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8.2 The Rate-Distortion Function
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All the discussions are with respect to an i.i.d. information source { X,k > 1}
with generic random variable X and a distortion measure d.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding func-
tion
f: X" —=A{1,2,--- M}

and a decoding function

g:{1,2,--- ,M}—mf”

e Index set Z7={1,2,--- , M}
e Codewords the reproduction sequences g(1),¢(2),---,g(M) in X"

e Codebook the set of all codewords
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Definition 8.13 The rate-distortion function R(D) is the minimum of all rates
R for a given distortion D such that (R, D) is achievable.

Definition 8.14 The distortion-rate function D(R) is the minimum of all
distortions D for a given rate R such that (R, D) is achievable.

Remarks
1. Most of the time we will be using R(D) instead of D(R).
2. If (R, D) is achievable, then R > R(D).
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