

8.2 The Rate-Distortion Function

All the discussions are with respect to an i.i.d. information source $\{X_k, k \ge 1\}$ with generic random variable X and a distortion measure d.

All the discussions are with respect to an i.i.d. information source $\{X_k, k \ge 1\}$ with generic random variable X and a distortion measure d.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$f: \mathcal{X}^n \to \{1, 2, \cdots, M\}$$

and a decoding function

$$g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.$$

All the discussions are with respect to an i.i.d. information source $\{X_k, k \ge 1\}$ with generic random variable X and a distortion measure d.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$f: \mathcal{X}^n \to \{1, 2, \cdots, M\}$$

and a decoding function

$$g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.$$

• Index set $\mathcal{I} = \{1, 2, \cdots, M\}$

All the discussions are with respect to an i.i.d. information source $\{X_k, k \ge 1\}$ with generic random variable X and a distortion measure d.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$f: \mathcal{X}^n \to \{1, 2, \cdots, M\}$$

and a decoding function

$$g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.$$

- Index set $\mathcal{I} = \{1, 2, \cdots, M\}$
- Codewords the reproduction sequences $g(1), g(2), \dots, g(M)$ in $\hat{\mathcal{X}}^n$

All the discussions are with respect to an i.i.d. information source $\{X_k, k \ge 1\}$ with generic random variable X and a distortion measure d.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$f: \mathcal{X}^n \to \{1, 2, \cdots, M\}$$

and a decoding function

$$g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.$$

- Index set $\mathcal{I} = \{1, 2, \cdots, M\}$
- Codewords the reproduction sequences $g(1), g(2), \cdots, g(M)$ in $\hat{\mathcal{X}}^n$
- Codebook the set of all codewords

A Rate-Distortion Code

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le \mathbf{R} + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > \mathbf{D} + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Remark If (R, D) is achievable, then $(\mathbf{R'}, D)$ and $(R, \mathbf{D'})$ are achievable for all $\mathbf{R'} \geq R$ and $\mathbf{D'} \geq D$. This in turn implies that $(\mathbf{R'}, \mathbf{D'})$ are achievable for all $\mathbf{R'} \geq R$ and $\mathbf{D'} \geq D$.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Remark If (R, D) is achievable, then $(\underline{R'}, D)$ and (R, D') are achievable for all $\underline{R'} \ge R$ and $D' \ge D$. This in turn implies that $(\underline{R'}, D')$ are achievable for all $\underline{R'} \ge R$ and $D' \ge D$.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Remark If (\underline{R}, D) is achievable, then $(\underline{R'}, D)$ and (R, D') are achievable for all $\underline{R'} \geq \underline{R}$ and $D' \geq D$. This in turn implies that $(\underline{R'}, D')$ are achievable for all $\underline{R'} \geq R$ and $D' \geq D$.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Remark If (R, D) is achievable, then $(\mathbf{R'}, D)$ and $(R, \underline{D'})$ are achievable for all $\mathbf{R'} \geq R$ and $\underline{D'} \geq D$. This in turn implies that $(\mathbf{R'}, \mathbf{D'})$ are achievable for all $\mathbf{R'} \geq R$ and $\mathbf{D'} \geq D$.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Remark If (R, \underline{D}) is achievable, then $(\underline{R'}, D)$ and $(R, \underline{D'})$ are achievable for all $\underline{R'} \ge R$ and $\underline{D'} \ge \underline{D}$. This in turn implies that $(\underline{R'}, \underline{D'})$ are achievable for all $\underline{R'} \ge R$ and $\underline{D'} \ge D$.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Remark If (R, D) is achievable, then $(\mathbf{R'}, D)$ and $(R, \mathbf{D'})$ are achievable for all $\mathbf{R'} \geq R$ and $\mathbf{D'} \geq D$. This in turn implies that $(\mathbf{R'}, \mathbf{D'})$ are achievable for all $\mathbf{R'} \geq R$ and $\mathbf{D'} \geq D$.

Theorem 8.12 The rate-distortion region is closed and convex.

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

• The closeness follows from the definition of the achievability of an (R, D) pair.

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- The closeness follows from the definition of the achievability of an (R,D) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \le \lambda \le 1$ and $\overline{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$(R^{(\lambda)}, D^{(\lambda)}) = (\lambda R^{(1)} + \bar{\lambda} R^{(2)}, \lambda D^{(1)} + \bar{\lambda} D^{(2)}).$$

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- The closeness follows from the definition of the achievability of an (R, D) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \le \lambda \le 1$ and $\overline{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$(R^{(\lambda)}, D^{(\lambda)}) = (\lambda R^{(1)} + \bar{\lambda} R^{(2)}, \lambda D^{(1)} + \bar{\lambda} D^{(2)}).$$

This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for λ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\overline{\lambda}$ fraction of the time.

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- The closeness follows from the definition of the achievability of an (R, D) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \le \lambda \le 1$ and $\overline{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$(R^{(\lambda)}, D^{(\lambda)}) = (\underline{\lambda}R^{(1)} + \overline{\lambda}R^{(2)}, \underline{\lambda}D^{(1)} + \overline{\lambda}D^{(2)}).$$

This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for $\underline{\lambda}$ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\overline{\lambda}$ fraction of the time.

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- The closeness follows from the definition of the achievability of an (R, D) pair.
- The convexity is proved by time-sharing. Specifically, for any $0 \le \lambda \le 1$ and $\overline{\lambda} = 1 - \lambda$, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is

$$(R^{(\lambda)}, D^{(\lambda)}) = (\lambda R^{(1)} + \underline{\overline{\lambda}} R^{(2)}, \lambda D^{(1)} + \underline{\overline{\lambda}} D^{(2)}).$$

This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for λ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\underline{\lambda}$ fraction of the time.

Definition 8.14 The distortion-rate function D(R) is the minimum of all distortions D for a given rate R such that (R, D) is achievable.

Definition 8.14 The distortion-rate function D(R) is the minimum of all distortions D for a given rate R such that (R, D) is achievable.

Definition 8.14 The distortion-rate function D(R) is the minimum of all distortions D for a given rate R such that (R, D) is achievable.

Remarks

Definition 8.14 The distortion-rate function D(R) is the minimum of all distortions D for a given rate R such that (R, D) is achievable.

Remarks

1. Most of the time we will be using R(D) instead of D(R).

Definition 8.14 The distortion-rate function D(R) is the minimum of all distortions D for a given rate R such that (R, D) is achievable.

Remarks

- 1. Most of the time we will be using R(D) instead of D(R).
- 2. If (R, D) is achievable, then $R \ge R(D)$.

1. R(D) is non-increasing in D.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

Proof

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

1. Let $D' \geq D$. $(R(D), \underline{D})$ achievable $\Rightarrow (R(D), \underline{D}')$ achievable. Then $R(D) \geq R(D')$ by definition of R(D').

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

Proof

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

\mathbf{Proof}

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

Proof

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. (0, D_{max}) is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

Proof

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region. $\geq R(D_{max})$
- 3. (0, D_{max}) is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

Proof

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region. $\geq R(D_{max})$
- 3. $(\underline{0}, D_{max})$ is achievable $\Rightarrow \underline{R(D_{max})} = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

Proof

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since d is assumed to be normal, (H(X), 0) is achievable, and hence $R(0) \leq H(X)$.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since d is assumed to be normal, $(\underline{H}(X), 0)$ is achievable, and hence $R(0) \leq H(X)$.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since d is assumed to be normal, $(\underline{H(X)}, 0)$ is achievable, and hence $R(0) \leq H(X)$.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since d is assumed to be normal, $(\underline{H(X)}, 0)$ is achievable, and hence $\underline{R(0)} \leq \underline{H(X)}$.

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- $4. \ R(0) \le H(X).$

Proof

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of R(D').
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D_{max}) = 0$. Then R(D) = 0 for $D \ge D_{max}$ because $R(\cdot)$ is non-increasing.
- 4. Since d is assumed to be normal, $(\underline{H(X)}, 0)$ is achievable, and hence $\underline{R(0)} \leq \underline{H(X)}$.

