

8.2 The Rate-Distortion Function

All the discussions are with respect to an i.i.d. information source $\{X_k, k \geq 1\}$ with generic random variable *X* and a distortion measure *d*.

All the discussions are with respect to an i.i.d. information source $\{X_k, k \geq 1\}$ with generic random variable *X* and a distortion measure *d*.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$
f: \mathcal{X}^n \to \{1,2,\cdots,M\}
$$

and a decoding function

$$
g:\{1,2,\cdots,M\}\to \hat{\mathcal X}^n.
$$

All the discussions are with respect to an i.i.d. information source $\{X_k, k \geq 1\}$ with generic random variable *X* and a distortion measure *d*.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$
f: \mathcal{X}^n \to \{1,2,\cdots,M\}
$$

and a decoding function

$$
g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.
$$

• Index set $\mathcal{I} = \{1, 2, \cdots, M\}$

All the discussions are with respect to an i.i.d. information source $\{X_k, k \geq 1\}$ with generic random variable *X* and a distortion measure *d*.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$
f: \mathcal{X}^n \to \{1,2,\cdots,M\}
$$

and a decoding function

$$
g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.
$$

- Index set $\mathcal{I} = \{1, 2, \cdots, M\}$
- Codewords the reproduction sequences $g(1), g(2), \cdots, g(M)$ in \mathcal{X}^n

All the discussions are with respect to an i.i.d. information source $\{X_k, k \geq 1\}$ with generic random variable *X* and a distortion measure *d*.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$
f: \mathcal{X}^n \to \{1,2,\cdots,M\}
$$

and a decoding function

$$
g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.
$$

- Index set $\mathcal{I} = \{1, 2, \cdots, M\}$
- Codewords the reproduction sequences $g(1), g(2), \cdots, g(M)$ in \mathcal{X}^n
- Codebook the set of all codewords

A Rate-Distortion Code

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Definition 8.10 A rate-distortion pair (*R, D*) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Remark If (R, D) is achievable, then (R', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' \geq R$ and $D' \geq D$.

Definition 8.10 A rate-distortion pair (*R, D*) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Remark If (R, D) is achievable, then (\underline{R}', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' > R$ and $D' > D$.

Definition 8.10 A rate-distortion pair (*R, D*) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Remark If (R, D) is achievable, then (R', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' > R$ and $D' > D$.

Definition 8.10 A rate-distortion pair (*R, D*) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Remark If (R, D) is achievable, then (R', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' > R$ and $D' > D$.

Definition 8.10 A rate-distortion pair (*R, D*) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Remark If (R, D) is achievable, then (R', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' > R$ and $D' > D$.

Definition 8.10 A rate-distortion pair (*R, D*) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Remark If (R, D) is achievable, then (R', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' \geq R$ and $D' \geq D$.

Theorem 8.12 The rate-distortion region is closed and convex.

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

• The closeness follows from the definition of the achievability of an (*R, D*) pair.

Theorem 8.12 The rate-distortion region is closed and convex.

- *•* The closeness follows from the definition of the achievability of an (*R, D*) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \leq \lambda \leq 1$ and $\bar{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$
(R^{(\lambda)}, D^{(\lambda)}) = (\lambda R^{(1)} + \bar{\lambda} R^{(2)}, \lambda D^{(1)} + \bar{\lambda} D^{(2)}).
$$

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- *•* The closeness follows from the definition of the achievability of an (*R, D*) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \leq \lambda \leq 1$ and $\bar{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$
(R^{(\lambda)}, D^{(\lambda)}) = (\lambda R^{(1)} + \bar{\lambda} R^{(2)}, \lambda D^{(1)} + \bar{\lambda} D^{(2)}).
$$

This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for λ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\overline{\lambda}$ fraction of the time.

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- *•* The closeness follows from the definition of the achievability of an (*R, D*) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \leq \lambda \leq 1$ and $\bar{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$
(R^{(\lambda)}, D^{(\lambda)}) = (\underline{\lambda}R^{(1)} + \bar{\lambda}R^{(2)}, \underline{\lambda}D^{(1)} + \bar{\lambda}D^{(2)}).
$$

This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for $\underline{\lambda}$ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\overline{\lambda}$ fraction of the time.

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- *•* The closeness follows from the definition of the achievability of an (*R, D*) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \leq \lambda \leq 1$ and $\bar{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$
(R^{(\lambda)}, D^{(\lambda)}) = (\lambda R^{(1)} + \bar{\lambda}R^{(2)}, \lambda D^{(1)} + \bar{\lambda}D^{(2)}).
$$

This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for λ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\underline{\lambda}$ fraction of the time.

Definition 8.14 The distortion-rate function *D*(*R*) is the minimum of all distortions *D* for a given rate *R* such that (R, D) is achievable.

Definition 8.14 The distortion-rate function *D*(*R*) is the minimum of all distortions *D* for a given rate *R* such that (R, D) is achievable.

Definition 8.14 The distortion-rate function *D*(*R*) is the minimum of all distortions *D* for a given rate *R* such that (R, D) is achievable.

Remarks

Definition 8.14 The distortion-rate function *D*(*R*) is the minimum of all distortions *D* for a given rate *R* such that (R, D) is achievable.

Remarks

1. Most of the time we will be using *R*(*D*) instead of *D*(*R*).

Definition 8.14 The distortion-rate function *D*(*R*) is the minimum of all distortions *D* for a given rate *R* such that (R, D) is achievable.

Remarks

- 1. Most of the time we will be using *R*(*D*) instead of *D*(*R*).
- 2. If (R, D) is achievable, then $R \geq R(D)$.

1. *R*(*D*) is non-increasing in *D*.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \geq D_{max}$.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \geq D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \geq D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. $R(D)$ is non-increasing in D .
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. (0, D_{max}) is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region. $\geq R(D_{max})$
- 3. (0, D_{max}) is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region. $\geq R(D_{max})$
- 3. (0, D_{max}) is achievable \Rightarrow $R(D_{max}) = 0$. Then $R(D) = 0$ for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \geq D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since *d* is assumed to be normal, $(H(X), 0)$ is achievable, and hence $R(0) \le$ *H*(*X*).

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since *d* is assumed to be normal, $(H(X), 0)$ is achievable, and hence $R(0) \le$ *H*(*X*).

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since *d* is assumed to be normal, $(H(X), 0)$ is achievable, and hence $R(0) \le$ *H*(*X*). $\geq R(0)$

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since *d* is assumed to be normal, $(H(X), 0)$ is achievable, and hence $R(0) \le$ $H(X)$. $\geq R(0)$

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(D')$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then $R(D) = 0$ for $D \geq D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since *d* is assumed to be normal, $(H(X), 0)$ is achievable, and hence $R(0) \le$ $H(X)$. $\geq R(0)$

