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Proposition 6.13 With respect to a joint distribution
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Theorem 6.10 (Conditional Strong AEP) If

|T[T}",|X]5(x)| > 1, then
on(H (Y [X)—v) < |T[T}L/|X]5(x)| < Qn(H(Y|X)+V),

where v — 0 as n — oo and § — 0.
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- —¢>0. (1)
2
Then the upper bound on InPr{K = 1|X = x} tends
to —oo as n — oo, i.e.,, Pr{K = 1|X = x} — 0 as
n — oo.
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nH (X A
2 HX) ~ 2nI(X;X) > 2nRI(D).

onH(X|X)



~ 9nH(X|X) —

~~ Qi (X) ~ 2nI(X;X)
sequences . codewords
. n . : n
in T[X]5 - in T[X']é

. _

The number of codewords must be at least

nH (X .
2 (X) ~ 2nI(X;X) > 2nRI(D).

onH(X|X)



~ 2nH(X)

sequences
s n

~ 2nI(X;X)
codewords

. in T&*]é

The number of codewords must be at least

QnH(X)

~ 2nI(X;X) > 2nRI(D).



~ 2nH(X)

sequences
s n

~ 2nI(X;X)
codewords

. in T&*]é

The number of codewords must be at least

QnH(X)

~ 2nI(X,X) > 2nRI(D).



