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verse BSC:

1-v-D 1-D ~

T 0 1=
D

X X

D

Yy-D

1-9n 1 1 ol

1-2D 1-D

Note that

1 —~—D ~ — D
(252) e ()=
1 —-—2D 1 —-2D



Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~

1-2D 0 0 =7
D

X X

D

v-D

1-9D 1 1 Y

1-2D 1-D

Note that

1 —~—D ~ — D
(222) e ()=
1 —2D 1 —-2D




Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~

1-2D 0 0 =7
D

X X

D

v-D

1-9D 1 1 Y

1-2D 1-D

Note that

1 —~—D ~ — D
(EEEL) POWEETA PR
1 —2D 1 —-2D




Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1=7=D I-D )

12D 0 0 1-7
D

X X

D

Y=D

1-9D 1 1 Y

1-2D 1-D

Note that

1 —~—D ~ — D
(252) e ()=
1 —-—2D 1 —2D



Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1=7=D I-D )
12D 0 0 1-7
D
X X
D
Y= D
Note that
1 —~—D ~ — D
D+ |—|@Q=D) =~
1 —2D 1 —2D



Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1=7=D I-D )

1-2D 0 0 =7
D

X X

D

Y=D

1-9D 1 1 Y

1-2D 1-D

Note that

1 —~—D ~ — D
(252) e ()
1 —-—2D 1 —-2D -



Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~
12D 0 0 -7
D
X X
D
Y-D
1-2p | P b
Note that
1 —~—D ~ — D
D+|—— |1 —-D)=x
1 —2D 1 —2D
~v — D
0< — <1, because D < v < 1/2
1 —2D



Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~
T 0 1=
D
X X
D
Y-D
1-2p ! P b
Note that
1 —~—D ~v — D
D + _ (1—D):'y
1 —2D 1 —2D
~v — D
0< — <1, because D < v < 1/2
1 —2D



Example 8.20 (Binary Source) Let X be a binary
random variable with

Pr{X =0}=1—-—~v and Pr{X =1} = ~.

Let X = {0,1} and d be the Hamming distortion mea-
sure.

Determination of Ry (D)

1. First consider 0 < ~v < % We will show that
_ hy(v) — hp(D)  if 0 < D <~
RI(D)_{ 0 if D > ~.
2. Since v < 1/2, 2* = 0 and Dyqr = Ed(X,0) =

Pr{X =1} = ~.
3. Consider any X and let ¥ = d(X, X).

4. Conditioning on X, X and Y determine each other,
and so, H(X|X) = H(Y |X).

Then for any X such that Ed(X, X) < D, where D <
¥ = Dmax

I(X;X) = H(X)— H(X|X)
= hy(v) — H(Y|X)
> hyp(y) — H(Y) (1)
= hp(y) — hp(Pr{X # X})
> hy(v) — hyp(D), (2)

because Pr{X # X} = Ed(X,X) < D and hy(a) is
1

increasing for 0 < a < 5 -

5. Therefore,

Rr(D) = min

X R I(X;X) > hyp(y) — hyp (D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~
12D 0 0 -7
D
X X
D
Y-D
1-2p | P b
Note that
1 —~—D ~ — D
D+|—— |1 —-D)=x
1 —2D 1 —2D
~v — D
0< — <1, because D < v < 1/2
1 —2D



5. Therefore,

R;(D) = _ min _ I(X;X) > hyp(y) — hp(D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~
12D 0 0 -7
D
X X
D
Y-D
_ 1 1 v
1-2D 1-D
Note that
1 —~—D ~v — D
D+ |(——— ] (1 —-D)=x
1 —2D 1 —2D
v — D
0< — <1, because D < v < 1/2

1 —-2D



5. Therefore,

R;(D) = _ min _ I(X;X) > hyp(y) — hp(D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~
12D 0 0 -7
D
X X
D
Y-D
1-2D 1 1 Y
1-2D 1-D
Note that
1—~—D ~v — D
D+|(—— |1 —-D)=x
1 —2D 1 —2D
~v — D
0< — <1, because D < v < 1/2

1 —-2D

7. Therefore, we conclude that for 0 < ~v < 1/2,

R (D) :{

hy(v) — hy (D)
0

IVIA

D < v
Y.



5. Therefore,

R;(D) = _ min _ I(X;X) > hyp(y) — hp(D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~
12D 0 0 -7
D
X X
D
Y-D
1-2D 1 1 Y
1-2D 1-D
Note that
1—~—D ~v — D
D+|(—— |1 —-D)=x
1 —2D 1 —2D
~v — D
0< — <1, because D < v < 1/2

1 —-2D

7. Therefore, we conclude that for 0 < ~v < 1/2,

R (D) :{

hy(v) — hy (D)
0

IVIA

D < v
Y.



5. Therefore,

Ry(D) = min

) _ I(X5X) 2 hy(v) — hy(D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2),
so that the above bound is achieved.

6. Observe that
e (1) tight < Y independent of X
e (2) tight & Pr{X # X} =D

The required X can be specified by the following re-
verse BSC:

1-v-D 1-D ~
12D 0 0 -7
D
X X
D
Y-D
1-2D 1 1 Y
1-2D 1-D
Note that
1—~—D ~v — D
D+|(—— |1 —-D)=x
1 —2D 1 —2D
~v — D
0< — <1, because D < v < 1/2

1 —-2D

7. Therefore, we conclude that for 0 < ~v < 1/2,

D < v
0 .

0 <
D>

8 For 1/2 < ~ < 1, by exchanging the roles of the
symbols O and 1 and applying the same argument, we
obtain Rj(D) as above except that ~ is replaced by
1 — ~, i.e.,

hp(1 —~) — hp(D) if 0< D <1-—
RI(D):{ob( VT he®) if D>1— ~. !
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A Remark

The rate-distortion theorem does not include the source coding theorem as a
special case:

e In Example 8.20,

R;(D) = ho(7) — he(D) if 0 <D < min(y,1—7)
' L0 if D > min(y,1— )

for 0 <~ <1, where v = Pr{X = 1}.
e Therefore, R;(0) = hy(v) = H(X).

e By the rate-distortion theorem, if R > H(X), the average Hamming dis-
tortion, i.e., the error probability per symbol, can be made arbitrarily
small.

e However, by the source coding theorem, if R > H(X), the message error
probability can be made arbitrarily small, which is much stronger.



