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Definition 8.9 The rate of an (n, M) rate-distortion code is n�1
log M in bits

per symbol.

Definition 8.10 A rate-distortion pair (R,D) is (asymptotically) achievable if

for any ✏ > 0, there exists for su�ciently large n an (n, M) rate-distortion code

such that

1

n
log M  R + ✏

and

Pr{d(X, ˆ

X) > D + ✏}  ✏,

where

ˆ

X = g(f(X)).

Remark If (R,D) is achievable, then (R0, D) and (R,D0
) are achievable for

all R0 � R and D0 � D. This in turn implies that (R0, D0
) are achievable for all

R0 � R and D0 � D.
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Definition 8.11 The rate-distortion region is the subset of <2
containing all

achievable pairs (R,D).

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

• The closeness follows from the definition of the achievability of an (R,D)

pair.

• The convexity is proved by time-sharing. Specifically, for any 0  �  1

and

¯� = 1� �, if (R(1), D(1)
) and (R(2), D(2)

) are achievable, then so is

(R(�), D(�)
) = (�R(1)

+

¯�R(2), �D(1)
+

¯�D(2)
).

This can be seen by time-sharing between two codes, one achieving (R(1), D(1)
)

for � fraction of the time, and the other one achieving (R(2), D(2)
) for

¯�
fraction of the time.
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Definition 8.13 The rate-distortion function R(D) is the minimum of all rates

R for a given distortion D such that (R,D) is achievable.

Definition 8.14 The distortion-rate function D(R) is the minimum of all

distortions D for a given rate R such that (R,D) is achievable.

Remarks

1. Most of the time we will be using R(D) instead of D(R).

2. If (R,D) is achievable, then R � R(D).
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Theorem 8.15 The following properties hold for the rate-distortion function

R(D):

1. R(D) is non-increasing in D.

2. R(D) is convex.

3. R(D) = 0 for D � D
max

.

4. R(0)  H(X).

Proof

1. Let D0 � D. (R(D), D) achievable ) (R(D), D0
) achievable. Then

R(D) � R(D0
) by definition of R(D0

).

2. Follows from the convexity of the rate-distortion region.

3. (0, D
max

) is achievable ) R(D
max

) = 0. Then R(D) = 0 for D � D
max

because R(·) is non-increasing.

4. Since d is assumed to be normal, (H(X), 0) is achievable, and hence R(0) 
H(X).
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