
7.6 Feedback Capacity



Feedback



• Feedback is common in practical communication systems for correcting

possible errors which occur during transmission.

• Daily examples: phone conversation, classroom teaching.

• Data communication: the receiver may request a packet to be retrans-

mitted if the parity check bits received are incorrect (Automatic Repeat-

reQuest).

• The transmitter can at any time decide what to transmit next based on

the feedback so far.

• Can feedback increase the channel capacity?

• Not for DMC, even with complete feedback!
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Definition 7.18 An (n, M) code with complete feedback for a discrete mem-
oryless channel with input alphabet X and output alphabet Y is defined by
encoding functions

fi : {1, 2, · · · , M}�Y i�1 ⇤ X

for 1 ⇥ i ⇥ n and a decoding function

g : Yn ⇤ {1, 2, · · · , M}.

Notations: Yi = (Y1, Y2, · · · , Yi), Xi = fi(W,Yi�1)
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• The above is the dependency graph for a channel code with feedback,

which is equivalent to

q(w,x,y, ŵ) = q(w)

 
nY

i=1

q(xi|w,y

i�1
)

! 
nY

i=1

p(yi|xi)

!
q(ŵ|y)

for all (w,x,y, ŵ) 2W ⇥Xn⇥Yn⇥W such that q(w,y

i�1
), q(xi) > 0 for

1  i  n and q(y) > 0, where y

i
= (y1, y2, · · · , yi).



Definition 7.19 A rate R is achievable with complete feedback for a discrete

memoryless channel p(y|x) if for any ✏ > 0, there exists for su�ciently large n

an (n, M) code with complete feedback such that

1

n

log M > R� ✏

and

�

max

< ✏.

Definition 7.20 The feedback capacity, CFB, of a discrete memoryless channel

is the supremum of all the rates achievable by codes with complete feedback.

Proposition 7.21 The supremum in the definition of CFB in Definition 7.20

is the maximum.

Proof Follows from Definition 7.19. See textbook for details.

Remark Since a channel code without feedback is a special case of a channel

code with complete feedback, CFB � C.
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Lemma 7.22 For all 1  i  n,

(W,Yi�1
) ! Xi ! Yi

forms a Markov chain.

Proof

1. The Markov chain

(W,Xi�1,Yi�1
) ! Xi ! Yi

holds because the channel is memoryless.

2. Then

0 = I(W,Xi�1,Yi�1
;Yi|Xi)

= I(W,Yi�1
;Yi|Xi) + I(Xi�1

;Yi|W,Xi,Y
i�1

)

which implies I(W,Yi�1
;Yi|Xi) = 0, or (W,Yi�1

) ! Xi ! Yi.
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Proof for CFB ≤ C

1. Consider any code with complete feedback.

2. Consider

log M = H(W ) = I(W ;Y) + H(W |Y).

3. First,

I(W ;Y) = H(Y) � H(Y|W )

= H(Y) �
nX

i=1

H(Yi|Y
i�1

,W )

= H(Y) �
nX

i=1

H(Yi|Y
i�1

,W,Xi)

= H(Y) �
nX

i=1

H(Yi|Xi)


nX

i=1

H(Yi) �
nX

i=1

H(Yi|Xi)

=

nX

i=1

I(Xi;Yi)

 nC.

4. Second,

H(W |Y) = H(W |Y, ˆW )  H(W | ˆW ) ⇡ 0.

Then we have

log M = I(W ;Y) + H(W |Y)  nC.

5. Formally, apply Fano’s inequality to upper bound

H(W | ˆW ). Upon filling in the ✏’s and �’s as in the

proof of the converse of the channel coding theorem,

we conclude that

R  C

for any rate R achievable with complete feedback.
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