

Chapter 8 Rate-Distortion Theory

© Raymond W. Yeung 2014 The Chinese University of Hong Kong

• Consider compressing an information source with entropy rate H at rate R < H.

- Consider compressing an information source with entropy rate H at rate R < H.
- By the source coding theorem, $P_e \to 1$ as $n \to \infty$.

- Consider compressing an information source with entropy rate H at rate R < H.
- By the source coding theorem, $P_e \to 1$ as $n \to \infty$.
- Under such a situation, information must be transmitted with "distortion".

- Consider compressing an information source with entropy rate H at rate R < H.
- By the source coding theorem, $P_e \to 1$ as $n \to \infty$.
- Under such a situation, information must be transmitted with "distortion".
- What is the best possible tradeoff?

• Single-letter distortion measures

- Single-letter distortion measures
- The rate-distortion function R(D)

- Single-letter distortion measures
- The rate-distortion function R(D)
- The rate-distortion theorem for an i.i.d. information source

8.1 Single-Letter Distortion Measure

• Let $\{X_k, k \ge 1\}$ be an i.i.d. information source with generic random variable $X \sim p(x)$, where $|\mathcal{X}| < \infty$.

- Let $\{X_k, k \ge 1\}$ be an i.i.d. information source with generic random variable $X \sim p(x)$, where $|\mathcal{X}| < \infty$.
- Consider a source sequence $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ and a reproduction sequence $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_n)$.

- Let $\{X_k, k \ge 1\}$ be an i.i.d. information source with generic random variable $X \sim p(x)$, where $|\mathcal{X}| < \infty$.
- Consider a source sequence $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ and a reproduction sequence $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_n)$.
- The components of $\hat{\mathbf{x}}$ take values in a reproduction alphabet $\hat{\mathcal{X}}$, where $|\hat{\mathcal{X}}| < \infty$.

- Let $\{X_k, k \ge 1\}$ be an i.i.d. information source with generic random variable $X \sim p(x)$, where $|\mathcal{X}| < \infty$.
- Consider a source sequence $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ and a reproduction sequence $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_n)$.
- The components of $\hat{\mathbf{x}}$ take values in a reproduction alphabet $\hat{\mathcal{X}}$, where $|\hat{\mathcal{X}}| < \infty$.
- In general, $\hat{\mathcal{X}}$ may be different from \mathcal{X} .

- Let $\{X_k, k \ge 1\}$ be an i.i.d. information source with generic random variable $X \sim p(x)$, where $|\mathcal{X}| < \infty$.
- Consider a source sequence $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ and a reproduction sequence $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_n)$.
- The components of $\hat{\mathbf{x}}$ take values in a reproduction alphabet $\hat{\mathcal{X}}$, where $|\hat{\mathcal{X}}| < \infty$.
- In general, $\hat{\mathcal{X}}$ may be different from \mathcal{X} .
- For example, $\hat{\mathbf{x}}$ can be a quantized version of \mathbf{x} .

Definition 8.1 A single-letter distortion measure is a mapping

$$d: \mathcal{X} \times \hat{\mathcal{X}} \to \Re^+.$$

The value $d(x, \hat{x})$ denotes the distortion incurred when a source symbol x is reproduced as \hat{x} .

Definition 8.1 A single-letter distortion measure is a mapping

$$d: \mathcal{X} \times \hat{\mathcal{X}} \to \Re^+.$$

The value $d(x, \hat{x})$ denotes the distortion incurred when a source symbol x is reproduced as \hat{x} .

Definition 8.2 The average distortion between a source sequence $\mathbf{x} \in \mathcal{X}^n$ and a reproduction sequence $\hat{\mathbf{x}} \in \hat{\mathcal{X}}^n$ induced by a single-letter distortion measure d is defined by

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k).$$

Let $\hat{\mathcal{X}} = \mathcal{X}$.

Let $\hat{\mathcal{X}} = \mathcal{X}$.

1. Square-error: $d(x, \hat{x}) = (x - \hat{x})^2$, where \mathcal{X} and $\hat{\mathcal{X}}$ are real.

Let $\hat{\mathcal{X}} = \mathcal{X}$.

1. Square-error: $d(x, \hat{x}) = (x - \hat{x})^2$, where \mathcal{X} and $\hat{\mathcal{X}}$ are real.

2. Hamming distortion:

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{if } x \neq \hat{x} \end{cases}$$

where the symbols in \mathcal{X} do not carry any particular meaning.

Let $\hat{\mathcal{X}} = \mathcal{X}$.

Let \hat{X} be an estimate of X.

1. Square-error: $d(x, \hat{x}) = (x - \hat{x})^2$, where \mathcal{X} and $\hat{\mathcal{X}}$ are real.

2. Hamming distortion:

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{if } x \neq \hat{x} \end{cases}$$

where the symbols in \mathcal{X} do not carry any particular meaning.

Let $\hat{\mathcal{X}} = \mathcal{X}$.

1. Square-error: $d(x, \hat{x}) = (x - \hat{x})^2$, where \mathcal{X} and $\hat{\mathcal{X}}$ are real.

2. Hamming distortion:

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{if } x \neq \hat{x} \end{cases}$$

where the symbols in \mathcal{X} do not carry any particular meaning.

Let \hat{X} be an estimate of X.

1. If d is the square-error distortion measure, $Ed(X, \hat{X})$ is called the mean square error.

Let $\hat{\mathcal{X}} = \mathcal{X}$.

1. Square-error: $d(x, \hat{x}) = (x - \hat{x})^2$, where \mathcal{X} and $\hat{\mathcal{X}}$ are real.

2. Hamming distortion:

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{if } x \neq \hat{x} \end{cases}$$

where the symbols in \mathcal{X} do not carry any particular meaning.

Let \hat{X} be an estimate of X.

1. If d is the square-error distortion measure, $Ed(X, \hat{X})$ is called the mean square error.

2. If d is the Hamming distortion measure,

$$Ed(X, \hat{X}) = \Pr\{X = \hat{X}\} \cdot 0 + \Pr\{X \neq \hat{X}\} \cdot 1 = \Pr\{X \neq \hat{X}\}$$

is the probability of error. For a source sequence \mathbf{x} and a reproduction sequence $\hat{\mathbf{x}}$, the average distortion $d(\mathbf{x}, \hat{\mathbf{x}})$ gives the frequency of error in $\hat{\mathbf{x}}$.

Definition 8.5 For a distortion measure d, for each $x \in \mathcal{X}$, let $\hat{x}^*(x) \in \hat{\mathcal{X}}$ minimize $d(x, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$. A distortion measure d is said to be normal if

$$c_{\boldsymbol{x}} \stackrel{\text{def}}{=} d(\boldsymbol{x}, \hat{x}^*(\boldsymbol{x})) = 0$$

for all $x \in \mathcal{X}$.

Definition 8.5 For a distortion measure d, for each $x \in \mathcal{X}$, let $\hat{x}^*(x) \in \hat{\mathcal{X}}$ minimize $d(x, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$. A distortion measure d is said to be normal if

$$c_x \stackrel{\text{def}}{=} d(x, \hat{x}^*(x)) = 0$$

for all $x \in \mathcal{X}$.

Example 8.6 Let d be a distortion measure defined by

Then $\hat{x}^*(1) = a$ and $\hat{x}^*(2) = b$.

• A normal distortion measure is one which allows a source X to be reproduced with zero distortion.

- A normal distortion measure is one which allows a source X to be reproduced with zero distortion.
- The square-error distortion measure and the Hamming distortion measure are normal distortion measures.

- A normal distortion measure is one which allows a source X to be reproduced with zero distortion.
- The square-error distortion measure and the Hamming distortion measure are normal distortion measures.
- The normalization of a distortion measure d is the distortion measure \tilde{d} defined by

$$\tilde{d}(x,\hat{x}) = d(x,\hat{x}) - c_x$$

for all $(x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}$.

- A normal distortion measure is one which allows a source X to be reproduced with zero distortion.
- The square-error distortion measure and the Hamming distortion measure are normal distortion measures.
- The normalization of a distortion measure d is the distortion measure \tilde{d} defined by

$$\tilde{d}(x,\hat{x}) = d(x,\hat{x}) - c_x$$

for all $(x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}$.

• It suffices to consider normal distortion measures as we will see.

Example 8.6 (cont.) Let d be a distortion measure defined by

$d(x, \hat{x})$	a	b	С
1	2	7	5
2	4	3	8

Then \tilde{d} , the normalization of d, is given by

$\widetilde{d}(x, \hat{x})$	a	b	c
1	0	5	3
2	1	0	5

Example 8.6 (cont.) Let d be a distortion measure defined by

Then \tilde{d} , the normalization of d, is given by

$$\begin{array}{c|ccccc} \tilde{d}(x,\hat{x}) & a & b & c \\ \hline 1 & 0 & 5 & 3 \\ 2 & 1 & 0 & 5 \\ \end{array}$$

Example 8.6 (cont.) Let d be a distortion measure defined by

Then \tilde{d} , the normalization of d, is given by

$$\begin{array}{c|cccc} \tilde{d}(x,\hat{x}) & a & b & c \\ \hline 1 & 0 & 5 & 3 \\ 2 & 1 & 0 & 5 \end{array}$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$
$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_x \right]$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$
$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\frac{\tilde{d}(x, \hat{x})}{x} + c_x \right]$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_x \right]$$

$$= \underline{E}\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) c_x$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_x \right]$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) c_x$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_x \right]$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) c_x$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_x \right]$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) \underline{c_x}$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_{x} \right]$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) \underline{c_{x}}$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \underline{c_{x}} \left(\sum_{\hat{x}} p(\hat{x}|x) \right)$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_{x} \right]$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) \underline{c_{x}}$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \underline{c_{x}} \left(\sum_{\hat{x}} p(\hat{x}|x) \right)$$

$$Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})$$

$$= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_x \right]$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) c_x$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) c_x \left(\sum_{\hat{x}} p(\hat{x}|x) \right)$$

$$= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) c_x$$

$$\begin{aligned} Ed(X,\hat{X}) &= \sum_{x} \sum_{\hat{x}} p(x,\hat{x}) d(x,\hat{x}) \\ &= \sum_{x} \sum_{\hat{x}} p(x,\hat{x}) \left[\tilde{d}(x,\hat{x}) + c_{x} \right] \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) c_{x} \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) c_{x} \left(\sum_{\hat{x}} p(\hat{x}|x) \right) \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) c_{x} \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) c_{x} \\ &= E\tilde{d}(X,\hat{X}) + \Delta, \end{aligned}$$

where

$$\Delta = \sum_{x} p(x)c_x$$

is a constant which depends only on p(x) and d but not on the conditional distribution $p(\hat{x}|x)$.

$$\underline{Ed}(X,\hat{X}) = \sum_{x} \sum_{\hat{x}} p(x,\hat{x})d(x,\hat{x}) \\
= \sum_{x} \sum_{\hat{x}} p(x,\hat{x}) \left[\tilde{d}(x,\hat{x}) + c_{x}\right] \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x)c_{x} \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x)c_{x} \left(\sum_{\hat{x}} p(\hat{x}|x)\right) \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x)c_{x} \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x)c_{x} \\
= E\tilde{d}(X,\hat{X}) + \Delta,$$

where

$$\Delta = \sum_{x} p(x)c_x$$

is a constant which depends only on p(x) and d but not on the conditional distribution $p(\hat{x}|x)$.

$$\underline{Ed}(X,\hat{X}) = \sum_{x} \sum_{\hat{x}} p(x,\hat{x})d(x,\hat{x}) \\
= \sum_{x} \sum_{\hat{x}} p(x,\hat{x}) \left[\tilde{d}(x,\hat{x}) + c_{x}\right] \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x)c_{x} \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x)c_{x} \left(\sum_{\hat{x}} p(\hat{x}|x)\right) \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x)c_{x} \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x)c_{x} \\
= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x)c_{x} \\
= E\tilde{d}(X,\hat{X}) + \Delta,$$

where

$$\Delta = \sum_{x} p(x)c_x$$

is a constant which depends only on p(x) and d but not on the conditional distribution $p(\hat{x}|x)$.

Definition 8.7 Let \hat{x}^* minimizes $Ed(X, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$, and define $D_{max} = Ed(X, \hat{x}^*).$

Note: \hat{x}^* is not the same as $\hat{x}^*(x)$, and it depends on p(x).

Definition 8.7 Let \hat{x}^* minimizes $Ed(X, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$, and define

$$D_{max} = Ed(X, \hat{x}^*).$$

Note: \hat{x}^* is not the same as $\hat{x}^*(x)$, and it depends on p(x).

• If we know nothing about a source variable X except for p(x), then \hat{x}^* is the best estimate of X, and D_{max} is the minimum expected distortion between X and a constant estimate of X.

Definition 8.7 Let \hat{x}^* minimizes $Ed(X, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$, and define

$$D_{max} = Ed(X, \hat{x}^*).$$

Note: \hat{x}^* is not the same as $\hat{x}^*(x)$, and it depends on p(x).

- If we know nothing about a source variable X except for p(x), then \hat{x}^* is the best estimate of X, and D_{max} is the minimum expected distortion between X and a constant estimate of X.
- Specifically, by taking $\hat{\mathbf{x}}^* = (\hat{x}^*, \hat{x}^*, \cdots, \hat{x}^*)$ to be the reproduction sequence, D_{max} can be asymptotically achieved, because by WLLN,

$$d(\mathbf{X}, \hat{\mathbf{x}}^*) = \frac{1}{n} \sum_{k=1}^n d(X_k, \hat{x}^*) \to Ed(X, \hat{x}^*) = D_{max}$$

Definition 8.7 Let \hat{x}^* minimizes $Ed(X, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$, and define

$$D_{max} = Ed(X, \hat{x}^*).$$

Note: \hat{x}^* is not the same as $\hat{x}^*(x)$, and it depends on p(x).

- If we know nothing about a source variable X except for p(x), then \hat{x}^* is the best estimate of X, and D_{max} is the minimum expected distortion between X and a constant estimate of X.
- Specifically, by taking $\hat{\mathbf{x}}^* = (\hat{x}^*, \hat{x}^*, \cdots, \hat{x}^*)$ to be the reproduction sequence, D_{max} can be asymptotically achieved, because by WLLN,

$$d(\mathbf{X}, \hat{\mathbf{x}}^*) = \frac{1}{n} \sum_{k=1}^n d(X_k, \hat{x}^*) \to Ed(X, \hat{x}^*) = D_{max}$$

• Therefore it is not meaningful to impose a constraint $D \ge D_{max}$ on the reproduction sequence.