
8.4 The Converse



• Prove that for any achievable rate-distortion pair (R,D), R � RI(D).

• Fix D and minimize R over all achievable pairs (R,D) to conclude that

R(D) � RI(D).

How to Prove the Converse

Theorem 8.17 (The Rate-Distortion Theorem) R(D) = RI(D).
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1. Let (R, D) be any achievable rate-distortion

pair, i.e., for any ✏ > 0, there exists for suffi-
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3. Let dmax = maxx,x̂ d(x, x̂). Then
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+E[d(X, ˆX)|d(X, ˆX)  D + ✏]Pr{d(X, ˆX)  D + ✏}

 dmax · ✏ + (D + ✏) · 1

= D + (dmax + 1)✏.

That is, if the probability that the average distortion

between X and

ˆX exceeds D + ✏ is small, then the ex-

pected average distortion between X and

ˆX can exceed

D only by a small amount.
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