

8.3 The Rate-Distortion Theorem

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; X).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

• The minimization is taken over the set of all transition matrices $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \leq D$, namely the set

$$\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x) \, p(\hat{x}|x) \, d(x,\hat{x}) \le D \right\}.$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

• The minimization is taken over the set of all transition matrices $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \leq D$, namely the set

$$\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x) p(\hat{x}|x) d(x,\hat{x}) \le D \right\}.$$

• Since this set is compact (closed and bounded) in $\Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$ and $I(X;\hat{X})$ is a continuous functional of $p(\hat{x}|x)$, the minimum value of $I(X;\hat{X})$ can be attained.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

• The minimization is taken over the set of all transition matrices $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \leq D$, namely the set

$$\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x) p(\hat{x}|x) d(x,\hat{x}) \le D \right\}.$$

- Since this set is compact (closed and bounded) in $\Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$ and $I(X;\hat{X})$ is a continuous functional of $p(\hat{x}|x)$, the minimum value of $I(X;\hat{X})$ can be attained.
- Equivalently, the minimization can be taken over the set of all joint distributions $p(x, \hat{x})$ with marginal distribution p(x), the given source distribution, such that $Ed(X, \hat{X}) \leq D$.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

• The minimization is taken over the set of all transition matrices $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \leq D$, namely the set

$$\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x) p(\hat{x}|x) d(x,\hat{x}) \le D \right\}.$$

• Since

$$E\tilde{d}(X,\hat{X}) = Ed(X,\hat{X}) - \Delta,$$

where Δ does not depend on $p(\hat{x}|x)$, we can always replace d by \tilde{d} and D by $D - \Delta$ in the definition of $R_I(D)$ without changing the minimization problem.

$$R_I(D) = \min_{\hat{X}: E\tilde{d}(X, \hat{X}) \leq D - \Delta} I(X; \hat{X}).$$

• The minimization is taken over the set of all transition matrices $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \leq D$, namely the set

$$\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x) p(\hat{x}|x) d(x,\hat{x}) \le D \right\}.$$

• Since

$$E\tilde{d}(X,\hat{X}) = Ed(X,\hat{X}) - \Delta,$$

where Δ does not depend on $p(\hat{x}|x)$, we can always replace d by \tilde{d} and D by $D - \Delta$ in the definition of $R_I(D)$ without changing the minimization problem.

$$R_I(D) = \min_{\hat{X}: E\tilde{d}(X, \hat{X}) \leq D - \Delta} I(X; \hat{X}).$$

• The minimization is taken over the set of all transition matrices $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \leq D$, namely the set

$$\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x) p(\hat{x}|x) d(x,\hat{x}) \le D \right\}.$$

• Since

$$E\tilde{d}(X,\hat{X}) = Ed(X,\hat{X}) - \Delta,$$

where Δ does not depend on $p(\hat{x}|x)$, we can always replace d by \tilde{d} and D by $D - \Delta$ in the definition of $R_I(D)$ without changing the minimization problem.

• Without loss of generality, we can assume d is normal.

Theorem 8.18 The following properties hold for the information rate-distortion function $R_I(D)$:

1. $R_I(D)$ is non-increasing in D.

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \le H(X)$.

Theorem 8.18 The following properties hold for the information rate-distortion function $R_I(D)$:

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \le H(X)$.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

$$R_{I}(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq \underline{D}} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

$$R_{I}(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq \underline{D}} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \le H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

 $Ed(X, \hat{X}^{(\lambda)})$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

= $\lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

= $\lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}.$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}.$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

= $\lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$
- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x)$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

= $\lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

= $\lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$
\ge I(X; $\hat{X}^{(\lambda)}$)

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

= $\lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$
\ge I(X; $\hat{X}^{(\lambda)}$)

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_I(D^{(\lambda)}).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

Finally consider

$$\lambda R_{I}(D^{(1)}) + \bar{\lambda} R_{I}(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_{I}(D^{(\lambda)}).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_I(D^{(\lambda)}).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}).$$

1. $R_I(D)$ is non-increasing in D.

2. $R_I(D)$ is convex.

- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_I(D^{(\lambda)}).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(\boldsymbol{D}^{\left(i\right)}) = I(\boldsymbol{X}; \hat{\boldsymbol{X}}^{\left(i\right)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x)$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_I(D^{(\lambda)}).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_{I}(D^{(1)}) + \bar{\lambda} R_{I}(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_{I}(D^{(\lambda)}).$$

3. Let $\hat{X} = \hat{x}^*$ w.p. 1 to show that $(0, D_{max})$ is achievable. Then for $D \ge D_{max}$, $R_I(D) \le I(X; \hat{X}) = 0$, which implies $R_I(D) = 0$.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

Proof

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_{I}(D^{(1)}) + \bar{\lambda} R_{I}(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_{I}(D^{(\lambda)}).$$

3. Let $\hat{X} = \hat{x}^*$ w.p. 1 to show that $(0, D_{max})$ is achievable. Then for $D \ge D_{max}$, $R_I(D) \le I(X; \hat{X}) = 0$, which implies $R_I(D) = 0$.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_{I}(D^{(1)}) + \bar{\lambda} R_{I}(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_{I}(D^{(\lambda)}).$$

3. Let $\hat{X} = \hat{x}^*$ w.p. 1 to show that $(0, D_{max})$ is achievable. Then for $D \ge D_{max}$, $R_I(D) \le I(X; \hat{X}) = 0$, which implies $R_I(D) = 0$.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- $4. \quad R_I(0) \le H(X).$

Proof

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_{I}(D^{(1)}) + \bar{\lambda} R_{I}(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_{I}(D^{(\lambda)}).$$

3. Let $\hat{X} = \hat{x}^*$ w.p. 1 to show that $(0, D_{max})$ is achievable. Then for $D \ge D_{max}$, $R_I(D) \le I(X; \hat{X}) = 0$, which implies $R_I(D) = 0$.

4. Let $\hat{X} = \hat{x}^*(X)$, so that $Ed(X, \hat{X}) = 0$ (since d is normal). Then

$$R_I(0) \le I(X; \hat{X}) \le H(X).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

\mathbf{Proof}

1. For a larger D, the minimization is taken over a larger set.

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda \le 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e.,

$$R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$$

where

$$Ed(X, \hat{X}^{(i)}) \leq D^{(i)}$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \bar{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_{I}(D^{(1)}) + \bar{\lambda} R_{I}(D^{(2)})$$

$$= \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_{I}(D^{(\lambda)}).$$

3. Let $\hat{X} = \hat{x}^*$ w.p. 1 to show that $(0, D_{max})$ is achievable. Then for $D \ge D_{max}$, $R_I(D) \le I(X; \hat{X}) = 0$, which implies $R_I(D) = 0$.

4. Let $\hat{X} = \hat{x}^*(X)$, so that $Ed(X, \hat{X}) = 0$ (since d is normal). Then

$$R_{I}(0) \leq I(X; \hat{X}) \leq H(X).$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

 \mathbf{Proof}

 \mathbf{Proof}

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_{I}(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_{I}(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

=
$$\sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

=
$$\sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

=
$$\sum_{x} \sum_{\hat{x}} \underline{p(x, \hat{x})} d(x, \hat{x})$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

=
$$\sum_{x} \sum_{\hat{x}} \frac{p(x, \hat{x})}{p(x, \hat{x})} d(x, \hat{x})$$

=
$$\sum_{x} \sum_{\hat{x}} \frac{p(x)p(\hat{x})}{p(x)} d(x, \hat{x})$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

= $\sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$
= $\sum_{x} \sum_{\hat{x}} p(x) \underline{p(\hat{x})} d(x, \hat{x})$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) \underline{p(\hat{x})} d(x, \hat{x})$$

$$= \sum_{\hat{x}} \frac{p(\hat{x})}{\hat{x}} \sum_{x} p(x) d(x, \hat{x})$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

= $\sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$
= $\sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$
= $\sum_{\hat{x}} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) \underline{Ed(X, \hat{x}^{*})}$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

Proof

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

$$= D_{max}.$$

=

Proof

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

$$= D_{max}.$$

=
\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 ν_{max}

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \leq D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 ν_{max}

$$0 \le D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

$$0 \le D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D)>0$ for $0\leq D< D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_{I}(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 D_{max} .

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$
$$= R_{I}(D),$$

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

b. Then

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$
$$= R_{I}(D),$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \le D \le D_{max}$.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

b. Then

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$
$$= R_{I}(D),$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \le D \le D_{max}$.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}.$

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

b. Then

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$
$$= R_{I}(D),$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \le D \le D_{max}$.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 D_{max} .

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

b. Then

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$
$$= R_{I}(D),$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \le D \le D_{max}$.

c. Therefore, $Ed(X, \hat{X}^*) = D$.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 D_{max} .

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

b. Then

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$
$$= R_{I}(D),$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \le D \le D_{max}$.

c. Therefore, $Ed(X, \hat{X}^*) = D$.

\mathbf{Proof}

1. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.

a. Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

b. Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$. This is done by considering

$$D' \geq Ed(X, \hat{X})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x) p(\hat{x}) d(x, \hat{x})$$

$$= \sum_{x} p(\hat{x}) \sum_{x} p(x) d(x, \hat{x})$$

$$= \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x})$$

$$\geq \sum_{\hat{x}} p(\hat{x}) Ed(X, \hat{x}^{*})$$

$$= \sum_{\hat{x}} p(\hat{x}) D_{max}$$

 $= D_{max}$.

c. This is a contradiction because

$$0 \leq D' < D_{max}.$$

2. $R_I(D)$ must be strictly decreasing for $0 \leq D \leq D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.

3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.

a. Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.

b. Then

$$R_{I}(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X})$$
$$\leq I(X; \hat{X}^{*})$$
$$= R_{I}(D),$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \le D \le D_{max}$.

c. Therefore, $Ed(X, \hat{X}^*) = D$.

Remark In all problems of interest,

 $R(0) = R_I(0) > 0.$

Remark In all problems of interest,

 $R(0) = R_I(0) > 0.$

Otherwise, R(D) = 0 for all $D \ge 0$ because R(D) is nonnegative and non-increasing. Therefore,

Remark In all problems of interest,

$$R(0) = R_I(0) > 0.$$

Otherwise, R(D) = 0 for all $D \ge 0$ because R(D) is nonnegative and non-increasing. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) = D} I(X; \hat{X}).$$

 $\Pr\{X = 0\} = 1 - \gamma$ and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

 $\Pr\{X = 0\} = 1 - \gamma$ and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{ if } 0 \leq D < \gamma \\ 0 & \text{ if } D \geq \gamma. \end{cases}$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{ if } 0 \leq D < \gamma \\ 0 & \text{ if } D \geq \gamma. \end{cases}$$

2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.
$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{ if } 0 \leq D < \gamma \\ 0 & \text{ if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$I(X; \hat{X}) = \underline{H(X)} - H(X | \hat{X})$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{ if } 0 \leq D < \gamma \\ 0 & \text{ if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$\begin{split} I(X; \hat{X}) &= \underbrace{H(X) - H(X | \hat{X})}_{b_b(\gamma)} - H(Y | \hat{X}) \end{split}$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{ if } 0 \leq D < \gamma \\ 0 & \text{ if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$I(X; \hat{X}) = H(X) - \frac{H(X|\hat{X})}{h_b(\gamma) - H(Y|\hat{X})}$$
$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{ if } 0 \leq D < \gamma \\ 0 & \text{ if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$\begin{split} I(X; \hat{X}) &= H(X) - H(X | \hat{X}) \\ &= h_b(\gamma) - H(Y | \hat{X}) \end{split}$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{ if } 0 \leq D < \gamma \\ 0 & \text{ if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$
$$= h_b(\gamma) - \underline{H(Y|\hat{X})}$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

= $h_b(\gamma) - \underline{H}(Y|\hat{X})$
 $\geq h_b(\gamma) - \underline{H}(Y)$ (1)

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

= $h_b(\gamma) - H(Y|\hat{X})$
 $\geq h_b(\gamma) - \underline{H(Y)}$ (1)
= $h_b(\gamma) - \underline{h_b}(\Pr\{X \neq \hat{X}\})$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - \underline{h_b(\Pr\{X \neq \hat{X}\})}$$

$$\geq h_b(\gamma) - \underline{h_b(D)}, \qquad (2)$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

$$\Pr\{X = 0\} = 1 - \gamma \text{ and } \Pr\{X = 1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

5. Therefore,

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - \underline{H(Y|\hat{X})}$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - \underline{H(Y|\hat{X})}$$

$$\geq h_b(\gamma) - \underline{H(Y)} \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - \underline{H(Y|\hat{X})}$$

$$\geq h_b(\gamma) - \underline{H(Y)} \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - \underline{H(Y|\hat{X})}$$

$$\geq h_b(\gamma) - \underline{H(Y)} \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - \underline{H(Y|\hat{X})}$$

$$\geq h_b(\gamma) - \underline{H(Y)} \qquad (1)$$

$$= h_b(\gamma) - h_b(\underline{\Pr\{X \neq \hat{X}\}})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - \underline{H(Y|\hat{X})}$$

$$\geq h_b(\gamma) - \underline{H(Y)} \qquad (1)$$

$$= h_b(\gamma) - h_b(\underline{\Pr\{X \neq \hat{X}\}})$$

$$\geq h_b(\gamma) - h_b(\underline{D}), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

• (2) tight
$$\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)\underline{D} + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(\underline{1-D}) = \gamma$$
$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \underline{\gamma}$$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

$$\Pr\{X = 0\} = 1 - \gamma$$
 and $\Pr\{X = 1\} = \gamma$.

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure.

Determination of $R_I(D)$

1. First consider $0 \leq \gamma \leq \frac{1}{2}$. We will show that

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

- 2. Since $\gamma \leq 1/2$, $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma$.
- 3. Consider any \hat{X} and let $Y = d(X, \hat{X})$.

4. Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.

Then for any \hat{X} such that $Ed(X, \hat{X}) \leq D$, where $D < \gamma = D_{max}$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y) \qquad (1)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\geq h_b(\gamma) - h_b(D), \qquad (2)$$

because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

5. Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_{I}(D) = \begin{cases} h_{b}(1-\gamma) - h_{b}(D) & \text{if } 0 \leq D < 1-\gamma \\ 0 & \text{if } D \geq 1-\gamma. \end{cases}$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_{I}(D) = \begin{cases} h_{b}(1-\gamma) - h_{b}(D) & \text{if } 0 \leq D < 1-\gamma \\ 0 & \text{if } D \geq 1-\gamma. \end{cases}$$

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_I(D) = \begin{cases} h_b(1-\gamma) - h_b(D) & \text{if } 0 \le D < 1-\gamma \\ 0 & \text{if } D \ge 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_I(D) = \begin{cases} h_b(1-\gamma) - h_b(D) & \text{if } 0 \le D < 1-\gamma \\ 0 & \text{if } D \ge 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \le \frac{\gamma - D}{1 - 2D} \le 1$$
, because $D < \gamma \le 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_I(D) = \begin{cases} h_b(1-\gamma) - h_b(D) & \text{if } 0 \le D < 1-\gamma \\ 0 & \text{if } D \ge 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D)$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_I(D) = \begin{cases} h_b(1-\gamma) - h_b(D) & \text{if } 0 \leq D < 1-\gamma \\ 0 & \text{if } D \geq 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \le \frac{\gamma - D}{1 - 2D} \le 1$$
, because $D < \gamma \le 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_{I}(D) = \begin{cases} h_{b}(1-\gamma) - h_{b}(D) & \text{if } 0 \leq D < 1-\gamma \\ 0 & \text{if } D \geq 1-\gamma. \end{cases}$$

9. Combining the two cases, we have

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for $0 \leq \gamma \leq 1$.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_{I}(D) = \begin{cases} h_{b}(1-\gamma) - h_{b}(D) & \text{if } 0 \leq D < 1-\gamma \\ 0 & \text{if } D \geq 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \le \frac{\gamma - D}{1 - 2D} \le 1$$
, because $D < \gamma \le 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_I(D) = \begin{cases} h_b(1-\gamma) - h_b(D) & \text{if } 0 \le D < 1-\gamma \\ 0 & \text{if } D \ge 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \le \frac{\gamma - D}{1 - 2D} \le 1$$
, because $D < \gamma \le 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_I(D) = \begin{cases} h_b(1-\gamma) - h_b(D) & \text{if } 0 \leq D < 1-\gamma \\ 0 & \text{if } D \geq 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \leq \frac{\gamma - D}{1 - 2D} \leq 1$$
, because $D < \gamma \leq 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_{I}(D) = \begin{cases} h_{b}(1-\gamma) - h_{b}(D) & \text{if } 0 \leq D < 1-\gamma \\ 0 & \text{if } D \geq 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(1-\gamma) \\ h_{b}(\gamma) - h_{b}(D) \\ 0 \end{cases} \quad \text{if } 0 \leq D < \min(\gamma, 1-\gamma) \\ \text{if } D \geq \min(\gamma, 1-\gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

6. Observe that

- (1) tight \Leftrightarrow Y independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$

The required \hat{X} can be specified by the following reverse BSC:

Note that

$$\left(\frac{1-\gamma-D}{1-2D}\right)D + \left(\frac{\gamma-D}{1-2D}\right)(1-D) = \gamma$$

$$0 \le \frac{\gamma - D}{1 - 2D} \le 1$$
, because $D < \gamma \le 1/2$

7. Therefore, we conclude that for $0 \leq \gamma \leq 1/2$,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \gamma \\ 0 & \text{if } D \geq \gamma. \end{cases}$$

8. For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$, i.e.,

$$R_I(D) = \begin{cases} h_b(1-\gamma) - h_b(D) & \text{if } 0 \le D < 1-\gamma \\ 0 & \text{if } D \ge 1-\gamma. \end{cases}$$

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for
$$0 \leq \gamma \leq 1$$
.

For the uniform binary source, i.e., $\gamma = 1/2$, with the Hamming distortion measure,

$$R_I(D) = \begin{cases} 1 - h_b(D) & \text{if } 0 \le D < 1/2 \\ 0 & \text{if } D \ge 1/2. \end{cases}$$

For the uniform binary source, i.e., $\gamma = 1/2$, with the Hamming distortion measure,

$$R_I(D) = \begin{cases} 1 - h_b(D) & \text{if } 0 \le D < 1/2 \\ 0 & \text{if } D \ge 1/2. \end{cases}$$

The rate-distortion theorem does not include the source coding theorem as a special case:

The rate-distortion theorem does not include the source coding theorem as a special case:

• In Example 8.20,

$$R_{I}(D) = \begin{cases} h_{b}(\gamma) - h_{b}(D) & \text{if } 0 \leq D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \geq \min(\gamma, 1 - \gamma) \end{cases}$$

for $0 \le \gamma \le 1$, where $\gamma = \Pr\{X = 1\}$.

The rate-distortion theorem does not include the source coding theorem as a special case:

• In Example 8.20,

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma) \end{cases}$$

for $0 \le \gamma \le 1$, where $\gamma = \Pr\{X = 1\}$.

• Therefore, $R_I(0) = h_b(\gamma) = H(X)$.

The rate-distortion theorem does not include the source coding theorem as a special case:

• In Example 8.20,

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma) \end{cases}$$

for $0 \le \gamma \le 1$, where $\gamma = \Pr\{X = 1\}$.

• Therefore, $R_I(0) = h_b(\gamma) = H(X)$.

The rate-distortion theorem does not include the source coding theorem as a special case:

• In Example 8.20,

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma) \end{cases}$$

for $0 \le \gamma \le 1$, where $\gamma = \Pr\{X = 1\}$.

- Therefore, $R_I(0) = h_b(\gamma) = H(X)$.
- By the rate-distortion theorem, if R > H(X), the average Hamming distortion, i.e., the error probability per symbol, can be made arbitrarily small.

The rate-distortion theorem does not include the source coding theorem as a special case:

• In Example 8.20,

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma) \end{cases}$$

for $0 \le \gamma \le 1$, where $\gamma = \Pr\{X = 1\}$.

- Therefore, $R_I(0) = h_b(\gamma) = H(X)$.
- By the rate-distortion theorem, if R > H(X), the average Hamming distortion, i.e., the error probability per symbol, can be made arbitrarily small.
- However, by the source coding theorem, if R > H(X), the message error probability can be made arbitrarily small, which is much stronger.