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This is much stronger than BER — 0.

The direct part of the channel coding theorem is an existence proof (as
opposed to a constructive proof).

A randomly constructed code has the following issues:

— Encoding and decoding are computationally prohibitive.

— High storage requirements for encoder and decoder.

Nevertheless, the direct part implies that when n is large, if the codewords
are chosen randomly, most likely the code is good (Markov lemma).

It also gives much insight into what a good code would look like.

In particular, the repetition code is not a good code because the numbers
of ‘0’ and ‘1’s in the codewords are not roughly the same.
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in the domain of channel coding theory.

Pertormance of a code is measured by how far the rate is away from the
channel capacity.

All channel codes used in practice are linear: efficient encoding and de-
coding in terms of computation and storage.

Channel coding has been widely used in home entertainment systems (e.g.,
audio CD and DVD), computer storage systems (e.g., CD-ROM, hard
disk, floppy disk, and magnetic tape), computer communication, wireless
communication, and deep space communication.

The most popular channel codes used in existing systems include Hamming
code, Reed-Solomon code, BCH code, turbo code, and LDPC code.

In particular, turbo code and LDPC code are almost “capacity achieving.”



