

8.4 The Converse

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

• Prove that for any achievable rate-distortion pair $(R, D), R \ge R_I(D)$.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

• Prove that for any achievable rate-distortion pair $(R, D), R \geq R_I(D)$.

Definition 8.13 The rate-distortion function *R*(*D*) is the minimum of all rates *R* for a given distortion *D* such that (R, D) is achievable.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

- Prove that for any achievable rate-distortion pair (R, D) , $R \geq R_I(D)$.
- *•* Fix *D* and minimize *R* over all achievable pairs (*R, D*) to conclude that $R(D) \geq R_I(D).$

Definition 8.13 The rate-distortion function *R*(*D*) is the minimum of all rates *R* for a given distortion *D* such that (R, D) is achievable.

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R+\epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

-
- $H(f(\mathbf{X}))$
- $\geq \log M$
 $\geq H(f(\mathbf{\Sigma}))$
 $\geq H(g(f(\mathbf{\Sigma})))$ $H(g(f(\mathbf{X})))$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
-
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**) $H(g(f(\mathbf{X})))$
- $=$ *H*($\hat{\mathbf{X}}$)

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R+\epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R+\epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R+\epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R+\epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $=$ $I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

$$
= \quad \underline{H(\mathbf{X})} - H(\mathbf{X}|\hat{\mathbf{X}})
$$

$$
= \sum_{k=1}^{n} H(X_k)
$$

- $\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

- $\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

- $\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} \frac{H(X_k | \hat{\mathbf{X}}, X_1, X_2, \cdots, X_{k-1})}{\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \cdots, X_{k-1})}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

$$
- \sum_{k=1}^{n} \frac{H(X_k|\hat{\mathbf{X}}, X_1, X_2, \cdots, X_{k-1})}{n}
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} \frac{H(X_k|\hat{X}_k)}{n}
$$

 $k=1$ ^{$\overline{}$}

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R+\epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^n [H(X_k) - H(X_k | \hat{X}_k)]
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R+\epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^n [\underline{H(X_k) - H(X_k|\hat{X}_k)}]
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $=$ $I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

- $\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})$
 $\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)$

 $k=1$

$$
\begin{array}{lll} = & \displaystyle \sum\limits_{k=1}^n \big[H(X_k) - H(X_k|\hat{X}_k) \big] \\ \\ = & \displaystyle \sum\limits_{k=1}^n I(X_k;\hat{X}_k) \end{array}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

- \geq $\log M$
- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k|\hat{X}_k)]
$$

$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

- \geq $\log M$
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**)
- $H(g(f(\mathbf{X})))$

$$
= H(\hat{\mathbf{X}})
$$

- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

$$
- \sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

 $k=1$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k|\hat{X}_k)]
$$

$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

$$
\geq \sum_{k=1}^{n} R_I(\underline{Ed(X_k, \hat{X}_k)})
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$ \geq *H*(*f*(**X**)) \geq *H*(*g*(*f*(**X**))) $=$ *H*($\hat{\mathbf{X}}$) $=$ $H(\hat{\mathbf{X}}) - H(\hat{\mathbf{X}}|\mathbf{X})$ $=$ *I*($\hat{\mathbf{X}}$; **X**)

$$
= H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})
$$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $=$ *I*($\hat{\mathbf{X}}$; **X**)
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

-
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**) $H(g(f(\mathbf{X})))$
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $=$ *I*($\hat{\mathbf{X}}$; **X**)
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$
1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

-
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**) $H(g(f(\mathbf{X})))$
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $=$ *I*($\hat{\mathbf{X}}$; **X**)
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $=$ *I*($\hat{\mathbf{X}}$; **X**)
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $=$ *I*($\hat{\mathbf{X}}$; **X**)
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

-
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**) $H(g(f(\mathbf{X})))$
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}
$$

$$
\mathbb{E} d(\mathbf{X},\mathbf{X})
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

-
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**) $H(g(f(\mathbf{X})))$
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

-
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**) $H(g(f(\mathbf{X})))$
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}
$$

$$
= E[d(\mathbf{X},
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

-
- \geq *H*(*f*(**X**))
 \geq *H*(*g*(*f*(**X**) $H(g(f(\mathbf{X})))$
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= \frac{E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}}{+ E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

$$
- \sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

 $k=1$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k|\hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= \frac{E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}}{+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{}
$$

$$
f_{\rm{max}}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ *H*($\hat{\mathbf{X}}$) *H*($\hat{\mathbf{X}}$ |X)
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

$$
- \sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

 $k=1$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon] \frac{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}}{2}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$

$$
\leq \quad d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

$$
- \sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

 $k=1$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon] \frac{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}}{2}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$

$$
\leq \quad d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

$$
- \sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

 $k=1$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon] \frac{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}}{2}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$

$$
\leq \quad d_{max} \cdot \underline{\epsilon} + (D + \epsilon) \cdot 1
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k|\hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $Pr{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ $H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

$$
- \sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

 $k=1$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ *H*($\hat{\mathbf{X}}$) *H*($\hat{\mathbf{X}}$ |X)
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon] \frac{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}}{2}$ \leq *d_{max}* $\cdot \epsilon + (D + \epsilon) \cdot 1$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon$,

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon] \frac{\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}}{2}$

$$
\leq \quad d_{max} \cdot \epsilon + (D + \epsilon) \cdot \underline{1}
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ $H(\mathbf{X}) H(\mathbf{X}|\hat{\mathbf{X}})$

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \cdots, X_{k-1})
$$

n

$$
\geq \sum_{k=1}^{k} H(X_k) - \sum_{k=1}^{k} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$

$$
\leq \quad d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1
$$

=
$$
D + (d_{max} + 1)\epsilon.
$$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$
- $=$ *H*(**X**) *H*(**X**|**X**)

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \cdots, X_{k-1})
$$

>
$$
\sum_{k=1}^{n} H(X_k) = \sum_{k=1}^{n} H(X_k | \hat{\mathbf{Y}}_k)
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$ \leq *d_{max}* $\cdot \epsilon + (D + \epsilon) \cdot 1$ $= D + (d_{max} + 1)\epsilon.$

1. Let (*R, D*) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M \leq R + \epsilon
$$

and

 $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \leq \epsilon,$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

 $n(R + \epsilon)$

 \geq $\log M$

- \geq *H*(*f*(**X**))
- \geq *H*(*g*(*f*(**X**)))
- $=$ *H*($\hat{\mathbf{X}}$)
- $=$ $H(\hat{\mathbf{X}}) H(\hat{\mathbf{X}}|\mathbf{X})$
- $= I(\hat{\mathbf{X}}; \mathbf{X})$

 $k=1$

 $=$ *H*(**X**) – *H*(**X**|**X**)

$$
= \sum_{k=1}^{n} H(X_k)
$$

-
$$
\sum_{k=1}^{n} H(X_k | \hat{\mathbf{X}}, X_1, X_2, \dots, X_{k-1})
$$

$$
\geq \sum_{k=1}^{n} H(X_k) - \sum_{k=1}^{n} H(X_k | \hat{X}_k)
$$

 $k=1$

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

 $Ed(\mathbf{X}, \hat{\mathbf{X}})$

 $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr{d(\mathbf{X}, \hat{\mathbf{X}})} > D + \epsilon$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon] \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$ \leq *d max* \cdot ϵ + (*D* + ϵ) \cdot 1 $= D + (d_{max} + 1)\epsilon$.

$$
= \sum_{k=1}^{n} [H(X_k) - H(X_k | \hat{X}_k)]
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

$$
\begin{aligned}\n\mathbf{n}(R + \epsilon) &\geq \cdots \\
&= \sum_{k=1}^{n} I(X_k; \hat{X}_k) \\
&\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \\
&= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right] \\
&\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right) \\
&= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).\n\end{aligned}
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

$$
\begin{aligned}\n\mathbf{M}(R+\epsilon) &\geq \cdots \\
&= \sum_{k=1}^{n} I(X_k; \hat{X}_k) \\
&\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \\
&= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right] \\
&\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right) \\
&= \mathbf{M}R_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).\n\end{aligned}
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

$$
\begin{aligned}\n\mathbf{\hat{M}}(R+\epsilon) &\geq \cdots \\
&= \sum_{k=1}^{n} I(X_k; \hat{X}_k) \\
&\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \\
&= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right] \\
&\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right) \\
&= \mathbf{\hat{M}} R_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).\n\end{aligned}
$$

4. Therefore,

$$
R + \epsilon \quad \geq \quad R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$

= $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$
+ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}$
 \le $d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1$
= $D + (d_{max} + 1)\epsilon$.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \quad \geq \quad R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$Ed(\mathbf{X}, \hat{\mathbf{X}})$ $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$ \leq *d max* \cdot ϵ + (*D* + ϵ) \cdot 1 $=$ $D + (d_{max} + 1)\epsilon$.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \quad \geq \quad R_I(\underline{Ed}(\mathbf{X}, \hat{\mathbf{X}}))
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$Ed(\mathbf{X}, \hat{\mathbf{X}})$ $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$ \leq *d max* \cdot ϵ + (*D* + ϵ) \cdot 1 $=$ $D + (d_{max} + 1)\epsilon$.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(\underline{Ed}(\mathbf{X}, \hat{\mathbf{X}}))
$$

$$
\geq R_I(\underline{D + (d_{max} + 1)\epsilon}),
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$Ed(\mathbf{X}, \hat{\mathbf{X}})$ $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$ \leq *d max* \cdot ϵ + (*D* + ϵ) \cdot 1 $=$ $D + (d_{max} + 1)\epsilon$.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(\underline{Ed}(\mathbf{X}, \hat{\mathbf{X}}))
$$

$$
\geq R_I(\underline{D + (d_{max} + 1)\epsilon}),
$$

because $R_I(D)$ is non-increasing in D .

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$Ed(\mathbf{X}, \hat{\mathbf{X}})$ $=$ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$ $+E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon\}$ \leq *d max* \cdot ϵ + (*D* + ϵ) \cdot 1 $=$ $D + (d_{max} + 1)\epsilon$.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in D .

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in D .

5. $R_I(D)$ convex implies it is continuous in *D*. Letting $\epsilon \rightarrow 0$, we have

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in D .

5. $R_I(D)$ convex implies it is continuous in *D*. Letting $\epsilon \rightarrow 0$, we have

$$
R \geq \lim_{\epsilon \to 0} R_I(D + (d_{max} + 1)\epsilon)
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$
$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in D .

5. $R_I(D)$ convex implies it is continuous in *D*. Letting $\epsilon \rightarrow 0$, we have

$$
R \geq \lim_{\epsilon \to 0} R_I(D + (d_{max} + 1)\epsilon)
$$

= $R_I(D + (d_{max} + 1) \lim_{\epsilon \to 0} \epsilon)$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

That is, if the probability that the average distortion between **X** and $\hat{\mathbf{X}}$ exceeds $D + \epsilon$ is small, then the expected average distortion between X and \hat{X} can exceed *D* only by a small amount.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in D .

5. $R_I(D)$ convex implies it is continuous in *D*. Letting $\epsilon \rightarrow 0$, we have

$$
R \geq \lim_{\epsilon \to 0} R_I(D + (d_{max} + 1)\epsilon)
$$

= $R_I(D + (d_{max} + 1) \lim_{\epsilon \to 0} \epsilon)$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

That is, if the probability that the average distortion between **X** and $\hat{\mathbf{X}}$ exceeds $D + \epsilon$ is small, then the expected average distortion between X and \hat{X} can exceed *D* only by a small amount.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

That is, if the probability that the average distortion between **X** and $\hat{\mathbf{X}}$ exceeds $D + \epsilon$ is small, then the expected average distortion between $\mathbf X$ and $\hat{\mathbf X}$ can exceed *D* only by a small amount.

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in D .

5. $R_I(D)$ convex implies it is continuous in *D*. Letting $\epsilon \rightarrow 0$, we have

$$
R \geq \lim_{\epsilon \to 0} R_I(D + (d_{max} + 1)\epsilon)
$$

= $R_I(D + (d_{max} + 1) \lim_{\epsilon \to 0} \epsilon)$
= $R_I(D)$.

$$
n(R + \epsilon) \geq \cdots
$$

\n
$$
= \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in *D*.

5. $R_I(D)$ convex implies it is continuous in *D*. Letting $\epsilon \rightarrow 0$, we have

$$
R \geq \lim_{\epsilon \to 0} R_I(D + (d_{max} + 1)\epsilon)
$$

= $R_I(D + (d_{max} + 1) \lim_{\epsilon \to 0} \epsilon)$
= $R_I(D).$

Finally, minimize *R* over all achievable pairs (*R, D*) for a fixed *D* to obtain $R(D) \ge R_I(D)$.

3. Let
$$
d_{max} = \max_{x, \hat{x}} d(x, \hat{x})
$$
. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$
\n
$$
= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} + E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\} \le \frac{d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1}{D + (d_{max} + 1)\epsilon}.
$$

That is, if the probability that the average distortion between **X** and $\hat{\mathbf{X}}$ exceeds $D + \epsilon$ is small, then the expected average distortion between X and \hat{X} can exceed *D* only by a small amount.