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Chapter 9 
The Blahut-Arimoto 

Algorithms 



Single-Letter Characterization

• For a DMC p(y|x), the capacity

C = max

r(x)
I(X;Y ),

where r(x) is the input distribution, gives the maximum asymptotically

achievable rate for reliable communication as the blocklength n!1.

• This characterization of C, in the form of an optimization problem, is

called a single-letter characterization because it involves only p(y|x) but

not n.

• Similarly, the rate-distortion function

R(D) = min

Q(x̂|x):Ed(X,X̂)D

I(X;

ˆ

X)

for an i.i.d. information source {X
k

} is a single-letter characterization.
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Numerical Methods

• When the alphabets are finite, C and R(D) are given as solutions of finite-
dimensional optimization problems.

• However, these quantities cannot be expressed in closed-forms except for
very special cases.

• Even computing these quantities is not straightforward because the asso-
ciated optimization problems are nonlinear.

• So we have to resort to numerical methods.

• The Blahut-Arimoto (BA) algorithms are iterative algorithms devised for
this purpose.
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• The Blahut-Arimoto algorithms for computing

1. the channel capacity C

2. the rate-distortion function R(D)

• Convergence of the alternating optimization algorithms
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9.1 Alternating Optimization



A Double Supremum

Consider the double supremum

sup

u12A1

sup

u22A2

f(u1,u2).

• Ai is a convex subset of <ni
for i = 1, 2.

• f : A1 ⇥A2 ! < is bounded from above, such that

– f is continuous and has continuous partial derivatives on A1 ⇥A2

– For all u2 2 A2, there exists a unique c1(u2) 2 A1 such that

f(c1(u2),u2) = max

u0
12A1

f(u0
1,u2),

and for all u1 2 A1, there exists a unique c2(u1) 2 A2 such that

f(u1, c2(u1)) = max

u0
22A2

f(u1,u0
2).
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• Let u = (u1,u2) and A = A1 ⇥ A2. Then the double supremum can be

written as

sup

u2A
f(u).

• In other words, the supremum of f is taken over a subset of <n1+n2
which

is equal to the Cartesian product of two convex subsets of <n1
and <n2

.

• Let

f⇤
= sup

u2A
f(u).
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An Alternating Optimization 

• Let u(k)
= (u(k)

1 ,u(k)
2 ) for k � 0, defined as follows.

• Let u(0)
1 be an arbitrarily chosen vector in A1, and let u(0)

2 = c2(u
(0)
1 ).

• For k � 1, u(k)
is defined by

u(k)
1 = c1(u

(k�1)
2 )

and

u(k)
2 = c2(u

(k)
1 ).

• Let

f (k)
= f(u(k)

).

• Then

f (k) � f (k�1).
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• Since the sequence f (k)
is non-decreasing, it must converge because f is

bounded from above.

• We will show that f (k) ! f⇤ if f is concave.

• Replacing f by �f , the double supremum becomes the double infimum

inf

u12A1
inf

u22A2
f(u1,u2).

• The same alternating optimization algorithm can be applied to compute

this infimum.

• The alternating optimization algorithm will be specialized for computing

C and R(D).
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