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How to Prove Achievability

e Consider a DMC p(y|x).

e For every input distribution p(x), prove that the rate I(X;Y) is achievable
by showing for large n the existence of a channel code such that

1. the rate of the code is arbitrarily close to I(X;Y);

2. the maximal probability of error A,,,, is arbitrarily small.

e Choose the input distribution p(x) to be one that achieves the channel
capacity, i.e., I(X;Y) = C.
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< on(H(X,Y)+E)  H,—n(H(X)—n)  o—n(H(Y)—-C)
o~ n(H(X)+H(Y)-H(X,Y)—£§—n—()

— o n(I(X5Y)=€—n—¢)

= o n{(X5Y)=7)

where

T=&+n+¢—0

as 6 — 0. The lemma is proved.
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e There are a total of |X|Mn possible codebooks that
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e Regard two codebooks whose sets of codewords are
permutations of each other as two different codebooks.

2. Reveal the codebook C to both the encoder and the
decoder.
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4. Transmit X = X (W) through the channel.

5. The channel outputs a sequence Y according to
~ n
Pr{Y = y|X(W) = x} = [] p(y;lz;).
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6. The sequence Y is decoded to the message w if

o (X(w),Y) € Tl 5. and

e there does not exists w’ # w such that

(X(w'),Y) € Tl y15-

Otherwise, Y is decoded to a constant message in W.
Denote by W the message to which Y is decoded.
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for sufficiently large n.
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For w # 1, Pr{X(w) jointly typical with Y} ~ 2-7/(X:Y),
If |C| = M grows at a rate < I(X;Y), then
Pr{X(w) jointly typical with Y for some w # 1 }

can be made arbitrarily small.

Then Pr{W # W} can be made arbitrarily small.
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e According to the random coding scheme,

Pr{Err} = Z Pr{C}Pr{Err|C}.
C

e Then there exists at least one codebook C* such that

P. =Pr{Err|C"} <Pr{Err} < g

e By construction, this codebook has rate

€

1
—logM > I(X;Y)— —.
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Code with Amax < €

We want a code with A4 < €, not just P, < €/2.

Without loss of generality, assume A1 < Ay < --- < A\ps. Consider
M M
1 € M
. Ap < = = Ay < | — | €
wi ey = D (3)
Since M is even, M /2 is an integer. Then

Z Aw <<7)€ — M—/2 Z A < E.

w=M/2+1

Hence,
)‘M/2—|—1 <€ —— )\M/Q < €.

Conclusion: If P, < €/2, then Ay <Ay <--- < Appye <€

Discard the worst half of the codewords in C* to achieve \,,,, < €.
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e After discarding the worse half of C*, the rate of the code becomes

1 M 1 1
—log— = —logM — —
n 2 n n

€ 1

I(X:Y ——)——

~ (( ) 2 n
I(X;Y)—¢

for sufficiently large n.

e Here we assume that the decoding function is unchanged, so that deletion
of worst half of the codewords does not affect the conditional probabilities
of error of the remaining codewords.



