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How to Prove Achievability

• An i.i.d. source {X
k

: k � 1} with generic random variable X ⇠ p(x) is

given.

• For every random variable

ˆ

X taking values in

ˆX with Ed(X,

ˆ

X)  D,

where 0  D  D

max

, prove that the rate-distortion pair (I(X;

ˆ

X), D) is

achievable by showing for large n the existence of a rate-distortion code

such that

1. the rate of the code is not more than I(X;

ˆ

X) + ✏;

2. d(X,

ˆX)  D + ✏ with probability almost 1.

• Minimize I(X;

ˆ

X) over all such

ˆ

X to conclude that (R

I

(D), D) is achiev-

able.

• This implies that R

I

(D) � R(D).

Theorem 8.17 (The Rate-Distortion Theorem) R(D) = RI(D).
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Random Coding Scheme

Parameter Settings

1. Fix ✏ > 0 and X̂ with Ed(X, X̂)  D, where 0 
D  D

max

. Let � be specified later.

2. Let M be an integer satisfying

I(X; X̂) +
✏

2


1

n

log M  I(X; X̂) + ✏,

where n is sufficiently large.

The Random Coding Scheme

1. Construct a codebook C of an (n,M) code by ran-
domly generating M codewords in X̂n independently
and identically according to p(x̂)n. Denote these code-
words by X̂(1), X̂(2), · · · , X̂(M).

2. Reveal the codebook C to both the encoder and the
decoder.

3. The source sequence X is generated according to
p(x)n.

4. The encoder encodes the source sequence X into an
index K in the set I = {1, 2, · · · ,M}. The index K

takes the value i if

• (X, X̂(i)) 2 T

n

[XX̂]�
,

• for all i

0 2 I, if (X, X̂(i0)) 2 T

n

[XX̂]�
, then

i

0  i;

i.e., if there exists more than one i satisfying (a), let
K be the largest one. Otherwise, K takes the constant
value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs X̂(K) as the reproduction se-
quence X̂.

Remarks

1. The event {K = 1} occurs in one of the following
two scenarios:

• X̂(1) is the only codeword in C which is jointly
typical with X.

• No codeword in C is jointly typical with X.

2. If K 6= 1, then X̂(K) is jointly typical with X.
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1. The event {K = 1} occurs in one of the following

two scenarios:

• ˆX(1) is the only codeword in C which is jointly

typical with X.

• No codeword in C is jointly typical with X.

In other words, if K = 1, then X is jointly typical

with none of the codewords

ˆX(2), ˆX(3), · · · , ˆX(M).

We will show that Pr{K = 1} can be made arbitrarily

small.
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�
.

3. Then

{K = 1} ⇢ E
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\ E
c
3

\ · · · \ E
c
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Proposition 6.13 With respect to a joint distribution

p(x, y) on X ⇥ Y, for any � > 0,
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Theorem 6.7 (Consistency) If (x, y) 2 Tn
[XY ]�

,

then x 2 Tn
[X]�

and y 2 Tn
[Y ]�

.
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Main Idea
• Randomly generate M codewords in

ˆXn
according to p(x̂)

n
, where n is

large.

• X 2 S

n
[X]� with high probability.

• For x 2 S

n
[X]�, by conditional strong AEP,

Pr

n

(X,

ˆ

X(i)) 2 T

n
[XX̂]�

|X = x

o

⇡ 2

�nI(X;X̂)
.

• If M grows with n at a rate higher than I(X;

ˆ

X), then the probability

that there exists at least one

ˆ

X(i) which is jointly typical with the source

sequence X with respect to p(x, x̂) is high.

• Such an

ˆ

X(i), if exists, would have d(X,

ˆ

X) ⇡ Ed(X,

ˆ

X)  D, because the

joint relative frequency of (x,

ˆ

X(i)) ⇡ p(x, x̂). See the next proposition.

• Use this

ˆ

X(i) to represent X to satisfy the distortion constraint.
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The Remaining Details 



1. For sufficiently large n, consider

Pr{d(X, X̂) > D + ✏}

= Pr{d(X, X̂) > D + ✏|K = 1}Pr{K = 1}

+Pr{d(X, X̂) > D + ✏|K 6= 1}Pr{K 6= 1}

 1 · ✏ + Pr{d(X, X̂) > D + ✏|K 6= 1} · 1

= ✏ + Pr{d(X, X̂) > D + ✏|K 6= 1}.

2. Recall that conditioning on {K 6= 1}, (X, X̂) 2
T

n

[XX̂]�
. Then

d(X, X̂)  D + d

max

�.

3. By taking �  ✏

d

max

, we obtain

d(X, X̂)  D + d

max

 
✏

d

max

!
= D + ✏.

4. Therefore, Pr{d(X, X̂) > D + ✏|K 6= 1} = 0, which
implies Pr{d(X, X̂) > D + ✏}  ✏.

5. Thus we have shown the existence of a code such
that

1

n

log M  I(X; X̂) + ✏

and
Pr{d(X, X̂) > D + ✏}  ✏.

Hence, for any X̂ such that Ed(X, X̂)  D,
(I(X; X̂), D) is achievable.

6. Finally, minimize I(X; X̂) over all such X̂ to con-
clude that (R

I

(D), D) is achievable, i.e.,

R

I

(D) � R(D).
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