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e The dependency graph can be composed accordingly.
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e For large n,

1

poy log M is the rate of the channel code.

o If % log M > C, then Pe is bounded away

from O for large n.

e This implies that if % log M > C', then
Pe > 0 for all n.

e Also note that this lower bound on P tends
to 1 as %logM — 00.



