

7.4 Achievability

• Consider a DMC p(y|x).

- Consider a DMC p(y|x).
- For every input distribution p(x), prove that the rate I(X;Y) is achievable by showing for large n the existence of a channel code such that
 - 1. the rate of the code is arbitrarily close to I(X;Y);
 - 2. the maximal probability of error λ_{max} is arbitrarily small.

- Consider a DMC p(y|x).
- For every input distribution p(x), prove that the rate I(X;Y) is achievable by showing for large n the existence of a channel code such that
 - 1. the rate of the code is arbitrarily close to I(X;Y);
 - 2. the maximal probability of error λ_{max} is arbitrarily small.
- Choose the input distribution p(x) to be one that achieves the channel capacity, i.e., I(X;Y) = C.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\boldsymbol{\delta}}\} \le 2^{-n(I(X;Y)-\boldsymbol{\tau})},$$

where $\tau \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

 \mathbf{Proof}

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

 \mathbf{Proof}

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$. 5. Then we have

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y})$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$. 5. Then we have

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y})$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \leq 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

 $p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$

 and

$$p(\mathbf{y}) \leq 2^{-n(H(Y)-\zeta)}$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

 $p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$

 and

$$p(\mathbf{y}) \leq 2^{-n(H(Y)-\zeta)}$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

 $p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$

 and

$$p(\mathbf{y}) \leq 2^{-n(H(Y)-\zeta)}$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T^n_{[XY]\delta}| \le 2^{n(H(X,Y)+\xi)}$$

where $\xi \to 0$ as $\delta \to 0$. 5. Then we have

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

 $p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$

 and

$$p(\mathbf{y}) \leq 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T^n_{[XY]\delta}| \le 2^{n(H(X,Y)+\xi)}$$

where $\xi \to 0$ as $\delta \to 0$. 5. Then we have

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

Proof

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{x}) p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$= 2^{-n(H(X) + H(Y) - H(X, Y) - \xi - \eta - \zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T_{[XY]\delta}^n\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T_{[XY]\delta}^n} p(\mathbf{x}) p(\mathbf{y})$$

$$\leq 2^{n(H(X,Y)+\xi)} \cdot 2^{-n(H(X)-\eta)} \cdot 2^{-n(H(Y)-\zeta)}$$

$$= 2^{-n(\underline{H}(X)+H(Y)-H(X,Y)} - \xi - \eta - \zeta)$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y})$$

$$\leq 2^{n(H(X,Y)+\xi)} \cdot 2^{-n(H(X)-\eta)} \cdot 2^{-n(H(Y)-\zeta)}$$

$$= 2^{-n(H(X)+H(Y)-H(X,Y)-\xi-\eta-\zeta)}$$

$$= 2^{-n(I(X;Y)-\xi-\eta-\zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\}$$

$$= \sum_{\substack{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}}} p(\mathbf{x})p(\mathbf{y})$$

$$\leq 2^{n(H(X,Y)+\xi)} \cdot 2^{-n(H(X)-\eta)} \cdot 2^{-n(H(Y)-\zeta)}$$

$$= 2^{-n(H(X)+H(Y)-H(X,Y)-\xi-\eta-\zeta)}$$

$$= 2^{-n(I(X;Y)-\xi-\eta-\zeta)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

Proof

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$= 2^{-n(H(X) + H(Y) - H(X, Y) - \xi - \eta - \zeta)}$$

$$= 2^{-n(I(X; Y) - \xi - \eta - \zeta)}$$

$$= 2^{-n(I(X; Y) - \tau)},$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)},$$

where $\tau \to 0$ as $\delta \to 0$.

\mathbf{Proof}

1. Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y}).$$

2. By the consistency of strong typicality, for $(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}$, $\mathbf{x} \in T^n_{[X]\delta}$ and $\mathbf{y} \in T^n_{[Y]\delta}$.

3. By the strong AEP, all the $p(\mathbf{x})$ and $p(\mathbf{y})$ in the above summation satisfy

$$p(\mathbf{x}) \le 2^{-n(H(X) - \eta)}$$

and

$$p(\mathbf{y}) \le 2^{-n(H(Y)-\zeta)},$$

where $\eta, \zeta \to 0$ as $\delta \to 0$.

4. By the strong JAEP,

$$|T_{[XY]\delta}^n| \le 2^{n(H(X,Y)+\xi)},$$

where $\xi \to 0$ as $\delta \to 0$.

5. Then we have

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T^{n}_{[XY]\delta}} p(\mathbf{x})p(\mathbf{y})$$

$$\leq 2^{n(H(X, Y) + \xi)} \cdot 2^{-n(H(X) - \eta)} \cdot 2^{-n(H(Y) - \zeta)}$$

$$= 2^{-n(H(X) + H(Y) - H(X, Y) - \xi - \eta - \zeta)}$$

$$= 2^{-n(I(X; Y) - \xi - \eta - \zeta)}$$

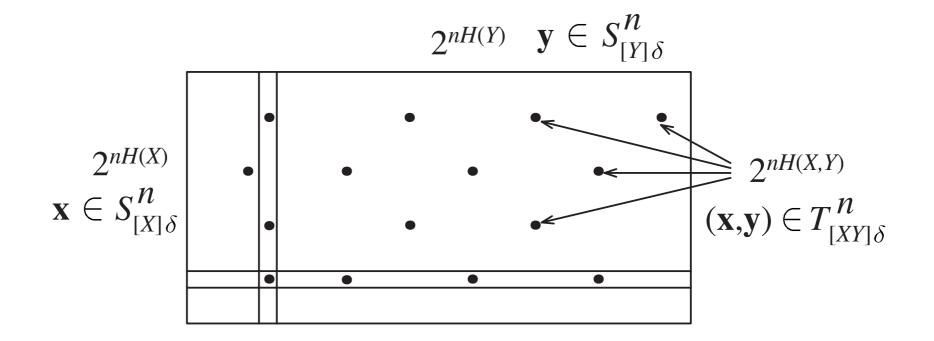
$$= 2^{-n(I(X; Y) - \tau)},$$

where

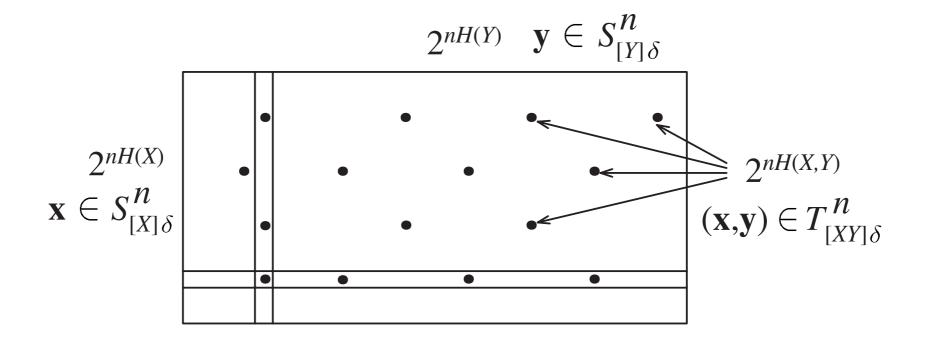
$$\tau = \xi + \eta + \zeta \to 0$$

as $\delta \to 0$. The lemma is proved.

An Interpretation of Lemma 7.17

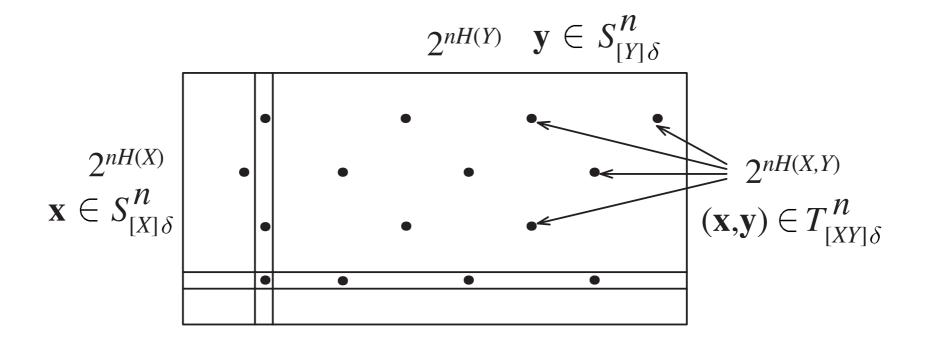


An Interpretation of Lemma 7.17



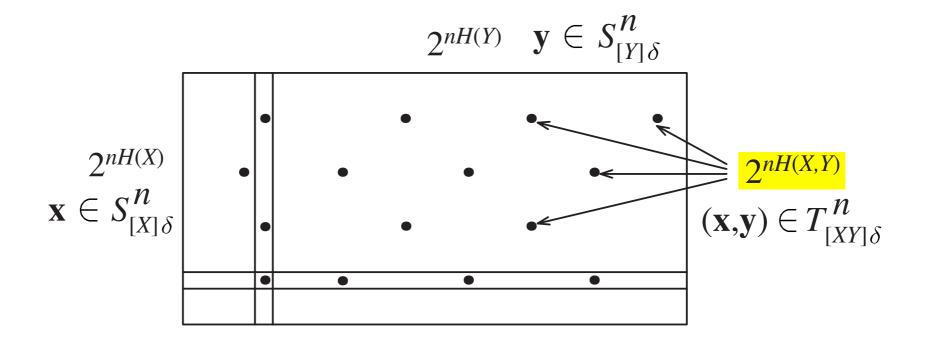
• Randomly choose a row with uniform distribution and randomly choose a column with uniform distribution.

An Interpretation of Lemma 7.17



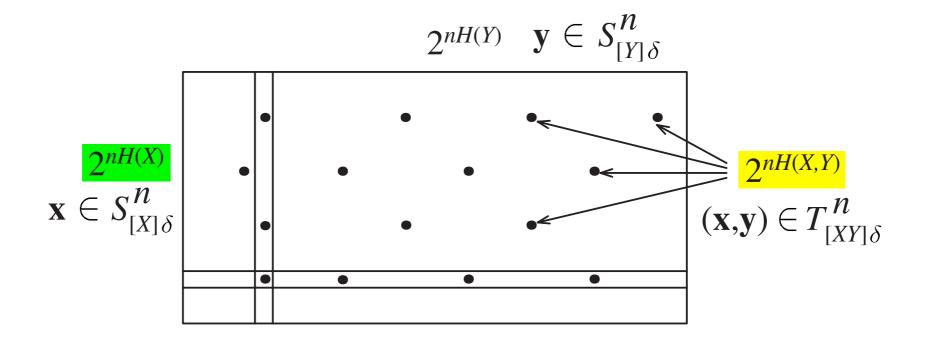
- Randomly choose a row with uniform distribution and randomly choose a column with uniform distribution.
- Then

 $\Pr\{\text{obtaining a jointly typical pair}\} \approx \frac{2^{nH(X,Y)}}{2^{nH(X)}2^{nH(Y)}} = 2^{-nI(X;Y)}$



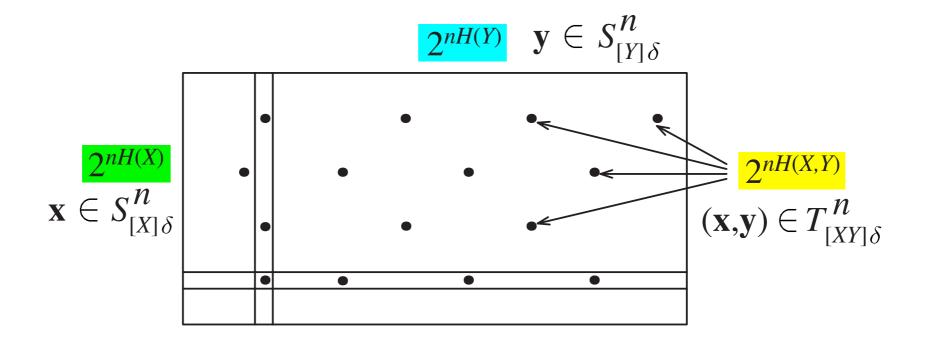
- Randomly choose a row with uniform distribution and randomly choose a column with uniform distribution.
- Then

 $\Pr\{\text{obtaining a jointly typical pair}\} \approx \frac{2^{nH(X,Y)}}{2^{nH(X)}2^{nH(Y)}} = 2^{-nI(X;Y)}$



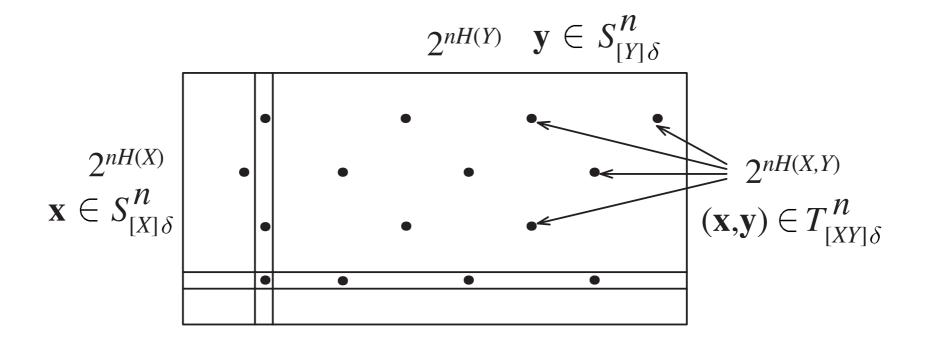
- Randomly choose a row with uniform distribution and randomly choose a column with uniform distribution.
- Then

 $\Pr\{\text{obtaining a jointly typical pair}\} \approx \frac{2^{nH(X,Y)}}{2^{nH(X)}2^{nH(Y)}} = 2^{-nI(X;Y)}$



- Randomly choose a row with uniform distribution and randomly choose a column with uniform distribution.
- Then

$$\Pr\{\text{obtaining a jointly typical pair}\} \approx \frac{2^{nH(X,Y)}}{2^{nH(X)}2^{nH(Y)}} = 2^{-nI(X;Y)}$$



- Randomly choose a row with uniform distribution and randomly choose a column with uniform distribution.
- Then

 $\Pr\{\text{obtaining a jointly typical pair}\} \approx \frac{2^{nH(X,Y)}}{2^{nH(X)}2^{nH(Y)}} = 2^{-nI(X;Y)}$

Parameter Settings

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

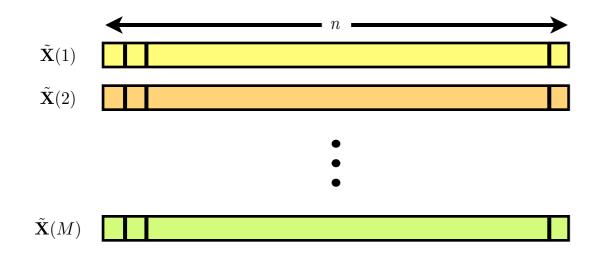
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

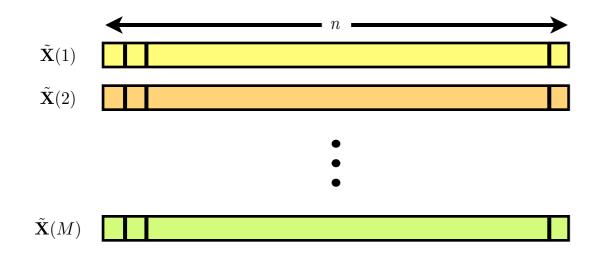
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

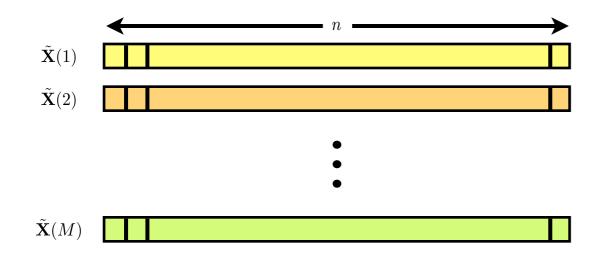
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

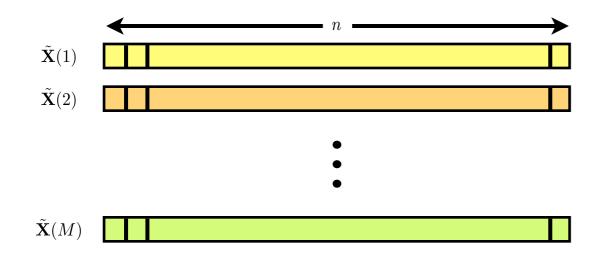
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

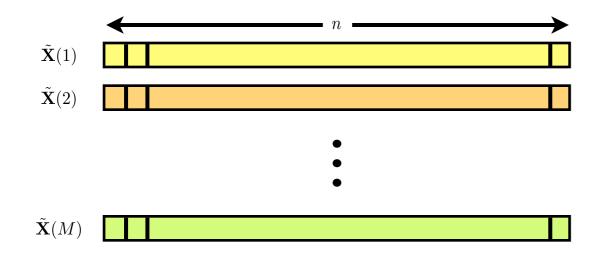
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

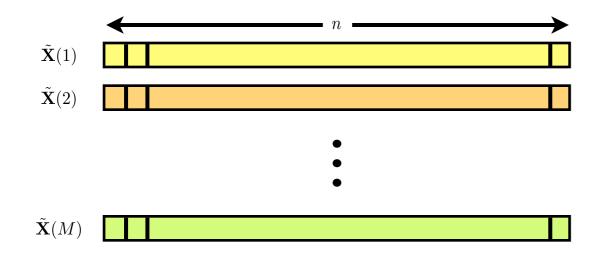
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

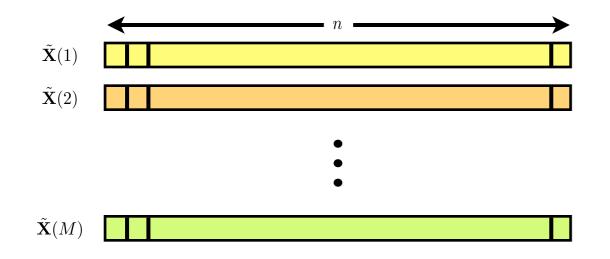
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

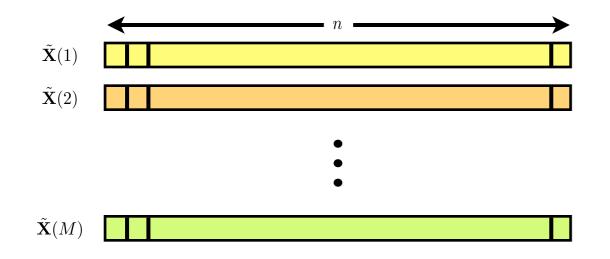
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

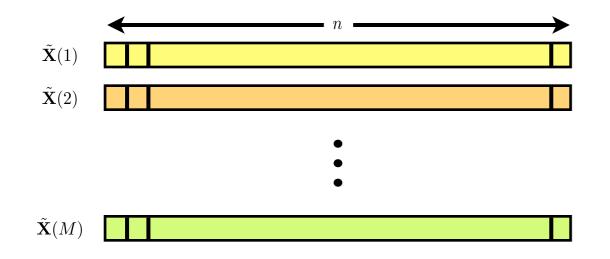
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

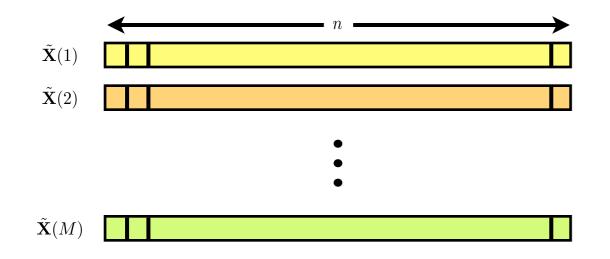
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

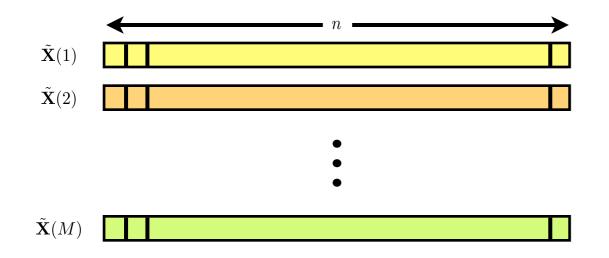
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. A message W is chosen from \mathcal{W} according to the uniform distribution.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

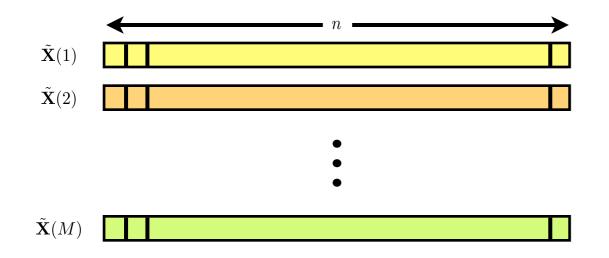
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. A message W is chosen from \mathcal{W} according to the uniform distribution.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

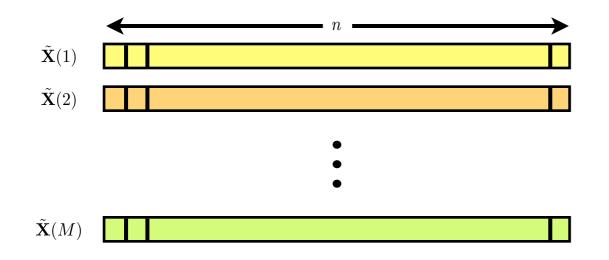
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. A message W is chosen from \mathcal{W} according to the uniform distribution.

4. Transmit $\mathbf{X} = \tilde{\mathbf{X}}(W)$ through the channel.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

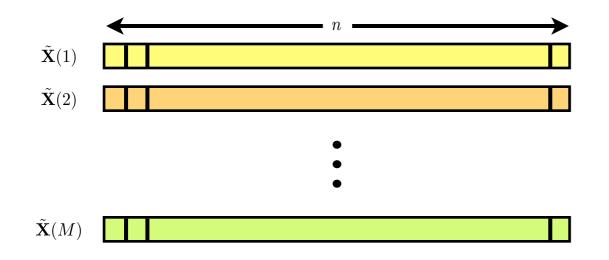
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. A message W is chosen from \mathcal{W} according to the uniform distribution.

4. Transmit $\mathbf{X} = \tilde{\mathbf{X}}(W)$ through the channel.

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

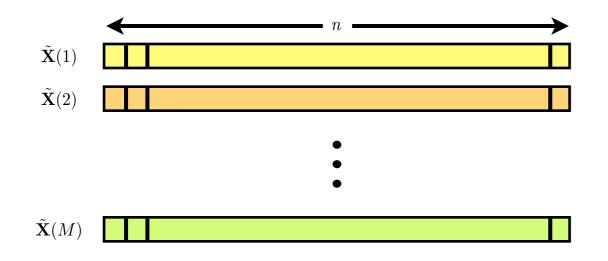
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. A message W is chosen from \mathcal{W} according to the uniform distribution.

- 4. Transmit $\mathbf{X} = \tilde{\mathbf{X}}(W)$ through the channel.
- 5. The channel outputs a sequence \mathbf{Y} according to

$$\Pr{\mathbf{Y} = \mathbf{y} | \tilde{\mathbf{X}}(W) = \mathbf{x}} = \prod_{i=1}^{n} p(y_i | x_i).$$

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

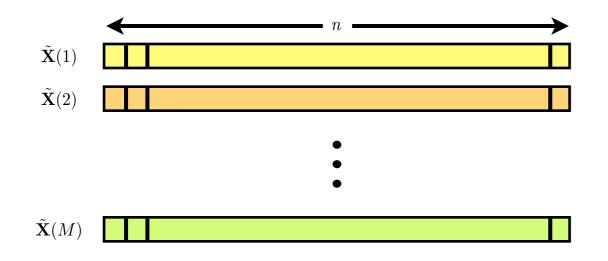
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. A message W is chosen from \mathcal{W} according to the uniform distribution.

- 4. Transmit $\mathbf{X} = \tilde{\mathbf{X}}(W)$ through the channel.
- 5. The channel outputs a sequence \mathbf{Y} according to

$$\Pr{\mathbf{Y} = \mathbf{y} | \tilde{\mathbf{X}}(W) = \mathbf{x}} = \prod_{i=1}^{n} p(y_i | x_i).$$

Parameter Settings

1. Fix $\epsilon > 0$ and input distribution p(x). Let δ to be specified later.

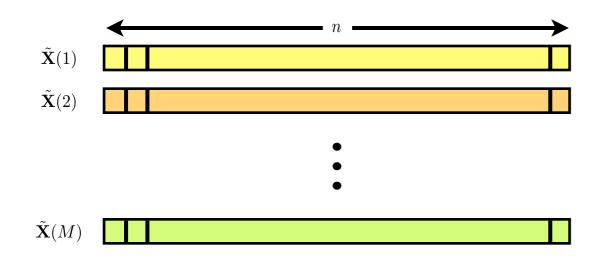
2. Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e., $M \approx 2^{nI(X;Y)}$.

The Random Coding Scheme

1. Construct the codebook \mathcal{C} of an (n, M) code by generating M codewords in \mathcal{X}^n independently and identically according to $p(x)^n$. Denote these codewords by $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$.



• Generate each component according to p(x).

 \bullet There are a total of $|\mathcal{X}|^{Mn}$ possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.

3. A message W is chosen from \mathcal{W} according to the uniform distribution.

- 4. Transmit $\mathbf{X} = \tilde{\mathbf{X}}(W)$ through the channel.
- 5. The channel outputs a sequence \mathbf{Y} according to

$$\Pr{\mathbf{Y} = \mathbf{y} | \tilde{\mathbf{X}}(W) = \mathbf{x}} = \prod_{i=1}^{n} p(y_i | x_i).$$

6. The sequence \mathbf{Y} is decoded to the message w if

•
$$(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta}$$
, and

• there does not exists $w' \neq w$ such that $(\tilde{\mathbf{X}}(w'), \mathbf{Y}) \in T^n_{[XY]\delta}$.

Otherwise, \mathbf{Y} is decoded to a constant message in \mathcal{W} . Denote by \hat{W} the message to which \mathbf{Y} is decoded.

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

$$\Pr\{Err\} = \sum_{w=1}^{M} \frac{\Pr\{Err|W=w\}}{\Pr\{W=w\}}$$
$$= \frac{\Pr\{Err|W=1\}}{\sum_{w=1}^{M}} \Pr\{W=w\}$$

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

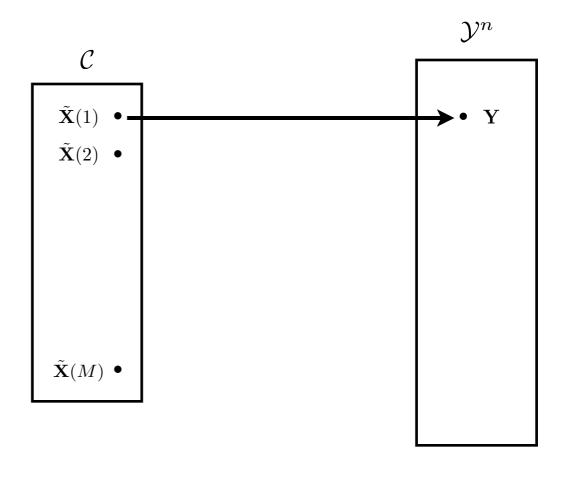
Assume without loss of generality that the message 1 is chosen.

1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

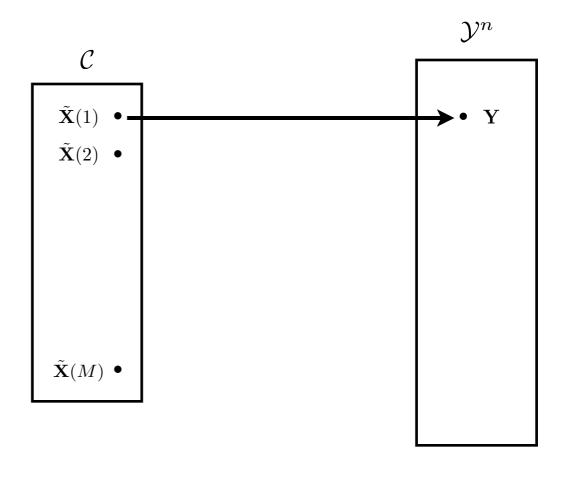


1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

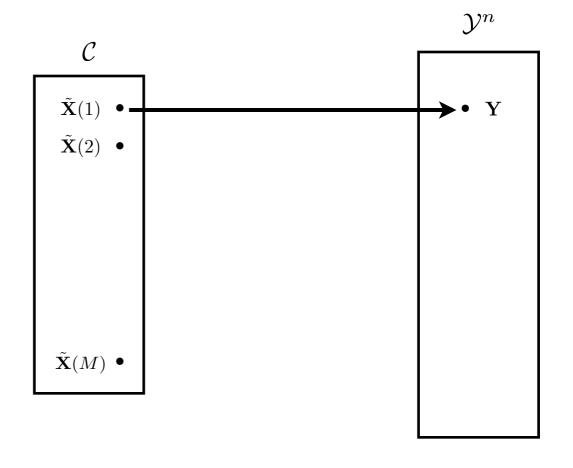
$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

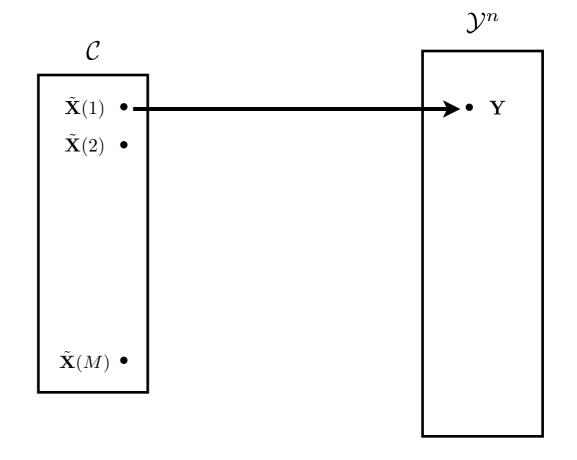
Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{\frac{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

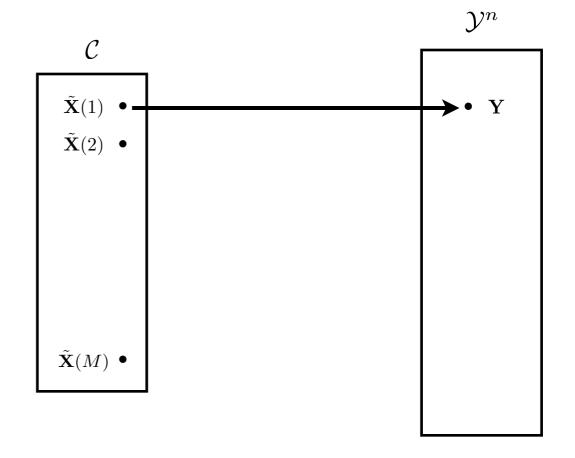
Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

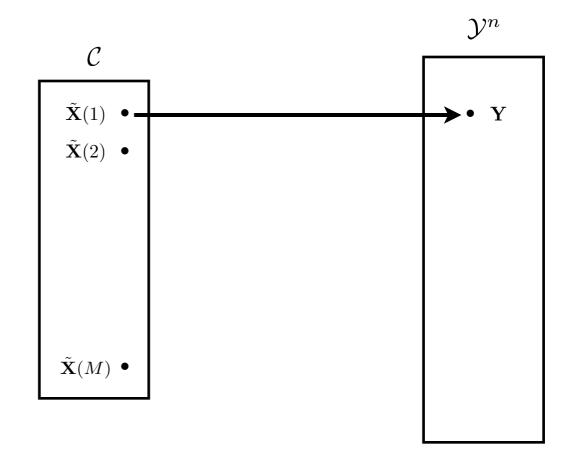
$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

5. Consider

 $\Pr\{Err|W=1\}$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

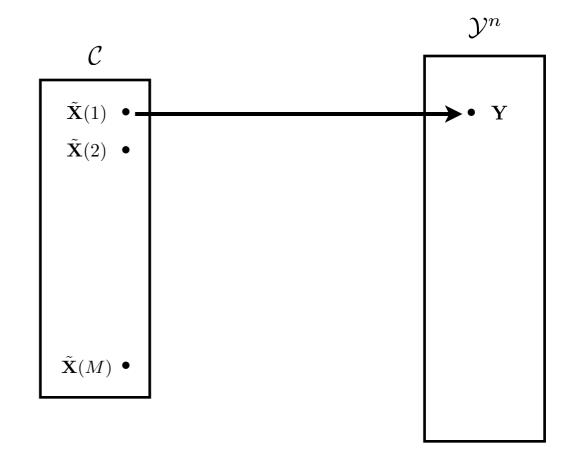
3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$\Pr\{Err|W = 1\}$$
$$= 1 - \Pr\{Err^{c}|W = 1\}$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

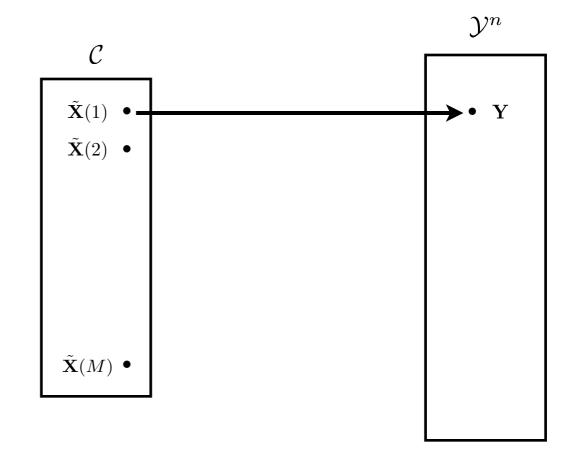
3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$\Pr \{ Err | W = 1 \}$$
$$= 1 - \Pr \{ Err^{c} | W = 1 \}$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

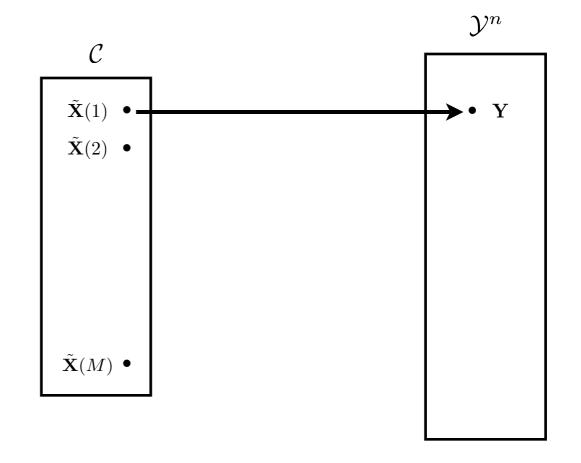
3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\} \le 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

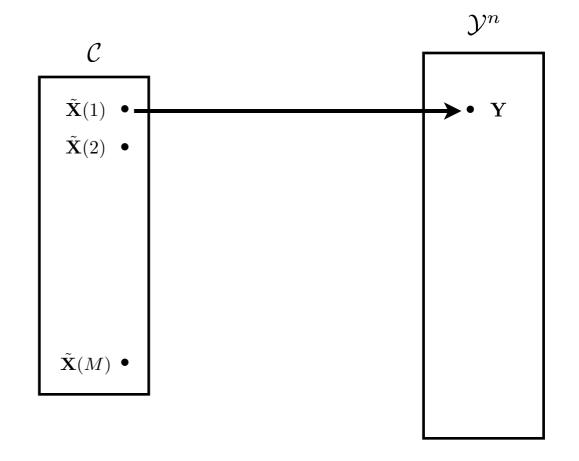
3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$\Pr\{Err|W = 1\} \\ = 1 - \Pr\{Err^{c}|W = 1\} \\ \leq 1 - \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\} \\ = \Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

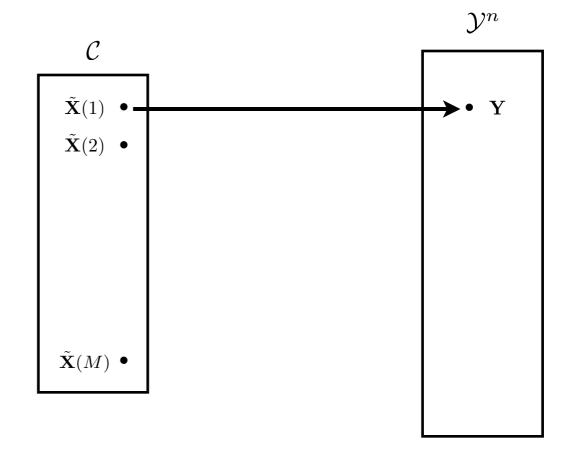
4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$\Pr\{Err|W = 1\} = 1 - \Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= \Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

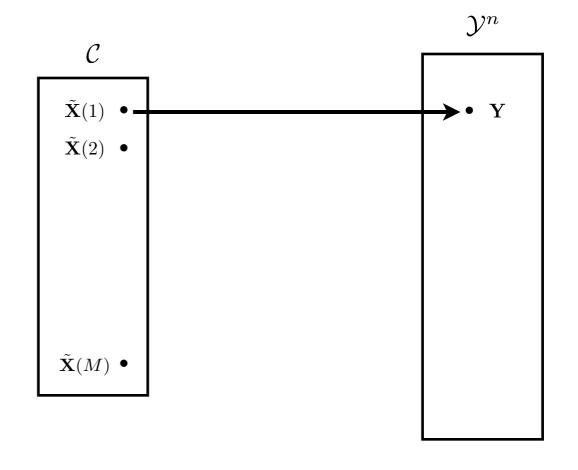
$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$\Pr\{Err|W = 1\} = 1 - \Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= \Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= \Pr\{\underline{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}}|W = 1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

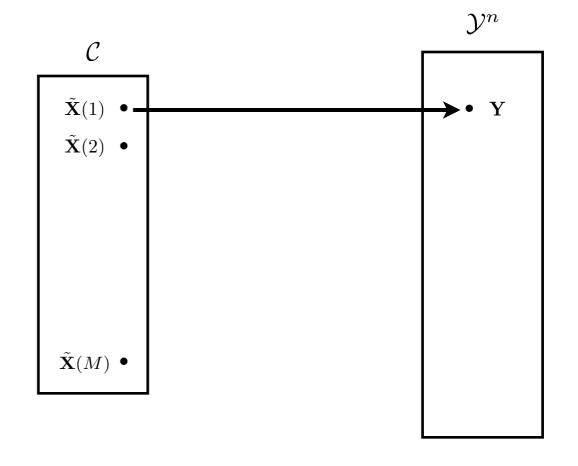
$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

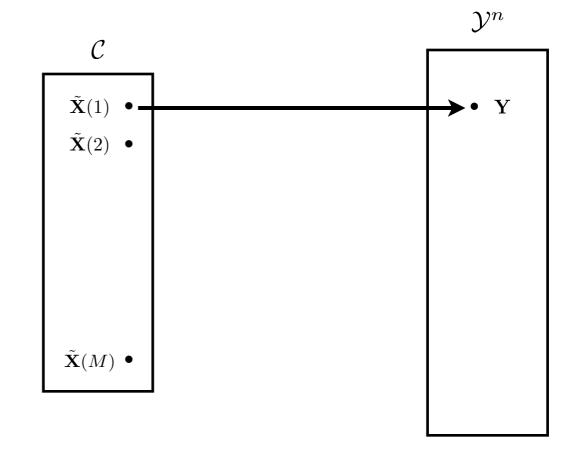
$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

6. By the union bound,

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

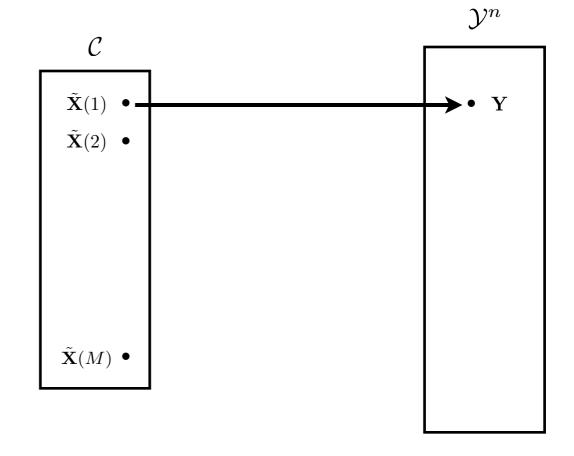
$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{\frac{E_{1}^{c}}{2} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$

$$\Pr\{Err|W=1\} \le \Pr\{\frac{E_1^c}{W}|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{\frac{E_w}{|w=1\}} = 1\}$$

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

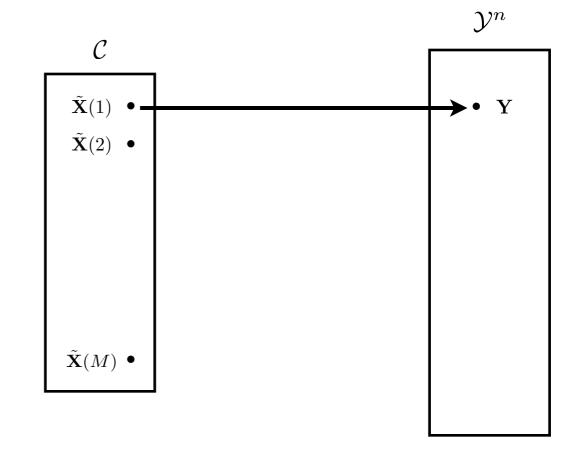
3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$\Pr\{Err|W = 1\} \\ = 1 - \Pr\{Err^{c}|W = 1\} \\ \leq 1 - \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\} \\ = \Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\} \\ = \Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

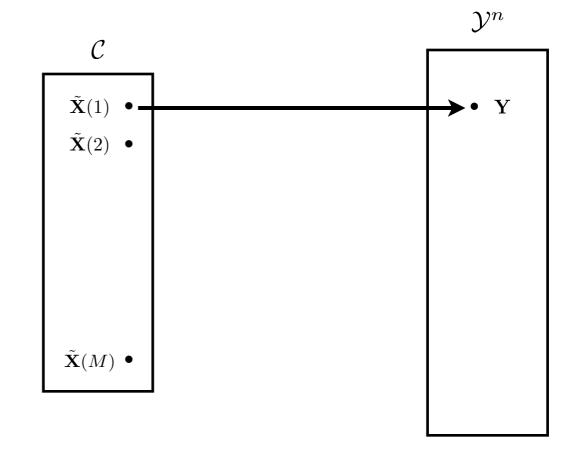
$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

5. Consider

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

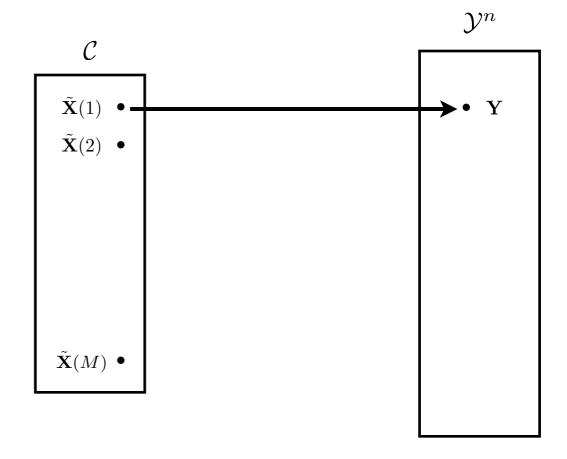
$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

5. Consider

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

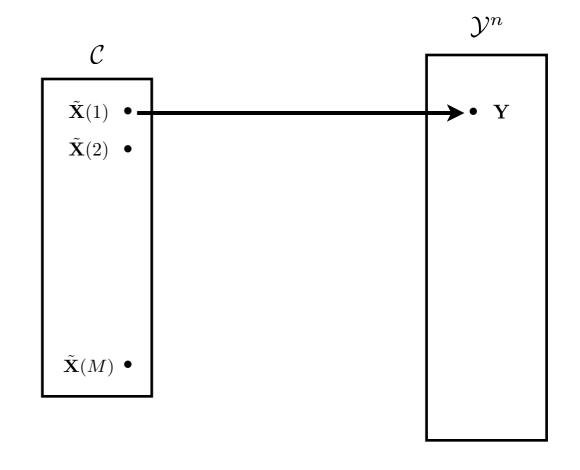
$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$

6. By the union bound,

$$\Pr\{Err|W=1\} \le \frac{\Pr\{E_1^c|W=1\}}{|W|=1} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr{Err} = \sum_{w=1}^{M} \Pr{Err|W = w} \Pr{W = w}$$
$$= \Pr{Err|W = 1} \sum_{w=1}^{M} \Pr{W = w}$$
$$= \Pr{Err|W = 1}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

5. Consider

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

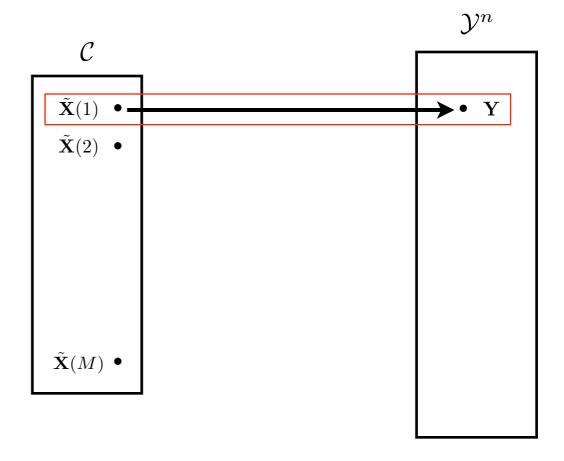
$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$

6. By the union bound,

$$\Pr\{Err|W=1\} \le \frac{\Pr\{E_1^c|W=1\}}{|W|=1} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

5. Consider

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

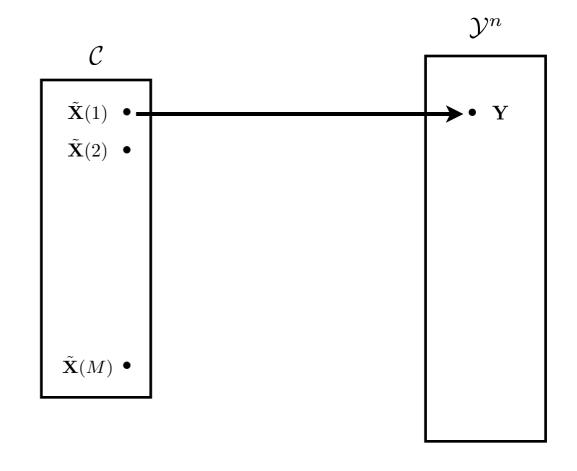
$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

5. Consider

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

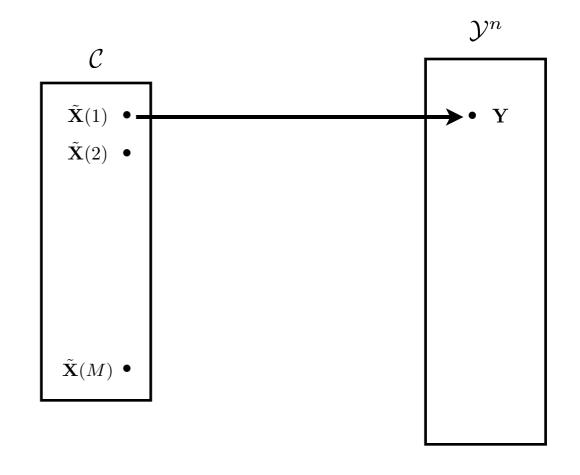
$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$



1. We need to show that $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

2. Consider

$$\Pr\{Err\} = \sum_{w=1}^{M} \Pr\{Err|W = w\} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\} \sum_{w=1}^{M} \Pr\{W = w\}$$
$$= \Pr\{Err|W = 1\}.$$

Assume without loss of generality that the message 1 is chosen.

3. For $1 \leq w \leq M$, define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}.$$

4. If E_1 occurs but E_w does not occur for all $2 \le w \le M$, then no decoding error. Therefore,

$$\Pr\{Err^{c} | W = 1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \cdots \cap E_{M}^{c} | W = 1\}.$$

5. Consider

$$Pr\{Err|W = 1\} = 1 - Pr\{Err^{c}|W = 1\}$$

$$\leq 1 - Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$

$$= Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$

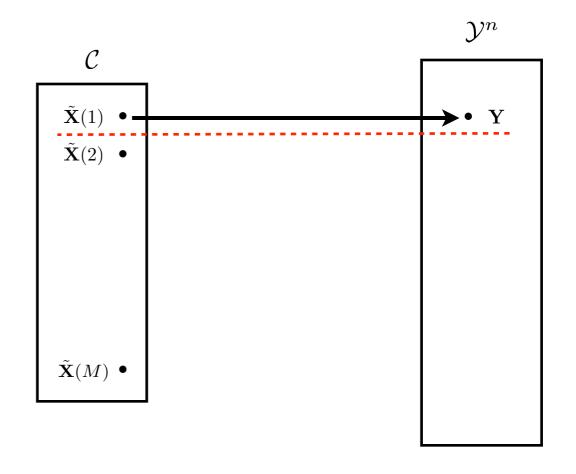
$$= Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}.$$

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$



6. By the union bound,

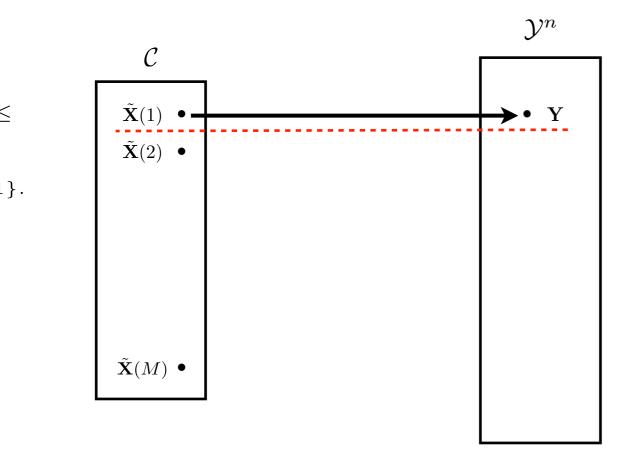
n

1

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

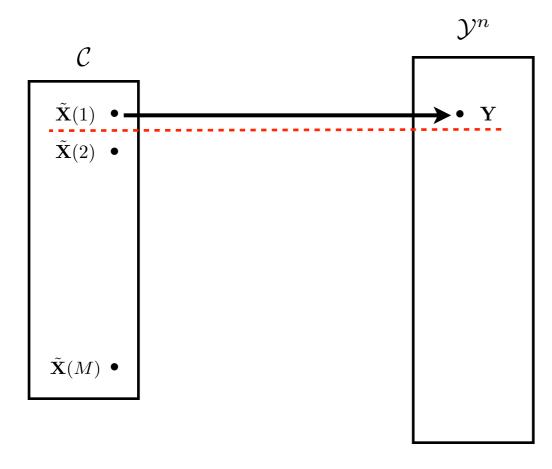


6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$



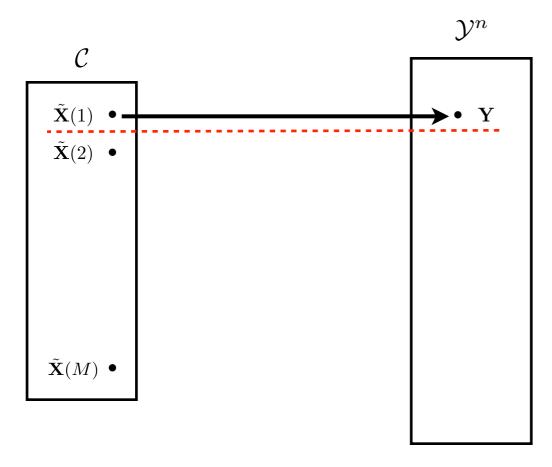
6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.



9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

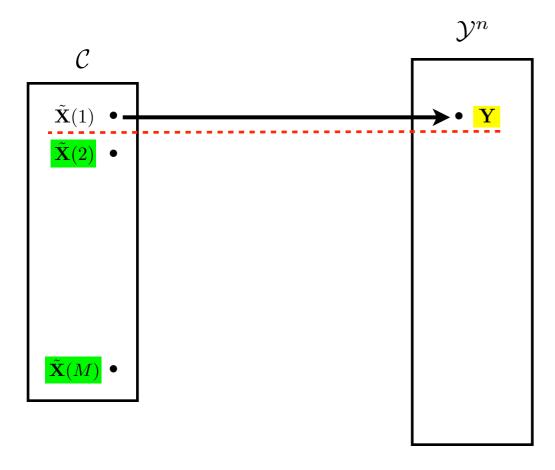
6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.



9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

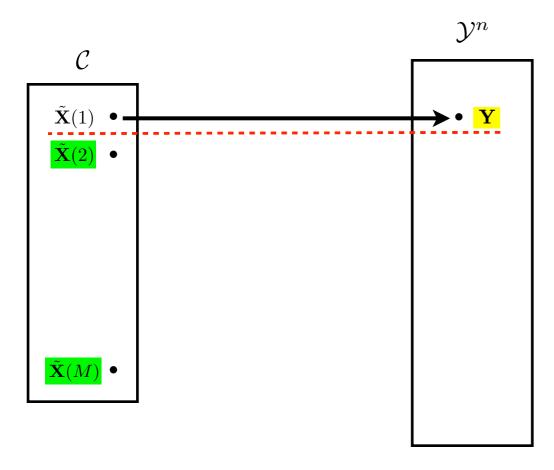
6. By the union bound,

 $\Pr\{Err|W = 1\} \le \Pr\{E_1^c|W = 1\} + \sum_{w=2}^M \Pr\{E_w|W = 1\}$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.



9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

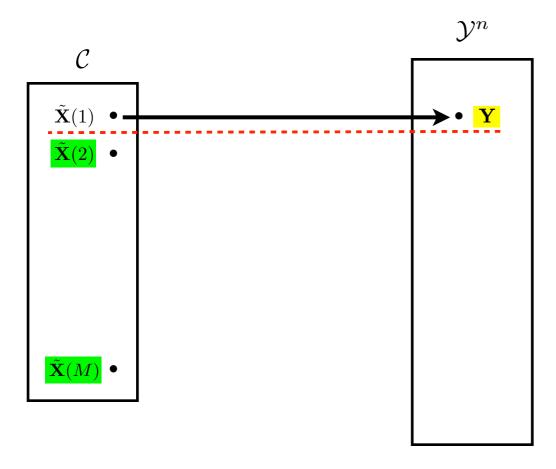
6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.



9. Since a DMC is memoryless, X' and Y' are independent dent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For
$$2 \leq w \leq M$$
,

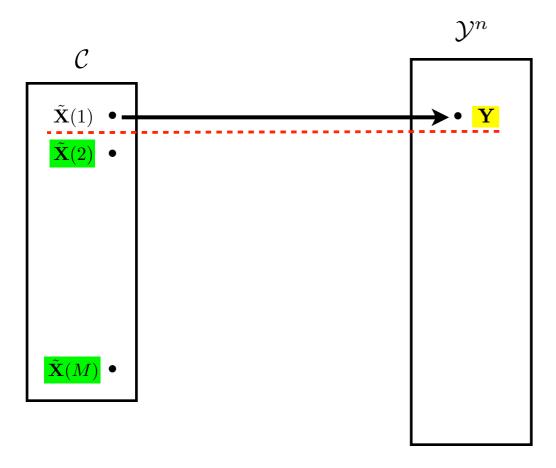
6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.



9. Since a DMC is memoryless, X' and Y' are independent dent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_w | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} | W = 1\}$$

6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

 \mathcal{C}

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

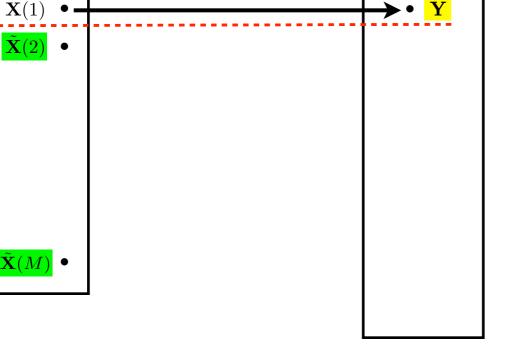
8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

 \mathcal{Y}^n

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_w | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} | W = 1\}$$



Lemma 7.17

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$

6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

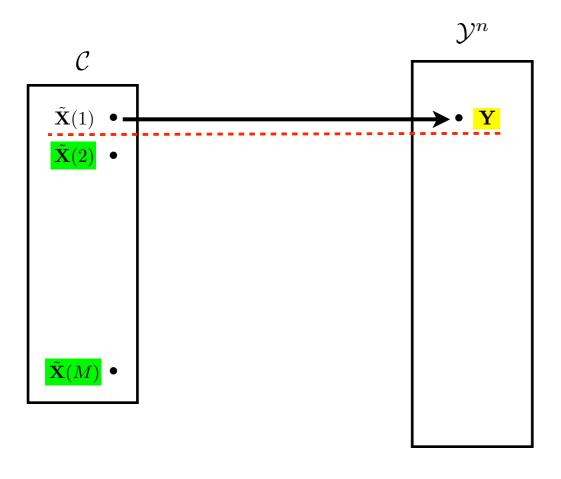
$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$



Lemma 7.17

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)}.$$

6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

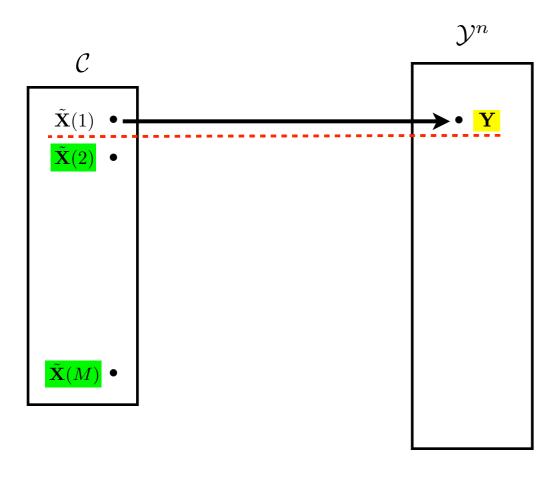
8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.



Lemma 7.17

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)}.$$

6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

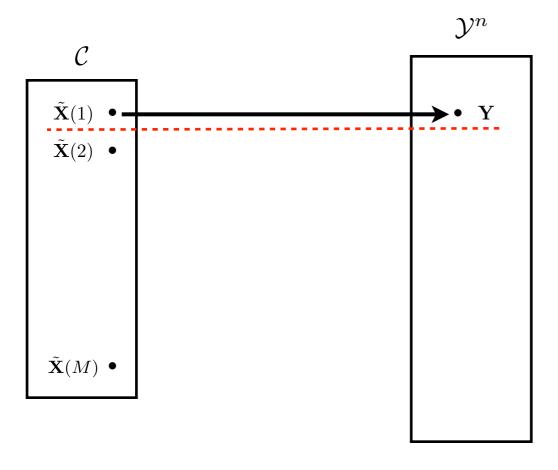
8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.



$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)}.$$

6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

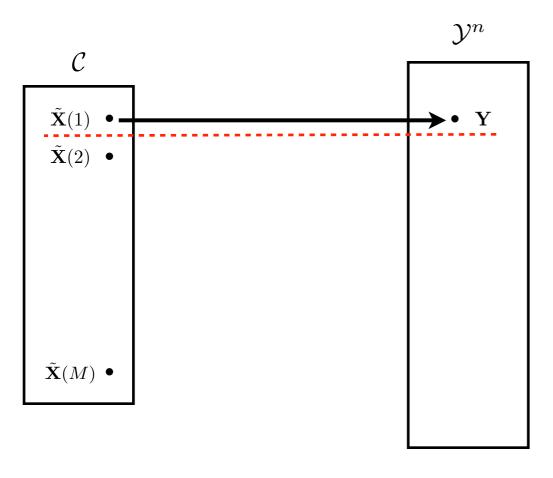
10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$

6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

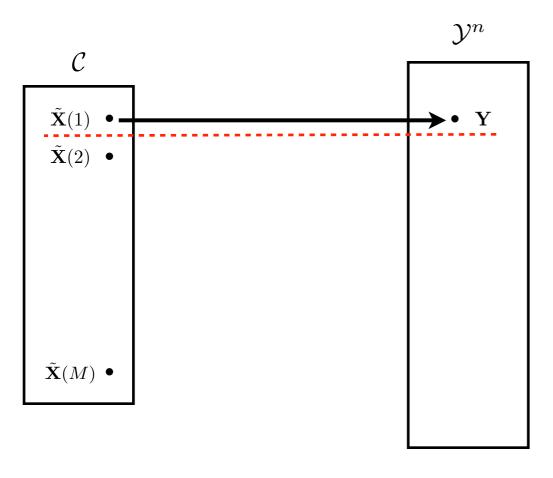
10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$

6. By the union bound,

 $\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

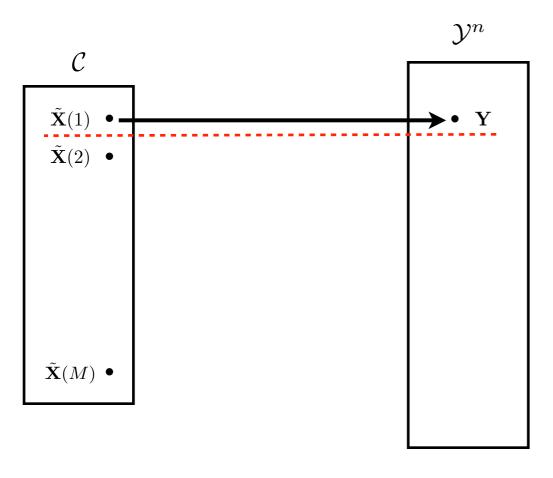
10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$

6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

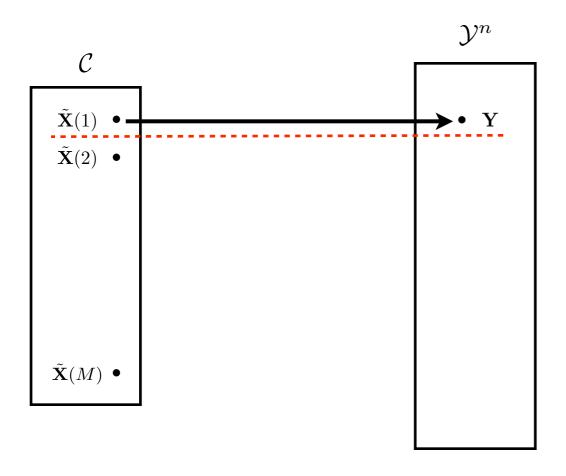
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\frac{\Pr\{Err\}}{\left\{Err\right\}} < \nu + 2^{n\left(I(X;Y) - \frac{\epsilon}{4}\right)} \cdot 2^{-n\left(I(X;Y) - \tau\right)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

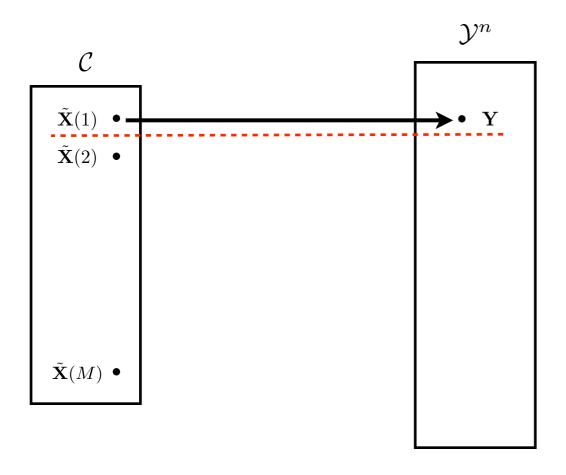
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\frac{\Pr\{Err\}}{\left\{Err\right\}} < \nu + 2^{n\left(I(X;Y) - \frac{\epsilon}{4}\right)} \cdot 2^{-n\left(I(X;Y) - \tau\right)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

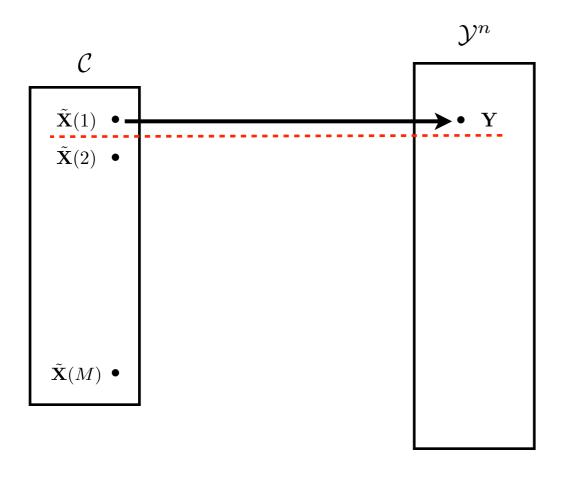
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\frac{\Pr\{Err\}}{\left\{Err\right\}} < \nu + 2^{n\left(I(X;Y) - \frac{\epsilon}{4}\right)} \cdot 2^{-n\left(I(X;Y) - \tau\right)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

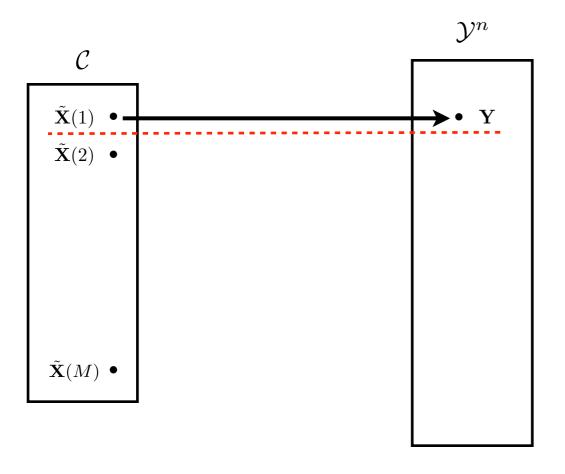
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\frac{\Pr\{Err\}}{\left\{Err\right\}} < \nu + 2^{n\left(I(X;Y) - \frac{\epsilon}{4}\right)} \cdot 2^{-n\left(I(X;Y) - \tau\right)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

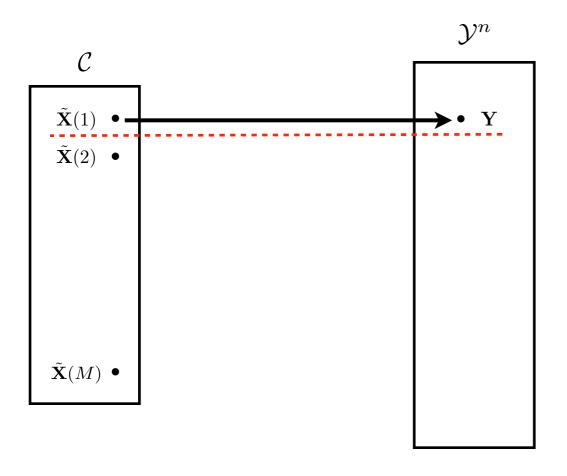
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\frac{\Pr\{Err\}}{\nu} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

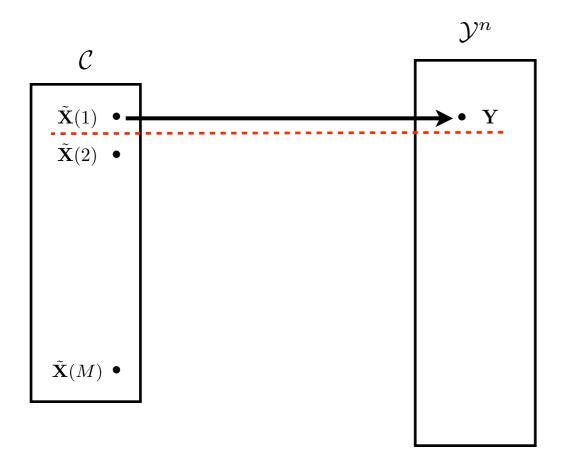
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

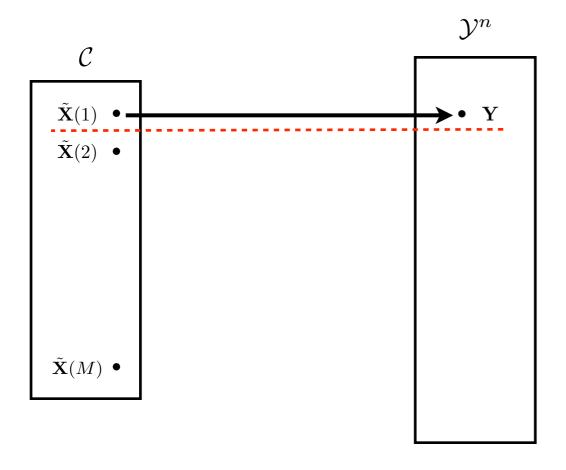
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\frac{\Pr\{Err\}}{\nu} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

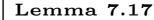
$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where
$$\tau \to 0$$
 as $\delta \to 0$

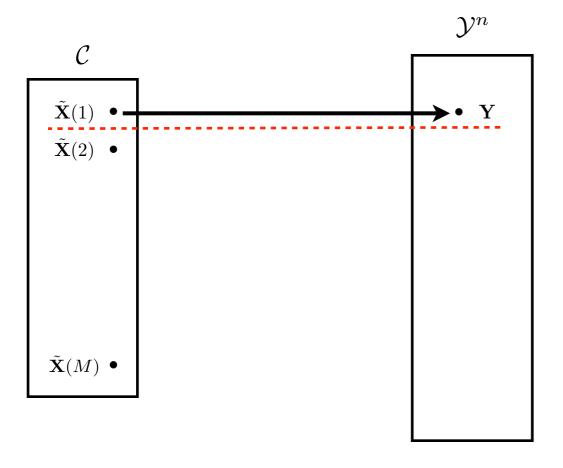
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

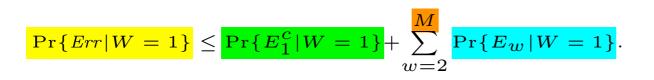
$$\frac{\Pr\{Err\}}{\Pr\{Err\}} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot \frac{2^{-n(I(X;Y) - \tau)}}{2^{-n(I(X;Y) - \tau)}}$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,



7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

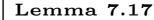
$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where
$$\tau \to 0$$
 as $\delta \to 0$

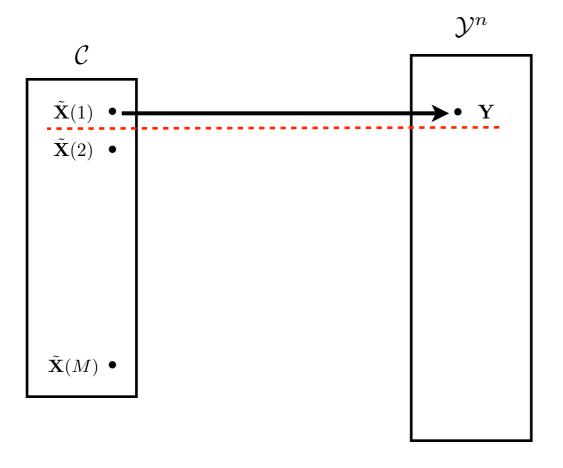
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

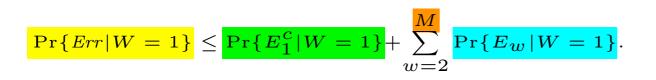
$$\frac{\Pr\{Err\}}{\Pr\{Err\}} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot \frac{2^{-n(I(X;Y) - \tau)}}{2^{-n(I(X;Y) - \tau)}}$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,



7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

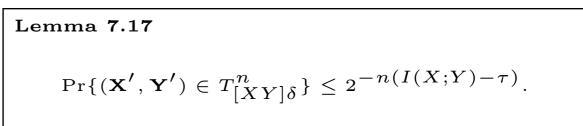
$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

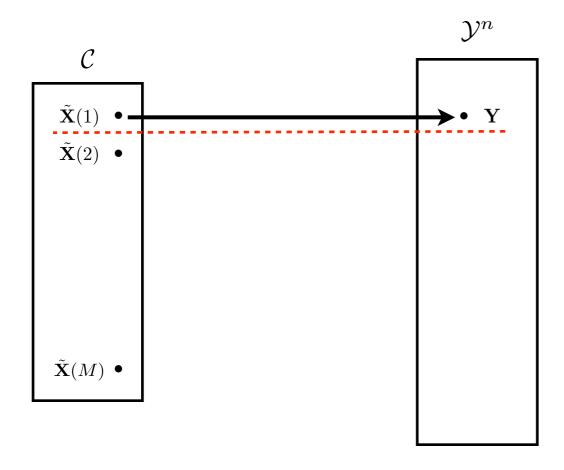
where
$$\tau \to 0$$
 as $\delta \to 0$

11. Note that

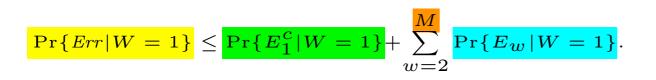
$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}$$

$$\frac{\Pr\{Err\}}{\Pr\{Err\}} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot \frac{2^{-n(I(X;Y) - \tau)}}{2^{-n(I(X;Y) - \tau)}}$$





6. By the union bound,



7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

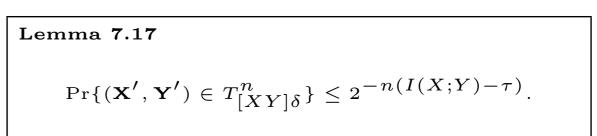
$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

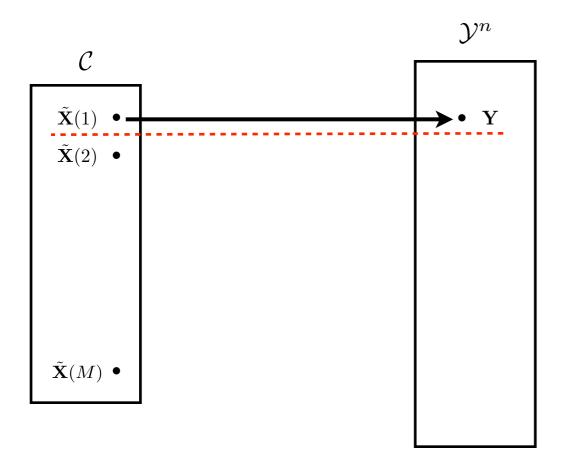
where
$$\tau \to 0$$
 as $\delta \to 0$

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}$$

$$\frac{\Pr\{Err\}}{\Pr\{Err\}} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot \frac{2^{-n(I(X;Y) - \tau)}}{2^{-n(I(X;Y) - \tau)}}$$





6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

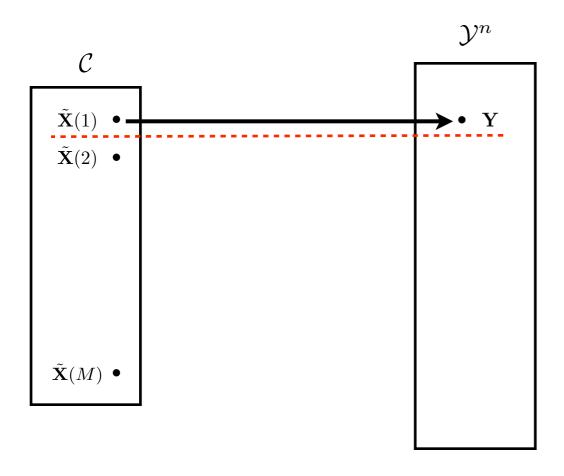
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$

$$\Pr\{(\mathbf{X}',\mathbf{Y}') \in T^n_{[XY]\delta}\} \leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

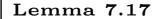
$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

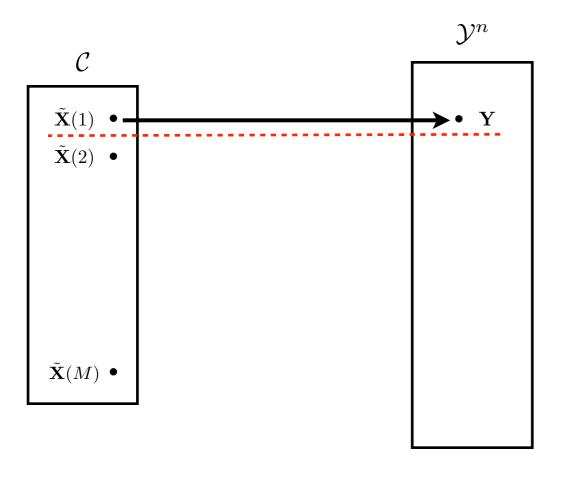
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X,Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

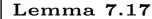
$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

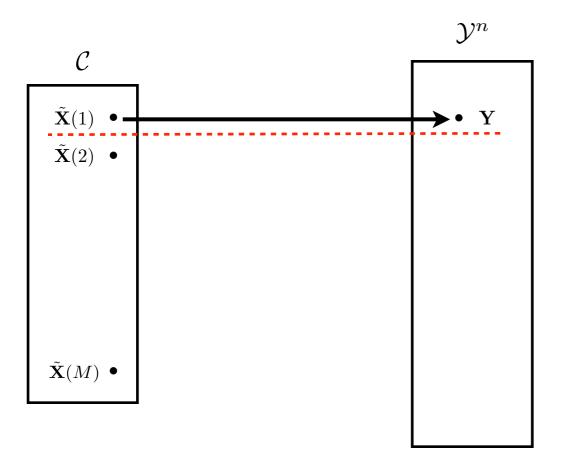
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X,Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X,Y) - \tau)}$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$



6. By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}.$$

7. By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu.$$

8. Conditioning on $\{W = 1\}$, for $2 \leq w \leq M$, $(\tilde{\mathbf{X}}(w), \mathbf{Y})$ are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where $X' \sim X$ and $Y' \sim Y$.

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

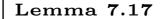
$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

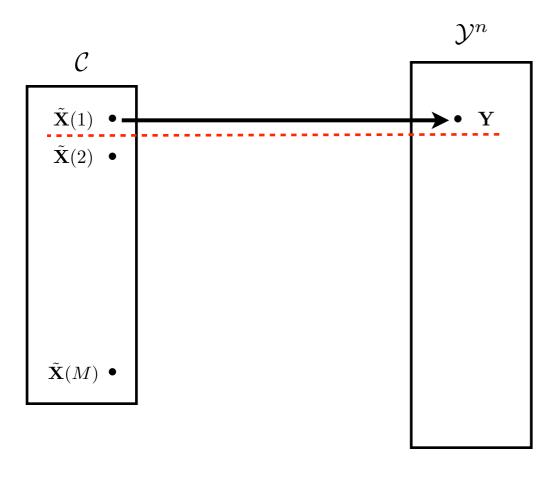
11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X,Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X,Y) - \tau)}$$
$$= \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$



$$\Pr\{(\mathbf{X}',\mathbf{Y}')\in T^n_{[XY]\delta}\}\leq 2^{-n(I(X;Y)-\tau)}.$$



9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

 $\langle \nu.$

[, 1-

:1}.

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)} \\ = \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$
$$= \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)} \\ = \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_w | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} | W = 1\}$$
$$\leq 2^{-n(I(X;Y) - \tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)} \\ = \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_w | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} | W = 1\}$$
$$\leq 2^{-n(I(X;Y) - \tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)} \\ = \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

14. Then

$$2^{-n\left(\frac{\epsilon}{4}-\tau\right)}\to 0$$

as $n \to \infty$.

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)} \\ = \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

14. Then

$$2^{-n\left(\frac{\epsilon}{4}-\tau\right)}\to 0$$

as $n \to \infty$.

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$
$$= \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)} \\ = \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

14. Then

$$2^{-n(\frac{\epsilon}{4}-\tau)} \to 0$$

as $n \to \infty$. 15. Let $\nu < \frac{\epsilon}{3}$ to obtain

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$
$$= \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$
$$< \frac{\epsilon}{3}$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

14. Then

$$2^{-n\left(\frac{\epsilon}{4}-\tau\right)} \to 0$$

as $n \to \infty$. 15. Let $\nu < \frac{\epsilon}{3}$ to obtain

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$
$$= \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$
$$< \frac{\epsilon}{3} \qquad (<\frac{\epsilon}{6})$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

14. Then

$$2^{-n(\frac{\epsilon}{4}-\tau)} \to 0$$

as $n \to \infty$. 15. Let $\nu < \frac{\epsilon}{3}$ to obtain

9. Since a DMC is memoryless, X' and Y' are independent because $\tilde{\mathbf{X}}(1)$ and $\tilde{\mathbf{X}}(w)$ are independent and the generation of \mathbf{Y} depends only on $\tilde{\mathbf{X}}(1)$. See textbook for a formal proof.

10. For $2 \leq w \leq M$,

$$\Pr\{E_{w}|W=1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^{n}_{[XY]\delta}|W=1\}$$
$$\leq 2^{-n(I(X;Y)-\tau)}$$

where $\tau \to 0$ as $\delta \to 0$.

11. Note that

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}.$$

12. Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)}$$
$$= \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}.$$
$$< \frac{\epsilon}{3} \qquad (<\frac{\epsilon}{6})$$

13. Recall that ϵ is fixed. Since $\tau \to 0$ as $\delta \to 0$, we can choose δ to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0.$$

14. Then

$$2^{-n\left(\frac{\epsilon}{4}-\tau\right)} \to 0$$

as $n \to \infty$. 15. Let $\nu < \frac{\epsilon}{3}$ to obtain

$$\Pr\{Err\} < \frac{\epsilon}{2}$$

for sufficiently large n.

• Let n be large.

- Let n be large.
- $\Pr{\{\tilde{\mathbf{X}}(1) \text{ jointly typical with } \mathbf{Y}\}} \to 1.$

- Let n be large.
- $\Pr{\{\tilde{\mathbf{X}}(1) \text{ jointly typical with } \mathbf{Y}\}} \to 1.$
- For $w \neq 1$, $\Pr{\{\tilde{\mathbf{X}}(w) \text{ jointly typical with } \mathbf{Y}\}} \approx 2^{-nI(X;Y)}$.

- Let n be large.
- $\Pr{\{\tilde{\mathbf{X}}(1) \text{ jointly typical with } \mathbf{Y}\}} \rightarrow 1.$
- For $w \neq 1$, $\Pr{\{\tilde{\mathbf{X}}(w) \text{ jointly typical with } \mathbf{Y}\}} \approx 2^{-nI(X;Y)}$.
- If $|\mathcal{C}| = M$ grows at a rate $\langle I(X; Y)$, then

 $\Pr{\{\tilde{\mathbf{X}}(w) \text{ jointly typical with } \mathbf{Y} \text{ for some } w \neq 1 \}}$

can be made arbitrarily small.

- Let n be large.
- $\Pr{\{\tilde{\mathbf{X}}(1) \text{ jointly typical with } \mathbf{Y}\}} \rightarrow 1.$
- For $w \neq 1$, $\Pr{\{\tilde{\mathbf{X}}(w) \text{ jointly typical with } \mathbf{Y}\}} \approx 2^{-nI(X;Y)}$.
- If $|\mathcal{C}| = M$ grows at a rate $\langle I(X; Y)$, then

 $\Pr{\{\tilde{\mathbf{X}}(w) \text{ jointly typical with } \mathbf{Y} \text{ for some } w \neq 1 \}}$

can be made arbitrarily small.

• Then $\Pr{\{\hat{W} \neq W\}}$ can be made arbitrarily small.

• According to the random coding scheme,

$$\Pr\{Err\} = \sum_{\mathcal{C}} \Pr\{\mathcal{C}\} \Pr\{Err|\mathcal{C}\}.$$

• According to the random coding scheme,

$$\Pr\{Err\} = \sum_{\mathcal{C}} \Pr\{\mathcal{C}\} \Pr\{Err|\mathcal{C}\}.$$

• Then there exists at least one codebook \mathcal{C}^* such that

$$P_e = \Pr\{Err|\mathcal{C}^*\} \le \Pr\{Err\} < \frac{\epsilon}{2}.$$

• According to the random coding scheme,

$$\Pr\{Err\} = \sum_{\mathcal{C}} \Pr\{\mathcal{C}\} \Pr\{Err|\mathcal{C}\}.$$

• Then there exists at least one codebook \mathcal{C}^* such that

$$P_e = \Pr\{Err|\mathcal{C}^*\} \le \Pr\{Err\} < \frac{\epsilon}{2}.$$

• By construction, this codebook has rate

$$\frac{1}{n}\log M > I(X;Y) - \frac{\epsilon}{2}.$$

• We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2}$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

$$\sum_{w=M/2+1}^{M} \lambda_w \le \sum_{w=1}^{M} \lambda_w < \left(\frac{M}{2}\right) \epsilon$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

$$\sum_{w=M/2+1}^{M} \lambda_w \le \sum_{w=1}^{M} \lambda_w < \left(\frac{M}{2}\right) \epsilon$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

$$\sum_{w=M/2}^{M} \lambda_w \le \sum_{w=1}^{M} \lambda_w < \left(\frac{M}{2}\right) \epsilon$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

$$\sum_{w=M/2+1}^{M} \lambda_w \le \sum_{w=1}^{M} \lambda_w < \left(\frac{M}{2}\right) \epsilon$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

$$\sum_{w=M/2+1}^{M} \lambda_w < \left(\frac{M}{2}\right)\epsilon$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

$$\sum_{w=M/2+1}^{M} \lambda_w \qquad \qquad < \left(\frac{M}{2}\right)\epsilon \implies \frac{1}{M/2} \sum_{w=M/2+1}^{M} \lambda_w < \epsilon.$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

$$\sum_{w=M/2+1}^{M} \lambda_w \qquad \qquad < \left(\frac{M}{2}\right)\epsilon \implies \frac{1}{M/2}\sum_{w=M/2+1}^{M} \lambda_w < \epsilon.$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

• Since M is even, M/2 is an integer. Then

$$\sum_{w=M/2+1}^{M} \lambda_w \qquad \qquad < \left(\frac{M}{2}\right)\epsilon \implies \frac{1}{M/2} \sum_{w=M/2+1}^{M} \lambda_w < \epsilon.$$

• Hence,

 $\lambda_{M/2\,+1} < \epsilon$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

• Since M is even, M/2 is an integer. Then

$$\sum_{w=M/2+1}^{M} \lambda_w \qquad \qquad < \left(\frac{M}{2}\right) \epsilon \implies \frac{1}{M/2} \sum_{w=M/2+1}^{M} \lambda_w < \epsilon.$$

• Hence,

$$\lambda_{M/2+1} < \epsilon \implies \lambda_{M/2} < \epsilon.$$

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

• Since M is even, M/2 is an integer. Then

$$\sum_{w=M/2+1}^{M} \lambda_w \qquad \qquad < \left(\frac{M}{2}\right)\epsilon \implies \frac{1}{M/2} \sum_{w=M/2+1}^{M} \lambda_w < \epsilon.$$

• Hence,

$$\lambda_{M/2+1} < \epsilon \implies \lambda_{M/2} < \epsilon.$$

• Conclusion: If $P_e < \epsilon/2$, then $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_{M/2} < \epsilon$.

- We want a code with $\lambda_{max} < \epsilon$, not just $P_e < \epsilon/2$.
- Without loss of generality, assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$. Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \quad \Longleftrightarrow \quad \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon.$$

• Since M is even, M/2 is an integer. Then

$$\sum_{w=M/2+1}^{M} \lambda_w \qquad \qquad < \left(\frac{M}{2}\right) \epsilon \implies \frac{1}{M/2} \sum_{w=M/2+1}^{M} \lambda_w < \epsilon.$$

• Hence,

$$\lambda_{M/2+1} < \epsilon \implies \lambda_{M/2} < \epsilon.$$

- Conclusion: If $P_e < \epsilon/2$, then $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_{M/2} < \epsilon$.
- Discard the worst half of the codewords in \mathcal{C}^* to achieve $\lambda_{max} < \epsilon$.

• After discarding the worse half of \mathcal{C}^* , the rate of the code becomes

$$\frac{1}{n}\log\frac{M}{2} = \frac{1}{n}\log M - \frac{1}{n}$$

$$> \left(I(X;Y) - \frac{\epsilon}{2}\right) - \frac{1}{n}$$

$$> I(X;Y) - \epsilon$$

for sufficiently large n.

• After discarding the worse half of \mathcal{C}^* , the rate of the code becomes

$$\frac{1}{n}\log\frac{M}{2} = \frac{1}{n}\log M - \frac{1}{n}$$

$$> \left(I(X;Y) - \frac{\epsilon}{2}\right) - \frac{1}{n}$$

$$> I(X;Y) - \epsilon$$

for sufficiently large n.

• Here we assume that the decoding function is unchanged, so that deletion of worst half of the codewords does not affect the conditional probabilities of error of the remaining codewords.