$, defined as follows.

- Let $\mathbf{u}^{(k)} = (\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$ for $k \ge 0$, defined as follows.
- Let $\mathbf{u}_1^{(0)}$ be an arbitrarily chosen vector in A_1 , and let $\mathbf{u}_2^{(0)} = c_2(\mathbf{u}_1^{(0)})$.

- Let $\mathbf{u}^{(k)} = (\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$ for $k \ge 0$, defined as follows.
- Let $\mathbf{u}_1^{(0)}$ be an arbitrarily chosen vector in A_1 , and let $\mathbf{u}_2^{(0)} = c_2(\mathbf{u}_1^{(0)})$.
- For $k \ge 1$, $\mathbf{u}^{(k)}$ is defined by

$$\mathbf{u}_1^{(k)} = c_1(\mathbf{u}_2^{(k-1)})$$

and

$$\mathbf{u}_2^{(k)} = c_2(\mathbf{u}_1^{(k)}).$$

- Let $\mathbf{u}^{(k)} = (\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$ for $k \ge 0$, defined as follows.
- Let $\mathbf{u}_1^{(0)}$ be an arbitrarily chosen vector in A_1 , and let $\mathbf{u}_2^{(0)} = c_2(\mathbf{u}_1^{(0)})$.
- For $k \ge 1$, $\mathbf{u}^{(k)}$ is defined by

$$\mathbf{u}_1^{(k)} = c_1(\mathbf{u}_2^{(k-1)})$$

and

$$\mathbf{u}_2^{(k)} = c_2(\mathbf{u}_1^{(k)}).$$

• Let

$$f^{(k)} = f(\mathbf{u}^{(k)}).$$

- Let $\mathbf{u}^{(k)} = (\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$ for $k \ge 0$, defined as follows.
- Let $\mathbf{u}_1^{(0)}$ be an arbitrarily chosen vector in A_1 , and let $\mathbf{u}_2^{(0)} = c_2(\mathbf{u}_1^{(0)})$.
- For $k \ge 1$, $\mathbf{u}^{(k)}$ is defined by

$$\mathbf{u}_1^{(k)} = c_1(\mathbf{u}_2^{(k-1)})$$

and

$$\mathbf{u}_2^{(k)} = c_2(\mathbf{u}_1^{(k)}).$$

• Let

$$f^{(k)} = f(\mathbf{u}^{(k)}).$$

• Then

 $f^{(k)} \ge f^{(k-1)}.$

$$f(\mathbf{u}_1^{(0)}, \mathbf{u}_2^{(0)}) \qquad \qquad f(\mathbf{u}^{(0)}) = f^{(0)}$$

$$f(\mathbf{u}_{1}^{(0)}, \mathbf{u}_{2}^{(0)})$$

 \downarrow
 $f(\mathbf{u}_{1}^{(1)}, \mathbf{u}_{2}^{(0)})$

$$f(\mathbf{u}^{(0)}) = f^{(0)}$$

$$f(\mathbf{u}_{1}^{(0)}, \mathbf{u}_{2}^{(0)}) \qquad f(\mathbf{u}^{(0)}) = f^{(0)}$$

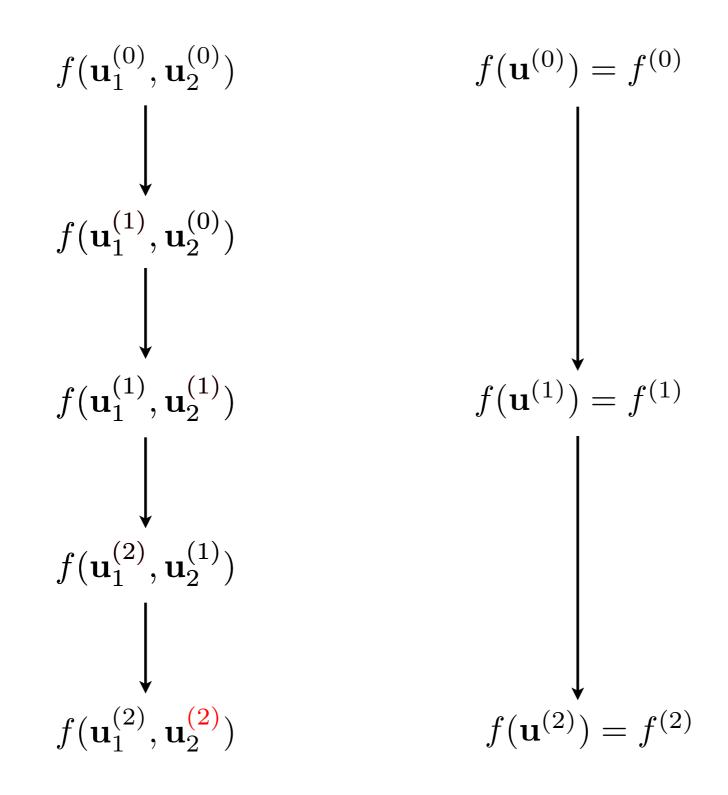
$$\downarrow$$

$$f(\mathbf{u}_{1}^{(1)}, \mathbf{u}_{2}^{(0)}) \qquad \downarrow$$

$$f(\mathbf{u}_{1}^{(1)}, \mathbf{u}_{2}^{(1)}) \qquad f(\mathbf{u}^{(1)}) = f^{(1)}$$

$$\downarrow$$

$$f(\mathbf{u}_{1}^{(2)}, \mathbf{u}_{2}^{(1)})$$



• Since the sequence $f^{(k)}$ is non-decreasing, it must converge because f is bounded from above.

- Since the sequence $f^{(k)}$ is non-decreasing, it must converge because f is bounded from above.
- We will show that $f^{(k)} \to f^*$ if f is concave.

- Since the sequence $f^{(k)}$ is non-decreasing, it must converge because f is bounded from above.
- We will show that $f^{(k)} \to f^*$ if f is concave.
- Replacing f by -f, the double supremum becomes the double infimum

 $\inf_{\mathbf{u}_1\in A_1}\inf_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

- Since the sequence $f^{(k)}$ is non-decreasing, it must converge because f is bounded from above.
- We will show that $f^{(k)} \to f^*$ if f is concave.
- Replacing f by -f, the double supremum becomes the double infimum

 $\inf_{\mathbf{u}_1\in A_1}\inf_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

• The same alternating optimization algorithm can be applied to compute this infimum.

- Since the sequence $f^{(k)}$ is non-decreasing, it must converge because f is bounded from above.
- We will show that $f^{(k)} \to f^*$ if f is concave.
- Replacing f by -f, the double supremum becomes the double infimum

 $\inf_{\mathbf{u}_1\in A_1}\inf_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

- The same alternating optimization algorithm can be applied to compute this infimum.
- The alternating optimization algorithm will be specialized for computing C and R(D).

