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Single-Letter Characterization

e For a DMC p(y|x), the capacity

C = m(aicl(X;Y),

where r(z) is the input distribution, gives the maximum asymptotically
achievable rate for reliable communication as the blocklength n — oo.

e This characterization of ', in the form of an optimization problem, is
called a single-letter characterization because it involves only p(y|x) but
not n.

e Similarly, the rate-distortion function

R(D) = min I[(X; X)
Q(z|x):Ed(X,X)<D

for an i.i.d. information source { X} is a single-letter characterization.
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Numerical Methods

When the alphabets are finite, C' and R(D) are given as solutions of finite-
dimensional optimization problems.

However, these quantities cannot be expressed in closed-forms except for
very special cases.

Even computing these quantities is not straightforward because the asso-
ciated optimization problems are nonlinear.

So we have to resort to numerical methods.

The Blahut-Arimoto (BA) algorithms are iterative algorithms devised for
this purpose.
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In this chapter

e A general alternating optimization algorithm
e The Blahut-Arimoto algorithms for computing

1. the channel capacity C
2. the rate-distortion function R(D)

e Convergence of the alternating optimization algorithms
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9.1 Alternating Optimization
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A Double Supremum

Consider the double supremum

sup sup f(u1,uz).
ui €A1 us €A,

e A, is a convex subset of k" for 1 =1, 2.
o f: A x Ay — R is bounded from above, such that

— f is continuous and has continuous partial derivatives on A; x A,

— For all uy € A,, there exists a unique c¢1(uz) € A; such that

f(61 (u2)7 u2) — ur’neajlcl f(ulla u2)7

and for all u; € Ay, there exists a unique co(u1) € As such that

f(ui, ca(uy)) = uf}fleai f(ug,uy).



A Double Supremum

e Let u = (u;,uz) and A = A; X A. Then the double supremum can be
written as

sup f(u).

ucA



A Double Supremum

e Let u = (u;,uz) and A = A; X A. Then the double supremum can be
written as

sup f(u).

ucA

e In other words, the supremum of f is taken over a subset of R"17"2 which
is equal to the Cartesian product of two convex subsets of "* and R"2.



A Double Supremum

e Let u = (u;,uz) and A = A; X A. Then the double supremum can be
written as

sup f(u).

ucA

e In other words, the supremum of f is taken over a subset of R"17"2 which
is equal to the Cartesian product of two convex subsets of "* and R"2.

o Let
f* = sup f(u).

ucA
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An Alternating Optimization

Let ul®) = (ugk), ugk)) for k > 0, defined as follows.

Let ugo) be an arbitrarily chosen vector in A, and let ugo) = CQ(ugo)).

For k > 1, u'® is defined by

u)” = er(uy )

and ) )
g = ep(u).
Let
£ = ).
Then

f(k) > f(k—l).
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Since the sequence f(*) is non-decreasing, it must converge because f is
bounded from above.

We will show that f(¥) — f* if f is concave.

Replacing f by —f, the double supremum becomes the double infimum

inf inf u. Uo ).
u1€A1u2€A2f( b 2)

The same alternating optimization algorithm can be applied to compute
this infimum.

The alternating optimization algorithm will be specialized for computing

C' and R(D).
























