
8.3 The Rate-Distortion Theorem



Definition 8.16 For D � 0, the information rate-distortion function is defined

by

RI(D) = min

X̂:Ed(X,X̂)D
I(X;

ˆX).



• The minimization is taken over the set of all transition matrices p(x̂|x)
such that Ed(X,

ˆ

X)  D, namely the set

8
<

:p(x̂|x) :
X

x,x̂

p(x) p(x̂|x) d(x, x̂)  D

9
=

; .

• Since this set is compact (closed and bounded) in <|X ||X̂ |
and I(X;

ˆ

X) is

a continuous functional of p(x̂|x), the minimum value of I(X;

ˆ

X) can be

attained.

• Alternatively, the minimization can be taken over the set of all joint dis-

tributions p(x, x̂) with marginal distribution p(x), the given source distri-

bution, such that Ed(X,
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I(X;

ˆX).

• Since

E

˜

d(X,

ˆ

X) = Ed(X,

ˆ

X)��,

where � does not depend on p(x̂|x), we can always replace d by

˜

d and D

by D �� in the definition of RI(D) without changing the minimization

problem.

• Without loss of generality, we can assume d is normal.
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Theorem 8.17 (The Rate-Distortion Theorem) R(D) = R
I

(D).

Theorem 8.18 The following properties hold for the information rate-distortion

function R
I

(D):

1. R
I

(D) is non-increasing in D.

2. R
I

(D) is convex.

3. R
I

(D) = 0 for D � D
max

.

4. R
I

(0)  H(X).

Theorem 8.15 The following properties hold for the rate-distortion function

R(D):

1. R(D) is non-increasing in D.

2. R(D) is convex.

3. R(D) = 0 for D � D
max

.

4. R(0)  H(X).
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Theorem 8.18 The following properties hold for the

information rate-distortion function RI (D):

1. RI (D) is non-increasing in D.

2. RI (D) is convex.

3. RI (D) = 0 for D � Dmax.

4. RI (0)  H(X).

Proof

1. For a larger D, the minimization is taken over a

larger set.

2. Consider any D(1), D(2) � 0 and 0  �  1. Let

ˆX(i)
achieves RI (D(i)

) for i = 1, 2, i.e.,

RI (D
(i)

) = I(X;

ˆX
(i)

),

where

Ed(X, ˆX
(i)

)  D
(i)

.

Let

ˆX(�)

be jointly distributed with X defined by

p�(x̂|x) = �p
1

(x̂|x) +

¯�p
2

(x̂|x).

Then

Ed(X, ˆX
(�)

)

= �Ed(X, ˆX
(1)

) +

¯�Ed(X, ˆX
(2)

)

 �D
(1)

+

¯�D
(2)

= D
(�)

.

Finally consider

�RI (D
(1)

) +

¯�RI (D
(2)

)

= �I(X;

ˆX
(1)

) +

¯�I(X;

ˆX
(2)

)

� I(X;

ˆX
(�)

)

� RI (D
(�)

).

3. Let

ˆX = x̂⇤
w.p. 1 to show that (0, Dmax) is

achievable. Then for D � Dmax, RI (D)  I(X;

ˆX) =

0, which implies RI (D) = 0.

4. Let

ˆX = x̂⇤
(X), so that Ed(X, ˆX) = 0 (since d is

normal). Then

RI (0)  I(X;

ˆX)  H(X).
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Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X = 0} = 1 � � and Pr{X = 1} = �.

Let X̂ = {0, 1} and d be the Hamming distortion mea-
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I(X; X̂) = H(X) �H(X|X̂)

= hb(�) �H(Y |X̂)

� hb(�) �H(Y ) (1)

= hb(�) � hb(Pr{X 6= X̂})

� hb(�) � hb(D), (2)

because Pr{X 6= X̂} = Ed(X, X̂)  D and hb(a) is
increasing for 0  a  1

2 .

5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2
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Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X = 0} = 1 � � and Pr{X = 1} = �.

Let X̂ = {0, 1} and d be the Hamming distortion mea-
sure.

Determination of RI (D)

1. First consider 0  �  1
2 . We will show that

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

2. Since �  1/2, x̂⇤ = 0 and Dmax = Ed(X, 0) =
Pr{X = 1} = �.

3. Consider any X̂ and let Y = d(X, X̂).

4. Conditioning on X̂, X and Y determine each other,
and so, H(X|X̂) = H(Y |X̂).

Then for any X̂ such that Ed(X, X̂)  D, where D <
� = Dmax,

I(X; X̂) = H(X) �H(X|X̂)

= hb(�) �H(Y |X̂)

� hb(�) �H(Y ) (1)

= hb(�) � hb(Pr{X 6= X̂})

� hb(�) � hb(D), (2)

because Pr{X 6= X̂} = Ed(X, X̂)  D and hb(a) is
increasing for 0  a  1

2 .

5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,

RI (D) =
⇢

hb(�) � hb(D) if 0  D < �
0 if D � �.

8. For 1/2  �  1, by exchanging the roles of the
symbols 0 and 1 and applying the same argument, we
obtain RI (D) as above except that � is replaced by
1 � �, i.e.,

RI (D) =
⇢

hb(1 � �) � hb(D) if 0  D < 1 � �
0 if D � 1 � �.

9. Combining the two cases, we have

RI (D) =
⇢

hb(�) � hb(D) if 0  D < min(�, 1 � �)
0 if D � min(�, 1 � �)

for 0  �  1.
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5. Therefore,

RI (D) = min
X̂:Ed(X,X̂)D

I(X; X̂) � hb(�) � hb(D).

Now need to construct X̂ which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that

• (1) tight , Y independent of X̂

• (2) tight , Pr{X 6= X̂} = D

The required X̂ can be specified by the following re-
verse BSC:

Note that

 
1 � � �D

1 � 2D

!
D +

 
� �D

1 � 2D

!
(1 �D) = �

0 
� �D

1 � 2D
 1, because D < �  1/2

7. Therefore, we conclude that for 0  �  1/2,
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A Remark
The rate-distortion theorem does not include the source coding theorem as a
special case:

• In Example 8.20,

RI(D) =
⇢

hb(�)� hb(D) if 0  D < min(�, 1� �)
0 if D � min(�, 1� �)

for 0  �  1, where � = Pr{X = 1}.

• Therefore, RI(0) = hb(�) = H(X).

• By the rate-distortion theorem, if R > H(X), the average Hamming dis-
tortion, i.e., the error probability per symbol, can be made arbitrarily
small.

• However, by the source coding theorem, if R > H(X), the message error
probability can be made arbitrarily small, which is much stronger.
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