

8.5 Achievability of $R_{l}(D)$

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

• An i.i.d. source $\{X_k : k \ge 1\}$ with generic random variable $X \sim p(x)$ is given.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

- An i.i.d. source $\{X_k : k \ge 1\}$ with generic random variable $X \sim p(x)$ is given.
- For every random variable \hat{X} taking values in \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$, prove that the rate-distortion pair $(I(X; \hat{X}), D)$ is achievable by showing for large n the existence of a rate-distortion code such that

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

- An i.i.d. source $\{X_k : k \ge 1\}$ with generic random variable $X \sim p(x)$ is given.
- For every random variable \hat{X} taking values in \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$, prove that the rate-distortion pair $(I(X; \hat{X}), D)$ is achievable by showing for large n the existence of a rate-distortion code such that

1. the rate of the code is not more than $I(X; \hat{X}) + \epsilon$;

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

- An i.i.d. source $\{X_k : k \ge 1\}$ with generic random variable $X \sim p(x)$ is given.
- For every random variable \hat{X} taking values in \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$, prove that the rate-distortion pair $(I(X; \hat{X}), D)$ is achievable by showing for large n the existence of a rate-distortion code such that
 - 1. the rate of the code is not more than $I(X; \hat{X}) + \epsilon$;
 - 2. $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon$ with probability almost 1.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

- An i.i.d. source $\{X_k : k \ge 1\}$ with generic random variable $X \sim p(x)$ is given.
- For every random variable \hat{X} taking values in \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$, prove that the rate-distortion pair $(I(X; \hat{X}), D)$ is achievable by showing for large n the existence of a rate-distortion code such that

1. the rate of the code is not more than $I(X; \hat{X}) + \epsilon$;

2. $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon$ with probability almost 1.

• Minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), D)$ is achievable.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

- An i.i.d. source $\{X_k : k \ge 1\}$ with generic random variable $X \sim p(x)$ is given.
- For every random variable \hat{X} taking values in \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$, prove that the rate-distortion pair $(I(X; \hat{X}), D)$ is achievable by showing for large n the existence of a rate-distortion code such that
 - 1. the rate of the code is not more than $I(X; \hat{X}) + \epsilon$;

2. $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon$ with probability almost 1.

- Minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), D)$ is achievable.
- This implies that $R_I(D) \ge R(D)$.

Parameter Settings

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

Parameter Settings

- 1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.
- 2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \leq \frac{1}{n} \log M \leq I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

Parameter Settings

- 1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.
- 2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \dots, \hat{\mathbf{X}}(M)$.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \dots, \hat{\mathbf{X}}(M)$.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \dots, \hat{\mathbf{X}}(M)$.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \dots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence \mathbf{X} into an index K in the set $\mathcal{I} = \{1, 2, \cdots, M\}$. The index K takes the value i if

(a)
$$(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta},$$

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

- (a) $(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta},$
- (b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then $i' \leq i$;

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a)
$$(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$$
,
(b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then
 $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a)
$$(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$$
,
(b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then
 $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \dots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \cdots, M\}$. The index K takes the value i if

(a)
$$(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$$
,
(b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then
 $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value i if

(a)
$$(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$$
,
(b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then
 $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value i if

(a)
$$(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$$
,
(b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then
 $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a) $(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$, (b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Remarks

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a) $(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$, (b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Remarks

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a) $(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$, (b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Remarks

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

• $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a) $(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$, (b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Remarks

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

Parameter Settings

1. Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.

2. Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.

2. Reveal the codebook \mathcal{C} to both the encoder and the decoder.

3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a) $(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta}$, (b) for all $i' \in \mathcal{I}$, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Remarks

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.
- 2. If $K \neq 1$, then $\hat{\mathbf{X}}(K)$ is jointly typical with \mathbf{X} .

Performance Analysis

Performance Analysis
1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

• $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in \mathcal{C} is jointly typical with \mathbf{X} .

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{x}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{x}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{x}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

 $\Pr\{K=1|\mathbf{X}=\mathbf{x}\}$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{x}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ \leq \quad \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{x}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{x}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{x}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

$$\begin{aligned} \Pr\{K &= 1 | \mathbf{X} = \mathbf{x} \} \\ &\leq & \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x} \} \\ &= & \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x} \} \\ &= & (\Pr\{E_1^c | \mathbf{X} = \mathbf{x} \})^{M-1} \\ &= & (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x} \})^{M-1}. \end{aligned}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\begin{aligned} \Pr\{K = 1 | \mathbf{X} = \mathbf{x} \} \\ &\leq \quad \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x} \} \\ &= \quad \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x} \} \\ &= \quad \left(\Pr\{E_1^c | \mathbf{X} = \mathbf{x} \}\right)^{M-1} \\ &= \quad \left(1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x} \}\right)^{M-1}. \end{aligned}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\mathbf{X} \in S^n_{[X]\delta}} \approx 1$ for large n.

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

for n sufficiently large.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large n.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\mathbf{X} \in S^n_{[X]\delta}} \approx 1$ for large n.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\mathbf{X} \in S_{[X]\delta}^n} \approx 1$ for large n.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_1 | \mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^n\right\}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

•

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

$$\Pr\{E_1 | \mathbf{X} = \mathbf{x}\} = \Pr\left\{ (\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^n \right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^n} p(\hat{\mathbf{x}})$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in \mathcal{C} is jointly typical with \mathbf{X} .

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large n. 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_1 | \mathbf{X} = \mathbf{x}\} = \Pr\left\{ (\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^n \right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^n} p(\hat{\mathbf{x}})$$

Theorem 6.7 (Consistency) If $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, then $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$

Theorem 6.10 (Conditional Strong AEP) If $|T_{[Y|X]\delta}^{n}(\mathbf{x})| \geq 1$, then $2^{n(H(Y|X)-\nu)} \leq |T_{[Y|X]\delta}^{n}(\mathbf{x})| \leq 2^{n(H(Y|X)+\nu)}$, where $\nu \to 0$ as $n \to \infty$ and $\delta \to 0$.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\frac{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})}{[\hat{X}|X]\delta}$$

Theorem 6.10 (Conditional Strong AEP) If $|T_{[Y|X]\delta}^{n}(\mathbf{x})| \geq 1$, then $2^{n(H(Y|X)-\nu)} \leq |T_{[Y|X]\delta}^{n}(\mathbf{x})| \leq 2^{n(H(Y|X)+\nu)}$, where $\nu \to 0$ as $n \to \infty$ and $\delta \to 0$.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large n. 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq \frac{2^{n(H(\hat{X}|X)-\xi)}2^{-n(H(\hat{X})+\eta)}}{2^{n(H(\hat{X}|X)-\xi)}2^{-n(H(\hat{X})+\eta)}}$$

Theorem 6.10 (Conditional Strong AEP) If $|T_{[Y|X]\delta}^{n}(\mathbf{x})| \geq 1$, then $2^{n(H(Y|X)-\nu)} \leq |T_{[Y|X]\delta}^{n}(\mathbf{x})| \leq 2^{n(H(Y|X)+\nu)}$, where $\nu \to 0$ as $n \to \infty$ and $\delta \to 0$.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{-n(H(\hat{X})-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(X;\hat{X})+\xi)},$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in \mathcal{C} is jointly typical with \mathbf{X} .

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in \mathcal{C} is jointly typical with \mathbf{X} .

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\xi)},$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\xi)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$.

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$.
1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\begin{aligned} &\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ &\leq &\Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\} \\ &= &\prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\} \\ &= &(\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1} \\ &= &(1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}. \end{aligned}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\begin{aligned} &\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ &\leq &\Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\} \\ &= &\prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\} \\ &= &(\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1} \\ &= &(1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}. \end{aligned}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\begin{aligned} &\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ &\leq &\Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\} \\ &= &\prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\} \\ &= &(\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1} \\ &= &(1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}. \end{aligned}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

Ρ

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^C \cap E_3^C \cap \dots \cap E_M^C | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^C | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^C | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large n. 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\mathbf{r}\{E_{\underline{1}}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(X;\hat{X})+\zeta)},$$

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

Ρ

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\mathbf{r}\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$

$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$

$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$

$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$

$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$

$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

1. The event $\{K = 1\}$ occurs in one of the following two scenarios:

- $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
- No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$. We will show that $\Pr\{K = 1\}$ can be made arbitrarily small.

2. Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}.$$

3. Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.$$

4. Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

5. Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$

$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$

$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$ 7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr{\{E_1 | \mathbf{X} = \mathbf{x}\}}$:

$$\Pr\{E_{1} | \mathbf{X} = \mathbf{x}\} = \Pr\left\{ (\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n} \right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

•

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

9. Now

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

•

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n\left(I(X;\hat{X}) + \frac{\epsilon}{2}\right)}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

9. Now

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

•

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})+\xi)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

•

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

•

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M-1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

•

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} < 0$$

$$\leq (M-1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

.

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}$$

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} < 0$$

$$\leq (\underline{M} - 1) \ln \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)} \right]$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

•

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}$$

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} < 0$$

$$\leq (\underline{M} - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(\frac{2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}}{1 - 1} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

.

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M-1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1\right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})+\xi)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M-1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1\right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ \leq \qquad (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ \leq \qquad (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad - \left(\frac{2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1}{2^{-n(I(X;\hat{X}) + \zeta)}} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ \leq \qquad (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad - \left(\frac{2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1}{2^{-n(I(X;\hat{X}) + \zeta)}} - 1 \right) \frac{2^{-n(I(X;\hat{X}) + \zeta)}}{2^{-n(I(X;\hat{X}) + \zeta)}}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ \leq \qquad (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \qquad - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \\ \leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right] \\ \leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X,\hat{X}) + \zeta)}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(\frac{2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1}{2^{-n(I(X;\hat{X}) + \zeta)}} - 1 \right) \frac{2^{-n(I(X;\hat{X}) + \zeta)}}{2^{-n(I(X;\hat{X}) + \zeta)}}$$

$$= - \left[\frac{2^{n(\frac{\epsilon}{2} - \zeta)}}{2^{-n(I(X;\hat{X}) + \zeta)}} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}.$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

.

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S^{n}_{[X]\delta} = \{ \mathbf{x} \in T^{n}_{[X]\delta} : |T^{n}_{[\hat{X}|X]\delta}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}.$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^n = \{ \mathbf{x} \in T_{[X]\delta}^n : |T_{[\hat{X}|X]\delta}^n(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]^{M-1}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \rightarrow -\infty$$

$$\leq (M-1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^n = \{ \mathbf{x} \in T_{[X]\delta}^n : |T_{[\hat{X}|X]\delta}^n(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

.

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \rightarrow -\infty$$

$$\leq (M-1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\} \approx 1 \text{ for large } n.}$

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

.

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \rightarrow -\infty$$

$$\leq (M-1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

6. We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n*.

7. For $\mathbf{x} \in S_{[X]\delta}^n$, obtain the following lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$:

$$\Pr\{E_{1}|\mathbf{X} = \mathbf{x}\} = \Pr\left\{(\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^{n}\right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} p(\hat{\mathbf{x}})$$
$$\geq \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}$$
$$\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $n \to \infty$ and $\delta \to 0$. 8. Therefore,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}$$

$$\leq \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}$$

•

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let *n* be sufficiently large and δ be sufficiently small so that ϵ

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \frac{\epsilon}{2}.$$
9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

9. Now

12. It follows that

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that ϵ

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \frac{\epsilon}{2}.$$

9. Now

12. It follows that

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}. \qquad \Pr\{K = 1\}$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \frac{\epsilon}{2}.$$

9. Now

12. It follows that

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

=
$$\sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

12. It follows that

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

=
$$\sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \underline{\mathbf{X}} = \underline{\mathbf{x}}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

12. It follows that

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

=
$$\sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \underline{\mathbf{X}} = \underline{\mathbf{x}}\} \Pr\{\underline{\mathbf{X}} = \underline{\mathbf{x}}\}$$

9. Now

12. It follows that

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

=
$$\sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \underline{\mathbf{X}} = \underline{\mathbf{x}}\} \Pr\{\underline{\mathbf{X}} = \underline{\mathbf{x}}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}}{\Pr\{\mathbf{X} = \mathbf{x}\}} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \le \frac{\epsilon}{2}$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}}{\Pr\{X = \mathbf{x}\}} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \frac{\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}}{\Pr\{\mathbf{X} = \mathbf{x}\}} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \frac{\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}}{\Pr\{\mathbf{X} = \mathbf{x}\}} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \frac{1}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\epsilon}{2} \cdot \frac{\Pr\{\mathbf{X} = \mathbf{x}\}}{\Pr\{\mathbf{X} = \mathbf{x}\}} + \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \frac{\Pr\{\mathbf{X} = \mathbf{x}\}}{\sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}}$$

$$= \frac{\epsilon}{2} \cdot \frac{\Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\}}{\sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \frac{\Pr\{\mathbf{X} = \mathbf{x}\}}{\mathbf{x} \in S_{[X]\delta}^{n}}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \frac{\Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}}{\mathbf{x} \notin S_{[X]\delta}^{n}}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \frac{\Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\}}{\Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\}} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \frac{\Pr\{\mathbf{X} \in S_{[X]}^{n} \delta\}}{\Pr\{\mathbf{X} \in S_{[X]}^{n} \delta\}} + \Pr\{\mathbf{X} \notin S_{[X]}^{n} \delta\}$$

$$\leq \frac{\epsilon}{2} \cdot \frac{1}{2} + \Pr\{\mathbf{X} \notin S_{[X]}^{n} \delta\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]}^{n} \delta\} + \Pr\{\mathbf{X} \notin S_{[X]}^{n} \delta\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]}^{n} \delta\}$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]}^{n} \delta} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]}^{n} \delta} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$< \frac{\epsilon}{2} + \underline{\delta}.$$

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that ϵ

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} + \delta.$$

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{c}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} + \delta.$$

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

13. By letting n be sufficiently large and δ be sufficiently small so that both (1) and $\delta < \frac{\epsilon}{2}$ are satisfied, we obtain

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let *n* be sufficiently large and δ be sufficiently small so that $\frac{\epsilon}{2} - \zeta > 0.$ (1)

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

13. By letting n be sufficiently large and δ be sufficiently small so that both (1) and $\delta < \frac{\epsilon}{2}$ are satisfied, we obtain

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let *n* be sufficiently large and δ be sufficiently small so that $\frac{\epsilon}{2} - \zeta > 0.$ (1)

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for
$$\mathbf{x} \in S^n_{[X]\delta}$$
, for sufficiently large n ,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \le \frac{\epsilon}{2}$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

13. By letting n be sufficiently large and δ be sufficiently small so that both (1) and $\delta < \frac{\epsilon}{2}$ are satisfied, we obtain

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

13. By letting n be sufficiently large and δ be sufficiently small so that both (1) and $\delta < \frac{\epsilon}{2}$ are satisfied, we obtain

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

9. Now

$$\frac{1}{n}\log M \ge I(X;\hat{X}) + \frac{\epsilon}{2} \iff M \ge 2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})}.$$

Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$$

$$\leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)} \right]$$

$$\leq - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1 \right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= - \left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)} \right].$$

10. Let n be sufficiently large and δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

11. This implies for $\mathbf{x} \in S^n_{[X]\delta}$, for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \frac{\epsilon}{2}.$$

12. It follows that

$$\Pr\{K = 1\}$$

$$= \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$+ \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$\leq \sum_{\mathbf{x} \in S_{[X]\delta}^{n}} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} = \mathbf{x}\} + \sum_{\mathbf{x} \notin S_{[X]\delta}^{n}} 1 \cdot \Pr\{\mathbf{X} = \mathbf{x}\}$$

$$= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X} \in S_{[X]\delta}^{n}\} + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

$$\leq \frac{\epsilon}{2} \cdot 1 + \Pr\{\mathbf{X} \notin S_{[X]\delta}^{n}\}$$

13. By letting n be sufficiently large and δ be sufficiently small so that both (1) and $\delta < \frac{\epsilon}{2}$ are satisfied, we obtain

$$\Pr\{K=1\} < \epsilon.$$

Proposition 6.13 With respect to a joint distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$, for any $\delta > 0$,

$$\Pr\{\mathbf{X} \in S^n_{[X]\delta}\} > 1 - \delta$$

• Randomly generate M codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where n is large.

- Randomly generate M codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where n is large.
- $\mathbf{X} \in S^n_{[X]\delta}$ with high probability.

- Randomly generate M codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where n is large.
- $\mathbf{X} \in S^n_{[X]\delta}$ with high probability.
- For $\mathbf{x} \in S_{[X]\delta}^n$, by conditional strong AEP,

$$\Pr\left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \,|\, \mathbf{X} = \mathbf{x} \right\} \approx 2^{-nI(X;\hat{X})}$$

- Randomly generate M codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where n is large.
- $\mathbf{X} \in S^n_{[X]\delta}$ with high probability.
- For $\mathbf{x} \in S_{[X]\delta}^n$, by conditional strong AEP,

$$\Pr\left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \,|\, \mathbf{X} = \mathbf{x} \right\} \approx 2^{-nI(X;\hat{X})}.$$

• If M grows with n at a rate higher than $I(X; \hat{X})$, then the probability that there exists at least one $\hat{\mathbf{X}}(i)$ which is jointly typical with the source sequence \mathbf{X} with respect to $p(x, \hat{x})$ is high.

- Randomly generate M codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where n is large.
- $\mathbf{X} \in S^n_{[X]\delta}$ with high probability.
- For $\mathbf{x} \in S_{[X]\delta}^n$, by conditional strong AEP,

$$\Pr\left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \,|\, \mathbf{X} = \mathbf{x} \right\} \approx 2^{-nI(X;\hat{X})}.$$

- If M grows with n at a rate higher than $I(X; \hat{X})$, then the probability that there exists at least one $\hat{\mathbf{X}}(i)$ which is jointly typical with the source sequence \mathbf{X} with respect to $p(x, \hat{x})$ is high.
- Such an $\hat{\mathbf{X}}(i)$, if exists, would have $d(\mathbf{X}, \hat{\mathbf{X}}) \approx Ed(X, \hat{X}) \leq D$, because the joint relative frequency of $(\mathbf{x}, \hat{\mathbf{X}}(i)) \approx p(x, \hat{x})$. See the next proposition.

- Randomly generate M codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where n is large.
- $\mathbf{X} \in S^n_{[X]\delta}$ with high probability.
- For $\mathbf{x} \in S_{[X]\delta}^n$, by conditional strong AEP,

$$\Pr\left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \,|\, \mathbf{X} = \mathbf{x} \right\} \approx 2^{-nI(X;\hat{X})}.$$

- If M grows with n at a rate higher than $I(X; \hat{X})$, then the probability that there exists at least one $\hat{\mathbf{X}}(i)$ which is jointly typical with the source sequence \mathbf{X} with respect to $p(x, \hat{x})$ is high.
- Such an $\hat{\mathbf{X}}(i)$, if exists, would have $d(\mathbf{X}, \hat{\mathbf{X}}) \approx Ed(X, \hat{X}) \leq D$, because the joint relative frequency of $(\mathbf{x}, \hat{\mathbf{X}}(i)) \approx p(x, \hat{x})$. See the next proposition.
- Use this $\hat{\mathbf{X}}(i)$ to represent \mathbf{X} to satisfy the distortion constraint.

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then

 $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$
$$d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k)$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k)$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k) \\ &= \frac{1}{n} \sum_{\underline{x}, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k) \\ &= \frac{1}{n} \sum_{x, \hat{x}} \underline{d(x, \hat{x})} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k)$$
$$= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}})$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{\max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{\max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (\underline{np(x, \hat{x})} + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} \frac{d(x, \hat{x})}{(np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x}))} \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{\max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} \frac{d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} \frac{d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} \frac{d(x, \hat{x}) (\mathbf{x} p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} \frac{d(x, \hat{x}) (\mathbf{x} p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + \underline{N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}})} - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + \underline{N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}})} - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - \underline{n p(x, \hat{x})}) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - \underline{n p(x, \hat{x})}) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - \underline{p(x, \hat{x})} \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - \mathbf{p}(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - \mathbf{p}(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - \underline{p(x, \hat{x})}) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - \underline{p(x, \hat{x})} \right) \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \\ &= \underbrace{Ed(X, \hat{X})}_{x, \hat{x}} + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k})$$

$$= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}})$$

$$= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x}))$$

$$= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right)$$

$$= Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right)$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k})$$

$$= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}})$$

$$= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x}))$$

$$= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right)$$

$$= Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right)$$

$$\leq Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left[\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right]$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \\ &= E d(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \\ &\leq E d(X, \hat{X}) + \sum_{x, \hat{x}} \frac{d(x, \hat{x})}{d(x, \hat{x})} \left| \frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right| \end{aligned}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \\ &= Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right) \\ &\leq Ed(X, \hat{X}) + \sum_{x, \hat{x}} \frac{d(x, \hat{x})}{x} \left| \frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right| \\ &\leq Ed(X, \hat{X}) + \frac{d_{max}}{x, \hat{x}} \sum_{x, \hat{x}} \left| \frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x}) \right| \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &= Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &\leq Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \\ &\leq Ed(X, \hat{X}) + d_{max} \sum_{x, \hat{x}} \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

Proof For $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, consider

$$\begin{aligned} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &= Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &\leq Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \\ &\leq Ed(X, \hat{X}) + d_{max} \sum_{x, \hat{x}} \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \end{aligned}$$

 $\leq Ed(X, \hat{X}) + d_{max} \underline{\delta}$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (np(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - np(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &= Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &\leq Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \\ &\leq Ed(X, \hat{X}) + d_{max} \sum_{x, \hat{x}} \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \\ &\leq Ed(X, \hat{X}) + d_{max} \delta \end{split}$$

$$d(\mathbf{x}, \hat{\mathbf{x}}) \le D + d_{max}\delta.$$

$$\begin{split} d(\mathbf{x}, \hat{\mathbf{x}}) &= \frac{1}{n} \sum_{k=1}^{n} d(x_{k}, \hat{x}_{k}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) \\ &= \frac{1}{n} \sum_{x, \hat{x}} d(x, \hat{x}) (n p(x, \hat{x}) + N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - n p(x, \hat{x})) \\ &= \sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &= Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left(\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right) \\ &\leq Ed(X, \hat{X}) + \sum_{x, \hat{x}} d(x, \hat{x}) \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \\ &\leq Ed(X, \hat{X}) + d_{max} \sum_{x, \hat{x}} \left|\frac{1}{n} N(x, \hat{x} | \mathbf{x}, \hat{\mathbf{x}}) - p(x, \hat{x})\right| \\ &\leq Ed(X, \hat{X}) + d_{max} \delta \\ &\leq D + d_{max} \delta. \end{split}$$

1. For sufficiently large n, consider

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

= $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$
1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

 $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

 $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

 $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

 $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

 $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

 $= \frac{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\}}{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}} \Pr\{K \neq 1\}$

1. For sufficiently large n, consider

- $= \frac{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\}}{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}} \Pr\{K \neq 1\}$
- $\leq \quad \underline{1} \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$

1. For sufficiently large n, consider

- $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$
- $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$

1. For sufficiently large n, consider

- $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$
- $\leq 1 \cdot \underline{\epsilon} + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$

1. For sufficiently large n, consider

- $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$
- $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$

1. For sufficiently large n, consider

- $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$
- $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot \underline{1}$

1. For sufficiently large n, consider

- $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$
- $\leq \quad 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$
- $= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

1. For sufficiently large n, consider

- $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$
- $\leq \quad 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$
- $= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$ $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$

 $= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

1. For sufficiently large n, consider

 $\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

1. For sufficiently large n, consider

 $\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

 $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta.$

1. For sufficiently large n, consider

 $\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \underline{\delta}.$$

3. By taking $\delta \leq \frac{\epsilon}{d_{max}}$, we obtain

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \underline{\delta}.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \underline{\delta}.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \underline{\delta}.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}$, $(\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}$, $(\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}$, $(\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}$, $(\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$ $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$ $= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

2. Recall that conditioning on $\{K \neq 1\}$, $(\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}$, $(\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$

 $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ \leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ = \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

1. For sufficiently large n, consider

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$$

$$= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$$

$$+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$$

$$\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$$

$$= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

1. For sufficiently large n, consider

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$$

$$= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$$

$$+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$$

$$\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$$

$$= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le I(X;\hat{X}) + \epsilon$$

1. For sufficiently large n, consider

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$$

$$= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$$

$$+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$$

$$\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$$

$$= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le I(X;\hat{X}) + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon.$$

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$ $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$ $= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le I(X;\hat{X}) + \epsilon$$

 and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon.$$

Hence, for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, $(I(X; \hat{X}), D)$ is achievable.

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$ $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$ $= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le \underline{I(X;\hat{X})} + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon.$$

Hence, for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, $(I(X; \hat{X}), D)$ is achievable.

1. For sufficiently large n, consider

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$ $+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$ $\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$ $= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le \underline{I(X;\hat{X})} + \epsilon$$

 and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > \underline{D} + \epsilon\} \leq \epsilon.$$

Hence, for any \hat{X} such that $Ed(X, \hat{X}) \leq \underline{D}$, $(I(X; \hat{X}), \underline{D})$ is achievable.

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le I(X;\hat{X}) + \epsilon$$

 and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon.$$

Hence, for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, $(I(X; \hat{X}), D)$ is achievable.

6. Finally, minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), D)$ is achievable, i.e.,

1. For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \\ &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le I(X;\hat{X}) + \epsilon$$

 and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon.$$

Hence, for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, $(I(X; \hat{X}), D)$ is achievable.

6. Finally, minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), D)$ is achievable, i.e.,

1. For sufficiently large n, consider

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$$

$$= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$$

$$+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$$

$$\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$$

$$= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max}\delta$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le I(X;\hat{X}) + \epsilon$$

 and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon.$$

Hence, for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, $(I(X; \hat{X}), D)$ is achievable.

6. Finally, minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), \underline{D})$ is achievable, i.e.,
The Remaining Details

1. For sufficiently large n, consider

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$$

$$= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\}$$

$$+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\}$$

$$\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1$$

$$= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.$$

2. Recall that conditioning on $\{K \neq 1\}, (\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$. Then

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

3. By taking
$$\delta \leq \frac{\epsilon}{d_{max}}$$
, we obtain

$$d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + d_{max} \left(\frac{\epsilon}{d_{max}}\right) = D + \epsilon.$$

Proposition For \hat{X} such that $Ed(X, \hat{X}) \leq D$, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + d_{max}\delta.$ 4. Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$.

5. Thus we have shown the existence of a code such that

$$\frac{1}{n}\log M \le I(X;\hat{X}) + \epsilon$$

 and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon.$$

Hence, for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, $(I(X; \hat{X}), D)$ is achievable.

6. Finally, minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), \underline{D})$ is achievable, i.e.,

$$R_I(D) \ge R(D).$$

$$\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx 2^{nI(X;\hat{X})} \ge 2^{nR_I(D)}$$

$$\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx 2^{nI(X;\hat{X})} \ge 2^{nR_I(D)}$$

$$\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx 2^{nI(X;\hat{X})} \ge 2^{nR_I(D)}.$$

$$\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx 2^{nI(X;\hat{X})} \ge 2^{nR_I(D)}.$$

$$\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx 2^{nI(X;\hat{X})} \ge 2^{nR_I(D)}.$$

$$\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx \frac{2^{nI(X;\hat{X})}}{2^{nH(X|\hat{X})}} \ge 2^{nR_I(D)}.$$