

7.3 The Converse

• The communication system consists of the r.v.'s

 $W, X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n, \hat{W}$

generated in this order.

• The communication system consists of the r.v.'s

$$
W, X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n, \hat{W}
$$

generated in this order.

• The memorylessness of the DMC imposes the following Markov constraint for each *i*:

$$
\underbrace{(W, X_1, Y_1, \cdots, X_{i-1}, Y_{i-1})}_{T_{i-}} \to X_i \to Y_i
$$

• The communication system consists of the r.v.'s

$$
W, X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n, \hat{W}
$$

generated in this order.

• The memorylessness of the DMC imposes the following Markov constraint for each *i*:

$$
\underbrace{(W, X_1, Y_1, \cdots, X_{i-1}, Y_{i-1})}_{T_{i-}} \to X_i \to Y_i
$$

• The dependency graph can be composed accordingly.

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(\underline{w},x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) \;\;=\;\; q(\underline{w})q(x_1|w)q(y_1|w,x_1)q(x_2|w,x_1,y_1)q(y_2|w,x_1,y_1,x_2)\cdots$

 $q(w, \underline{x_1}, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(\underline{x_1}|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(\underline{w}, \underline{x_1}, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(\underline{x_1}|\underline{w})q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(\underline{y_1}|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$

 $q(\underline{w}, \underline{x_1}, \underline{y_1}, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(\underline{y_1}|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, \underline{x_2}, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(\underline{x_2}|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(\underline{w}, \underline{x_1}, \underline{y_1}, \underline{x_2}, \underline{y_2}, \cdots, \underline{x_n}, \underline{y_n}, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(\underline{x_2}|w, \underline{x_1}, \underline{y_1})q(y_2|w, x_1, \underline{y_1}, x_2)\cdots$

 $q(w, x_1, y_1, x_2, \underline{y_2}, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(\underline{y_2}|w, x_1, y_1, x_2) \cdots$

 $q(\underline{w}, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(\underline{y_2}|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|y, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y}, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y}, x_1)q(x_2|w, \mathbf{y}, y_1)q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y}, x_1)q(x_2|w, \mathbf{y}, \mathbf{y})q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y}, x_1)q(x_2|w, \mathbf{y}, \mathbf{y})q(y_2|w, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y}, x_1)q(x_2|w, \mathbf{y}, \mathbf{y})q(y_2|\mathbf{y}, x_1, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y}, x_1)q(x_2|w, \mathbf{y}, \mathbf{y})q(y_2|\mathbf{y}, \mathbf{y}, y_1, x_2) \cdots$

 $q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y}, x_1)q(x_2|w, \mathbf{y}, \mathbf{y})q(y_2|\mathbf{y}, \mathbf{y}, \mathbf{y}, x_2) \cdots$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

=
$$
q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

=
$$
q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

=
$$
q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

$$
q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) = q(w)q(x_1|w)q(y_1|\mathbf{y},x_1)q(x_2|w,\mathbf{y},\mathbf{y})q(y_2|\mathbf{y},\mathbf{y},\mathbf{y},x_2)\cdots
$$

$$
= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots
$$

• Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.

- *•* Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}$ *n* ⇥ *Y n* $\times \hat{W}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

- *•* Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}$ *n* ⇥ *Y n* $\times \hat{W}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(w,\mathbf{x},\mathbf{y}|\hat{w})=q(w)\Bigg(\prod_{i=1}^n q(x_i|w)\Bigg)\Bigg(\prod_{i=1}^n p(y_i|x_i)\Bigg)q(\hat{w}|\mathbf{y}).
$$

- *•* Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}$ *n* ⇥ *Y n* $\times \hat{W}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(w,\mathbf{x},\mathbf{y}|\hat{w})=q(w)\Biggl(\prod_{i=1}^n q(x_i|w)\Biggr)\Biggl(\prod_{i=1}^n p(y_i|x_i)\Biggr)q(\hat{w}|\mathbf{y}).
$$

• $q(w) > 0$ for all *w* so that $q(x_i|w)$ are welldefined.

- *•* Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}$ *n* ⇥ *Y n* $\times \hat{W}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(w,\mathbf{x},\mathbf{y}|\hat{w})=q(w)\Biggl(\prod_{i=1}^n q(x_i|w)\Biggr)\Biggl(\prod_{i=1}^n p(y_i|x_i)\Biggr)q(\hat{w}|\mathbf{y}).
$$

- $q(w) > 0$ for all *w* so that $q(x_i|w)$ are welldefined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.

- *•* Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}$ *n* ⇥ *Y n* $\times \hat{W}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(w,\mathbf{x},\mathbf{y}|\hat{w})=q(w)\Biggl(\prod_{i=1}^n q(x_i|w)\Biggr)\Biggl(\prod_{i=1}^n p(y_i|x_i)\Biggr)q(\hat{w}|\mathbf{y}).
$$

- $q(w) > 0$ for all *w* so that $q(x_i|w)$ are welldefined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.
- *•* The dependency graph suggests the Markov chain $\tilde{W} \to \mathbf{X} \to \tilde{\mathbf{Y}} \to \hat{W}$.

- *•* Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}$ *n* ⇥ *Y n* $\times \hat{W}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(w,\mathbf{x},\mathbf{y}|\hat{w})=q(w)\Biggl(\prod_{i=1}^n q(x_i|w)\Biggr)\Biggl(\prod_{i=1}^n p(y_i|x_i)\Biggr)q(\hat{w}|\mathbf{y}).
$$

- $q(w) > 0$ for all *w* so that $q(x_i|w)$ are welldefined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.
- *•* The dependency graph suggests the Markov chain $\tilde{W} \to \mathbf{X} \to \tilde{\mathbf{Y}} \to \hat{W}$.
- *•* This can be formally justified by invoking Proposition 2.9.

- *•* Use *q* to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}$ *n* ⇥ *Y n* $\times \hat{W}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(w, \mathbf{x}, \mathbf{y}|\hat{w}) = \underbrace{a(w)}_{q(w)} \underbrace{\left(\prod_{i=1}^{n} q(x_i|w)\right)}_{i=1} \left(\prod_{i=1}^{n} p(y_i|x_i)\right) \underbrace{a(\mathbf{y}, w)}_{q(\hat{w}|\mathbf{y})}.
$$

- $q(w) > 0$ for all *w* so that $q(x_i|w)$ are welldefined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.
- *•* The dependency graph suggests the Markov chain $\tilde{W} \to \mathbf{X} \to \tilde{\mathbf{Y}} \to \hat{W}$.
- *•* This can be formally justified by invoking Proposition 2.9.

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

=
$$
\sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

=
$$
\sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$
2. Furthermore,

 $q(\mathbf{x}) = \sum$

 $\overline{\mathbf{y}}$

q(x*,* y)

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

 $q(\mathbf{x}) = \sum$

 $\overline{\mathbf{y}}$

q(x*,* y)

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

=
$$
\sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

2. Furthermore,

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

=
$$
\sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n i*=1 $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

=
$$
\sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

=
$$
\left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

=
$$
\sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

=
$$
\left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

i=1

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

=
$$
\sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

=
$$
\left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

=
$$
\sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

=
$$
\left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

i=1

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

=
$$
\sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

=
$$
\left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

For
$$
n = 2
$$
,
\n
$$
\sum_{y_1} \sum_{y_2} \prod_{i=1}^{2} p(y_i | x_i)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

For
$$
n = 2
$$
,
\n
$$
\sum_{y_1} \sum_{y_2} \prod_{i=1}^{2} p(y_i | x_i)
$$
\n
$$
= \sum_{y_1} \sum_{y_2} p(y_1 | x_1) p(y_2 | x_2)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

For
$$
n = 2
$$
,
\n
$$
\sum_{y_1} \sum_{y_2} \prod_{i=1}^{2} p(y_i|x_i)
$$
\n
$$
= \sum_{y_1} \sum_{y_2} p(y_1|x_1)p(y_2|x_2)
$$
\n
$$
= \left(\sum_{y_1} p(y_1|x_1)\right) \left(\sum_{y_2} p(y_2|x_2)\right)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

For
$$
n = 2
$$
,
\n
$$
\sum_{y_1} \sum_{y_2} \prod_{i=1}^{2} p(y_i|x_i)
$$
\n
$$
= \sum_{y_1} \sum_{y_2} p(y_1|x_1)p(y_2|x_2)
$$
\n
$$
= \left(\sum_{y_1} p(y_1|x_1)\right) \left(\sum_{y_2} p(y_2|x_2)\right)
$$
\n
$$
= \prod_{i=1}^{2} \left(\sum_{y_i} p(y_i|x_i)\right)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n i*=1 $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \prod_{i} \left(\sum_{y_i} p(y_i|x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i|w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
\begin{array}{rcl}\n\mathbf{q}(\mathbf{x}, \mathbf{y}) & = & \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\
& = & \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y}) \\
& = & \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y}) \\
& = & \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].\n\end{array}
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
\begin{array}{rcl}\n\mathbf{q}(\mathbf{x}, \mathbf{y}) & = & \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\
& = & \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y}) \\
& = & \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y}) \\
& = & \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].\n\end{array}
$$

2. Furthermore,

$$
\begin{array}{rcl}\n\mathbf{q}(\mathbf{x}) & = & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\
& = & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right] \\
& = & \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right] \\
& = & \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right) \\
& = & \sum_{w} q(w) \prod_{i} q(x_i | w).\n\end{array}
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_i p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(\overline{x_i} | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(\hat{x}_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \prod_{i} \left(\sum_{y_i} p(y_i|x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i|w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_i p(y_i|x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $i=1$ $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(\hat{x}_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \prod_{i} \left(\sum_{y_i} p(y_i|x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i|w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i|x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i|w) \right] \prod_{i} \left(\sum_{y_i} p(y_i|x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i|w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n i*=1 $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n i*=1 $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n i*=1 $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $i=1$ $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $i=1$ $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
-E\log q(\mathbf{Y}|\mathbf{X}) = -E\log \prod_{i=1}^n p(Y_i|X_i) = \sum_{i=1}^n \left[-E\log p(Y_i|X_i) \right],
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$
$q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $i=1$ $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
-E\log\underline{q(\mathbf{Y}|\mathbf{X})} = -E\log\prod_{i=1}^n p(Y_i|X_i) = \sum_{i=1}^n \left[-E\log p(Y_i|X_i)\right],
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $i=1$ $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
-E\log \underline{q(\mathbf{Y}|\mathbf{X})} = -E\log \prod_{i=1}^n p(Y_i|X_i) = \sum_{i=1}^n \left[-E\log p(Y_i|X_i) \right],
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

 $q(\mathbf{y}|\mathbf{x}) = \prod$ *n* $i=1$ $p(y_i|x_i)$. (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
-E\log q(\mathbf{Y}|\mathbf{X}) = -E\log \prod_{i=1}^n p(Y_i|X_i) = \sum_{i=1}^n \left[-E\log p(Y_i|X_i) \right],
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
\frac{-E \log q(\mathbf{Y}|\mathbf{X})}{i} = -E \log \prod_{i=1}^{n} p(Y_i|X_i) = \sum_{i=1}^{n} \left[-E \log p(Y_i|X_i) \right],
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
\frac{-E \log q(\mathbf{Y}|\mathbf{X})}{i} = -E \log \prod_{i=1}^{n} p(Y_i|X_i) = \sum_{i=1}^{n} \left[-E \log p(Y_i|X_i) \right],
$$

or

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_i p(y_i|x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
-E \log q(\mathbf{Y}|\mathbf{X}) = -E \log \prod_{i=1}^{n} p(Y_i|X_i) = \sum_{i=1}^{n} \left[-E \log p(Y_i|X_i) \right],
$$

or

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

Proposition $H(Y|X) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
-E \log q(\mathbf{Y}|\mathbf{X}) = -E \log \prod_{i=1}^{n} p(Y_i|X_i) = \sum_{i=1}^{n} \left[-E \log p(Y_i|X_i) \right],
$$

or

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).
$$
 (1)

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$
q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})
$$

\n
$$
= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})
$$

\n
$$
= \sum_{w} q(w) \left(\prod_{i} q(x_i | w) \right) \left(\prod_{i} p(y_i | x_i) \right) \sum_{\hat{w}} q(\hat{w} | \mathbf{y})
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right].
$$

 $\text{Proposition } H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).$

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Therefore by (1),

$$
-E \log q(\mathbf{Y}|\mathbf{X}) = -E \log \prod_{i=1}^{n} p(Y_i|X_i) = \sum_{i=1}^{n} \left[-E \log p(Y_i|X_i) \right],
$$

or

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).
$$

2. Furthermore,

$$
q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})
$$

\n
$$
= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \left[\sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} \prod_{i} p(y_i | x_i) \right]
$$

\n
$$
= \left[\sum_{w} q(w) \prod_{i} q(x_i | w) \right] \prod_{i} \left(\sum_{y_i} p(y_i | x_i) \right)
$$

\n
$$
= \sum_{w} q(w) \prod_{i} q(x_i | w).
$$

$$
q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i | x_i).
$$

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.
- $H(\mathbf{X}|W)=0$

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.
- $H(\mathbf{X}|W)=0$

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.
- $H(\mathbf{X}|W)=0$

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.
- $H(\mathbf{X}|W) = 0$
- $H(\hat{W}|\mathbf{Y})=0$

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.
- $H(\mathbf{X}|W) = 0$
- $H(\hat{W}|\mathbf{Y})=0$

- *•* Consider the information diagram for
	- $W \rightarrow \mathbf{X} \rightarrow \mathbf{Y} \rightarrow \hat{W}$.
- $H(\mathbf{X}|W) = 0$
- $H(\hat{W}|\mathbf{Y})=0$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W} | W) = H(W | \hat{W}) = 0.
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

$$
H(W) = I(\mathbf{X}; \mathbf{Y}).
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

$$
H(W) = I(\mathbf{X}; \mathbf{Y}).
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

$$
H(W) = I(\mathbf{X}; \mathbf{Y}).
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

$$
H(W) = I(\mathbf{X}; \mathbf{Y}).
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

$$
H(W) = I(\mathbf{X}; \mathbf{Y}).
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(\mathbf{X}|W)=0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

$$
H(W) = I(\mathbf{X}; \mathbf{Y}).
$$

- *•* Consider the information diagram for
	- $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- $H(X|W) = 0$
- $H(\hat{W}|\mathbf{Y})=0$
- *•* Since *^W* and *^W*^ˆ are essentially identical for reliable communication, assume

$$
H(\hat{W}|W) = H(W|\hat{W}) = 0.
$$

• Then we see that

$$
H(W) = I(\mathbf{X}; \mathbf{Y}).
$$

• This suggests that the channel capacity is obtained by maximizing $I(X; Y)$.

• For all $1 \leq i \leq n$,

$$
I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)
$$

• For all $1 \leq i \leq n$,

$$
I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)
$$

• Then

$$
\sum_{i=1}^{n} I(X_i; Y_i) \leq nC
$$

• For all $1 \leq i \leq n$,

$$
I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)
$$

• Then

$$
\sum_{i=1}^{n} I(X_i; Y_i) \leq nC
$$

• To be established in Lemma 7.16,

$$
I(\mathbf{X}; \mathbf{Y}) \leq \sum_{i=1}^{n} I(X_i; Y_i).
$$
Building Blocks of the Converse

• For all $1 \leq i \leq n$,

$$
I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)
$$

• Then

$$
\sum_{i=1}^{n} I(X_i; Y_i) \leq nC
$$

• To be established in Lemma 7.16,

$$
I(\mathbf{X}; \mathbf{Y}) \leq \sum_{i=1}^{n} I(X_i; Y_i).
$$

• Therefore,

$$
\frac{1}{n}\log M = \frac{1}{n}\log|\mathcal{W}| = \frac{1}{n}H(W) \approx \frac{1}{n}I(\mathbf{X}; \mathbf{Y}) \le \frac{1}{n}\sum_{i=1}^{n}I(X_i; Y_i) \le C.
$$

Proof

Proof

1. From the previous proposition, we have

Proof

1. From the previous proposition, we have

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)
$$

Proof

1. From the previous proposition, we have

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)
$$

Proof

1. From the previous proposition, we have

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)
$$

Proof

1. From the previous proposition, we have

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)
$$

$$
I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})
$$

Proof

1. From the previous proposition, we have

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)
$$

$$
I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})
$$

$$
\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i|X_i)
$$

Proof

1. From the previous proposition, we have

$$
H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)
$$

$$
I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})
$$

\n
$$
\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i|X_i)
$$

\n
$$
= \sum_{i=1}^{n} I(X_i; Y_i).
$$

Proof of Converse

Proof of Converse

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

```
1
n
   \log M > R - \epsilon and \lambda_{max} < \epsilon.
```
Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

```
1
n
   \log M > R - \epsilon and \lambda_{max} < \epsilon.
```
Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

 $\log M = H(W)$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

- 2. Consider
	- $\log M = H(W)$ $=$ *H*(*W*| \hat{W}) + *I*(*W*; \hat{W})

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

 $\log M = H(W)$ $=$ $H(W|\hat{W}) + I(W; \hat{W})$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$, then $I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

 $\log M = H(W)$ $=$ $H(W|\hat{W}) + I(W; \hat{W})$ \leq *H*(*W*|*W*) + *I*(**X**; Y)

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$, then $I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

 $\log M = H(W)$ $=$ $H(W|\hat{W}) + I(W; \hat{W})$ \leq *H*(*W*|*W*) + *I*(**X**; Y)

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$, then $I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$

Lemma 7.16 $I(X; Y) \le \sum_{i=1}^{n} I(X_i; Y_i)$.

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

= $H(W|\hat{W}) + I(W; \hat{W})$
 $\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$
 $\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$, then $I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$

Lemma 7.16 $I(X; Y) \le \sum_{i=1}^{n} I(X_i; Y_i)$.

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$, then $I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$

Lemma 7.16 $I(X; Y) \le \sum_{i=1}^{n} I(X_i; Y_i)$.

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$, then $I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

= $H(W|\hat{W}) + I(W; \hat{W})$
 $\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$
 $\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)$
 $\leq H(W|\hat{W}) + nC.$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

= $H(W|\hat{W}) + I(W; \hat{W})$
 $\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$
 $\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)$
 $\leq H(W|\hat{W}) + nC.$

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

4. Then,

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

= $H(W|\hat{W}) + I(W; \hat{W})$
 $\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$
 $\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)$
 $\leq H(W|\hat{W}) + nC.$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

4. Then,

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\begin{array}{rcl}\n\log M & = & H(W) \\
& = & H(W|\hat{W}) + I(W; \hat{W}) \\
& \leq & H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\
& \leq & H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\
& \leq & H(W|\hat{W}) + n, \\
& \leq & H(W|\hat{W}) + n.\n\end{array}
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\begin{array}{rcl}\n\log M & = & H(W) \\
& = & H(W|\hat{W}) + I(W; \hat{W}) \\
& \leq & H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\
& \leq & H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\
& \leq & H(W|\hat{W}) + n, \\
& \leq & H(W|\hat{W}) + n.\n\end{array}
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

$$
\log M \quad \le \quad H(W|\hat{W}) + nC
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

$$
\begin{array}{rcl}\nH(W|\hat{W}) & < 1 + P_e \log |W| \\
 & = & 1 + P_e \log M.\n\end{array}
$$

$$
\log M \quad \le \quad H(W|\hat{W}) + nC
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

$$
\begin{array}{rcl}\nH(W|\hat{W}) & < 1 + P_e \log |W| \\
 & = & 1 + P_e \log M.\n\end{array}
$$

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< H(W|\hat{W}) + nC
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< H(\hat{W}|\hat{W}) + nC
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W}) \leq 1 + P_e \log |\mathcal{W}|$ $= 1 + P_e \log M.$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $\langle 1 + P_e \log M + nC \rangle$ $\leq 1 + \frac{\lambda_{max}}{\log M} + nC$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W}) \leq 1 + P_e \log |\mathcal{W}|$ $= 1 + P_e \log M.$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $\langle 1 + P_e \log M + nC \rangle$ $\leq 1 + \frac{\lambda_{max}}{\log M} + nC$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W}) \leq 1 + P_e \log |\mathcal{W}|$ $= 1 + P_e \log M.$

- $\log M \leq H(W|\hat{W}) + nC$
	- $<$ 1 + P_e log *M* + *nC*
	- $\leq 1 + \frac{\lambda_{max}}{\log M} + nC$
	- \lt 1 + ϵ log *M* + *nC*,

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W}) \leq 1 + P_e \log |\mathcal{W}|$ $= 1 + P_e \log M.$

- $\log M \leq H(W|\hat{W}) + nC$
	- $<$ 1 + P_e log *M* + *nC*
	- $\leq 1 + \lambda_{max} \log M + nC$
	- \langle 1 + ϵ log *M* + *nC*,
Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W}) \leq 1 + P_e \log |\mathcal{W}|$ $= 1 + P_e \log M.$

4. Then,

- $\log M \leq H(W|\hat{W}) + nC$
	- $<$ 1 + P_e log *M* + *nC*
	- $\leq 1 + \lambda_{max} \log M + nC$
	- $<$ 1 + ϵ log M + *nC*,

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W}) \leq 1 + P_e \log |\mathcal{W}|$ $= 1 + P_e \log M.$

4. Then,

- $\log M \leq H(W|\hat{W}) + nC$
	- $<$ 1 + P_e log $M + nC$
	- $\leq 1 + \lambda_{max} \log M + nC$
	- \langle 1 + ϵ log *M* + *nC*,

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log *M* + *nC* $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log *M* + *nC* $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

= $H(W|\hat{W}) + I(W; \hat{W})$
 $\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$
 $\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)$
 $\leq H(W|\hat{W}) + nC.$

3. By Fano's inequality,

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

$$
(1 - \epsilon) \log M < 1 + nC
$$
\n
$$
\log M < \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

= $H(W|\hat{W}) + I(W; \hat{W})$
 $\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$
 $\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)$
 $\leq H(W|\hat{W}) + nC.$

3. By Fano's inequality,

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

$$
(1 - \epsilon) \log M < 1 + nC
$$
\n
$$
\log M < \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

= $H(W|\hat{W}) + I(W; \hat{W})$
 $\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$
 $\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)$
 $\leq H(W|\hat{W}) + nC.$

3. By Fano's inequality,

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$

= \quad 1 + P_e \log M.

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

$$
\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.
$$

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

$$
R-\epsilon<\frac{1}{n}\log M
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

or

$$
R-\epsilon<\frac{1}{n}\log M
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

or

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log *M* + *nC* $\leq 1 + \lambda_{max} \log M + nC$ \lt 1 + ϵ log *M* + *nC*,

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

$$
R - \epsilon < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

 $H(W|\hat{W})$ < 1 + P_e log $|W|$ $= 1 + P_e \log M.$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log *M* + *nC* $\leq 1 + \lambda_{max} \log M + nC$ \lt 1 + ϵ log *M* + *nC*,

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

$$
R - \epsilon < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Proof of Converse

1. Let *R* be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large *n* an (*n, M*) code such that

> 1 *n* $\log M > R - \epsilon$ and $\lambda_{max} < \epsilon$.

2. Consider

$$
\log M = H(W)
$$

\n
$$
= H(W|\hat{W}) + I(W; \hat{W})
$$

\n
$$
\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})
$$

\n
$$
\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i)
$$

\n
$$
\leq H(W|\hat{W}) + nC.
$$

3. By Fano's inequality,

$$
H(W|\hat{W}) \quad < \quad 1 + P_e \log |W|
$$
\n
$$
= \quad 1 + P_e \log M.
$$

4. Then,

 $\log M \leq H(W|\hat{W}) + nC$ $<$ 1 + P_e log $M + nC$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

or

$$
(1 - \epsilon) \log M < 1 + nC
$$
\n
$$
\log M < \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Corollary For large *n*,

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Corollary For large *n*,

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

 $\log M$ \leq $H(W|\hat{W}) + nC$ $\left| \begin{array}{cc} 1 + P_e \log M + nC \end{array} \right|$ $\leq 1 + \lambda_{max} \log M + nC$ $<$ 1 + ϵ log *M* + *nC*,

Corollary For large *n*,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Corollary For large *n*,

$\log M$	\leq	$H(W \hat{W}) + nC$
$<$	$1 + P_e \log M + nC$	
\leq	$1 + \lambda_{max} \log M + nC$	
$<$	$1 + \epsilon \log M + nC$	

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

or

$$
(1 - \epsilon) \log M < 1 + nC
$$
\n
$$
\log M < \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

Corollary For large *n*,

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

$$
P_e \geq 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

or

$$
(1 - \epsilon) \log M \quad < \quad 1 + nC
$$
\n
$$
\log M \quad < \quad \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M \quad < \quad \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

or

$$
(1 - \epsilon) \log M < 1 + nC
$$
\n
$$
\log M < \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large *n*,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

2. Then

$$
P_e \ge 1 - \frac{1 + nC}{\log M}
$$

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

or

$$
(1 - \epsilon) \log M < 1 + nC
$$
\n
$$
\log M < \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large *n*,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

2. Then

$$
P_e \ge 1 - \frac{1 + nC}{\log M} = 1 - \frac{\frac{1}{n} + C}{\frac{1}{n} \log M}
$$

$$
\log M \leq H(W|\hat{W}) + nC
$$

$$
< 1 + P_e \log M + nC
$$

$$
\leq 1 + \lambda_{max} \log M + nC
$$

$$
< 1 + \epsilon \log M + nC,
$$

or

$$
(1 - \epsilon) \log M < 1 + nC
$$
\n
$$
\log M < \frac{1 + nC}{1 - \epsilon}
$$
\n
$$
\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

5. Therefore,

$$
R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.
$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large *n*,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

2. Then

$$
P_e \ge 1 - \frac{1 + nC}{\log M} = 1 - \frac{\frac{1}{n} + C}{\frac{1}{n} \log M} \approx 1 - \frac{C}{\frac{1}{n} \log M}
$$

for large *n*.

Asymptotic Analysis of *P e*

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

• For large *n* ,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

• $\frac{1}{n}$ log *M* is the rate of the channel code.

• For large *n* ,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

• $\frac{1}{n}$ log *M* is the rate of the channel code.

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

- $\frac{1}{n}$ log *M* is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large *n* .

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

- $\frac{1}{n}$ log *M* is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large *n* .

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

- $\frac{1}{n}$ log *M* is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large *n* .

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

- $\frac{1}{n}$ log *M* is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large *n* .

1 \overline{C} \overline{n} $\Rightarrow \frac{1}{n} \log M$ P_e 1 $\overline{}$ *C* $\frac{1}{n}$ $\log M$

Asymptotic Analysis of *P e*

• For large *n* ,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

- $\frac{1}{n}$ log *M* is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large *n* .
- This implies that if $\frac{1}{n} \log M > C$, then

 $P_e > 0$ for all *n*.

• For large *n* ,

$$
P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.
$$

- $\frac{1}{n}$ log *M* is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large *n* .
- This implies that if $\frac{1}{n} \log M > C$, then

$P_e > 0$ for all *n*.

• Also note that this lower bound on *P e* tends to 1 as $\frac{1}{n} \log M \to \infty$.