
7.4 Achievability



How to Prove Achievability

• Consider a DMC p(y|x).

• For every input distribution p(x), prove that the rate I(X;Y ) is achievable
by showing for large n the existence of a channel code such that

1. the rate of the code is arbitrarily close to I(X;Y );
2. the maximal probability of error �max is arbitrarily small.

• Choose the input distribution p(x) to be one that achieves the channel
capacity, i.e., I(X;Y ) = C.
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are independent. Then
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[XY ]�}  2

�n(I(X;Y )�⌧),

where ⌧ ! 0 as � ! 0.
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column with uniform distribution.
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Pr{obtaining a jointly typical pair} ⇡ 2

nH(X,Y )

2

nH(X)
2
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= 2

�nI(X;Y )

An Interpretation of Lemma 7.17
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Random Coding Scheme

• Generate each component according to p(x).

• There are a total of |X|Mn

possible codebooks that

can be constructed.

• Regard two codebooks whose sets of codewords are

permutations of each other as two different codebooks.

Parameter Settings

1. Fix ✏ > 0 and input distribution p(x). Let � to be
specified later.

Let M be an even integer satisfying

I(X; Y ) �
✏

2
<

1

n

log M < I(X; Y ) �
✏

4
,

where n is sufficiently large, i.e., M ⇡ 2nI(X;Y ).

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code by gen-
erating M codewords in Xn independently and identi-
cally according to p(x)n. Denote these codewords by
X̃(1), X̃(2), · · · , X̃(M).

2. Reveal the codebook C to both the encoder and the
decoder.

3. A message W is chosen from W according to the
uniform distribution.

4. Transmit X = X̃(W ) through the channel.

5. The channel outputs a sequence Y according to

Pr{Y = y|X̃(W ) = x} =
nY

i=1
p(y

i

|x
i

).

6. The sequence Y is decoded to the message w if

• (X̃(w), Y) 2 T

n

[XY ]� , and

• there does not exists w

0 6= w such that
(X̃(w

0), Y) 2 T

n

[XY ]� .

Otherwise, Y is decoded to a constant message in W.
Denote by Ŵ the message to which Y is decoded.

X̃(1)

X̃(2)

X̃(M)

n
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Performance Analysis

1. We need to show that Pr{Err} = Pr{ ˆW 6= W} can

be made arbitrarily small.

2. Consider

Pr{Err} =

MX

w=1

Pr{Err|W = w}Pr{W = w}

= Pr{Err|W = 1}
MX

w=1

Pr{W = w}

= Pr{Err|W = 1}.

Assume without loss of generality that the message 1

is chosen.

3. For 1  w  M, define the event

Ew = {( ˜X(w), Y) 2 T n
[XY ]�}.

4. If E
1

occurs but Ew does not occur for all 2  w 
M, then no decoding error. Therefore,

Pr{Errc|W = 1} � Pr{E
1

\Ec
2

\Ec
3

\· · ·\Ec
M |W = 1}.

5. Consider

Pr{Err|W = 1}

= 1 � Pr{Errc|W = 1}

 1 � Pr{E
1

\ Ec
2

\ Ec
3

\ · · · \ Ec
M |W = 1}

= Pr{(E
1

\ Ec
2

\ Ec
3

\ · · · \ Ec
M )

c|W = 1}

= Pr{Ec
1

[ E
2

[ E
3

[ · · · [ EM |W = 1}.

6. By the union bound,

Pr{Err|W = 1}  Pr{Ec
1

|W = 1}+
MX

w=2

Pr{Ew|W = 1}.

7. By strong JAEP,

Pr{Ec
1

|W = 1} = Pr{( ˜X(1), Y) 62 T n
[XY ]�|W = 1} < ⌫.

8. Conditioning on {W = 1}, for 2  w  M,

(

˜X(w), Y) are n i.i.d. copies of the pair of generic ran-

dom variables (X0, Y 0), where X0 ⇠ X and Y 0 ⇠ Y .
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Idea of Analysis

• Let n be large.

• Pr{X̃(1) jointly typical with Y}⇥ 1.

• For i ⇤= 1, Pr{X̃(i) jointly typical with Y} � 2�nI(X;Y ).

• If |C| = M grows at a rate < I(X;Y ), then

Pr{X̃(i) jointly typical with Y for some i ⇤= 1 }

can be made arbitrarily small.

• Then Pr{Ŵ ⇤= W} can be made arbitrarily small.



• Let n be large.

• Pr{ ˜X(1) jointly typical with Y} ! 1.

• For w 6= 1, Pr{ ˜X(w) jointly typical with Y} ⇡ 2

�nI(X;Y )
.

• If |C| = M grows at a rate < I(X;Y ), then

Pr{ ˜X(w) jointly typical with Y for some w 6= 1 }

can be made arbitrarily small.

• Then Pr{ ˆW 6= W} can be made arbitrarily small.

Idea of Analysis



• Let n be large.

• Pr{ ˜X(1) jointly typical with Y} ! 1.

• For w 6= 1, Pr{ ˜X(w) jointly typical with Y} ⇡ 2

�nI(X;Y )
.

• If |C| = M grows at a rate < I(X;Y ), then

Pr{ ˜X(w) jointly typical with Y for some w 6= 1 }

can be made arbitrarily small.

• Then Pr{ ˆW 6= W} can be made arbitrarily small.

Idea of Analysis



• Let n be large.

• Pr{ ˜X(1) jointly typical with Y} ! 1.

• For w 6= 1, Pr{ ˜X(w) jointly typical with Y} ⇡ 2

�nI(X;Y )
.

• If |C| = M grows at a rate < I(X;Y ), then

Pr{ ˜X(w) jointly typical with Y for some w 6= 1 }

can be made arbitrarily small.

• Then Pr{ ˆW 6= W} can be made arbitrarily small.

Idea of Analysis



• Let n be large.

• Pr{ ˜X(1) jointly typical with Y} ! 1.

• For w 6= 1, Pr{ ˜X(w) jointly typical with Y} ⇡ 2

�nI(X;Y )
.

• If |C| = M grows at a rate < I(X;Y ), then

Pr{ ˜X(w) jointly typical with Y for some w 6= 1 }

can be made arbitrarily small.

• Then Pr{ ˆW 6= W} can be made arbitrarily small.

Idea of Analysis



Idea of Analysis

• Let n be large.

• Pr{ ˜X(1) jointly typical with Y} ! 1.

• For w 6= 1, Pr{ ˜X(w) jointly typical with Y} ⇡ 2

�nI(X;Y )
.

• If |C| = M grows at a rate < I(X;Y ), then

Pr{ ˜X(w) jointly typical with Y for some w 6= 1 }

can be made arbitrarily small.

• Then Pr{ ˆW 6= W} can be made arbitrarily small.



Existence of Deterministic Code

• According to the random coding scheme,

Pr{Err} =

X

C
Pr{C}Pr{Err |C}.

• Then there exists at least one codebook C⇤ such that

Pe = Pr{Err |C⇤}  Pr{Err} <
✏

2

.

• By construction, this codebook has rate

1

n
log M > I(X;Y )� ✏

2

.
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Code with λmax < ε
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• After discarding the worse half of C⇤, the rate of the code becomes
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for su�ciently large n.

• Here we assume that the decoding function is unchanged, so that deletion
of worst half of the codewords does not a↵ect the conditional probabilities
of error of the remaining codewords.
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