
7.3 The Converse



The Dependency Graph

• The communication system consists of the r.v.’s

W,X1, Y1, X2, Y2, · · · , Xn, Yn, ˆW

generated in this order.

• The memorylessness of the DMC imposes the following Markov constraint

for each i:
(W,X1, Y1, · · · , Xi�1, Yi�1)| {z }

Ti�

! Xi ! Yi

• The dependency graph can be composed accordingly.
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q(w, x1, y1, x2, y2, · · · , xn, yn, ŵ) = q(w)q(x1|w)q(y1|w, x1)q(x2|w, x1, y1)q(y2|w, x1, y1, x2) · · ·
= q(w)q(x1|w)p(y1|x1)q(x2|w)p(y2|x2) · · ·

W 

X 
1 

X 
2 

X 
3 

X 
n 

Y 
1 

Y 
2 

Y 
3 

Y 
n 

X Y 

p (       ) y x | 

W 

Let q denote the joint distribution for all the r.v.’s:
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• Use q to denote the joint distribution and

marginal distributions of all r.v.’s.

• For all (w, x, y, ŵ) 2 W ⇥Xn ⇥Yn ⇥ ˆW such
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q(ŵ|y).

• q(w) > 0 for all w so that q(x
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|w) are well-

defined.

• q(x

i

|w) and q(ŵ|y) are deterministic.

• The dependency graph suggests the Markov

chain W ! X ! Y ! ˆ

W.

• This can be formally justified by invoking

Proposition 2.9.
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ŵ

q(w, x, y, ŵ)
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ŵ

q(ŵ|y)
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=

X

w

X

ŵ
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ŵ

q(ŵ|y)
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ŵ

q(w, x, y, ŵ)
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ŵ

q(w)

0

@
Y

i

q(xi|w)

1

A

0

@
Y

i

p(yi|xi)

1

A q(ŵ|y)
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A q(ŵ|y)

=

X

w
q(w)

0

@
Y

i

q(xi|w)

1

A

0

@
Y

i

p(yi|xi)

1

A
X

ŵ
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ŵ

q(w, x, y, ŵ)
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A q(ŵ|y)

=

X

w
q(w)

0

@
Y

i

q(xi|w)

1

A

0

@
Y

i

p(yi|xi)

1

A
X

ŵ
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ŵ

q(w, x, y, ŵ)
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ŵ

q(w, x, y, ŵ)
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=

X

w

X

ŵ
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=

X

w

X

ŵ
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q(ŵ|y)

=

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5

2

4
Y

i

p(yi|xi)

3

5 .

Proposition H(Y|X) =

Pn
i=1

H(Yi|Xi).

Proof

1. For any (x, y) 2 Xn ⇥ Yn
, if q(x, y) > 0, then

q(x) > 0. Thus by the above proposition, (1) holds.

2. Therefore by (1),

�E log q(Y|X) = �E log

nY

i=1

p(Yi|Xi) =

nX

i=1

ˆ
�E log p(Yi|Xi)

˜
,

or

H(Y|X) =

nX

i=1

H(Yi|Xi).

2. Furthermore,

q(x) =

X

y

q(x, y)

=

X

y

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5

2

4
Y

i

p(yi|xi)

3

5

=

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5

2

4
X

y
1

X

y
2

· · ·
X

yn

Y

i

p(yi|xi)

3

5

=

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5
Y

i

0

@
X

yi

p(yi|xi)

1

A

=

X

w
q(w)

Y

i

q(xi|w).

3. Therefore, for x such that q(x) > 0,

q(y|x) =

q(x, y)

q(x)

=

Y

i

p(yi|xi).



Proposition Show that for x such that q(x) > 0,

q(y|x) =

nY

i=1

p(yi|xi). (1)

Proof

1. First, for x and y such that q(x) > 0 and q(y) > 0,

q(x, y) =

X

w

X

ŵ
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q(ŵ|y)

=

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5

2

4
Y

i

p(yi|xi)

3

5 .

Proposition H(Y|X) =

Pn
i=1

H(Yi|Xi).

Proof

1. For any (x, y) 2 Xn ⇥ Yn
, if q(x, y) > 0, then

q(x) > 0. Thus by the above proposition, (1) holds.

2. Therefore by (1),

�E log q(Y|X) = �E log

nY

i=1

p(Yi|Xi) =

nX

i=1

ˆ
�E log p(Yi|Xi)

˜
,

or

H(Y|X) =

nX

i=1

H(Yi|Xi).

2. Furthermore,

q(x) =

X

y

q(x, y)

=

X

y

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5

2

4
Y

i

p(yi|xi)

3

5

=

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5

2

4
X

y
1

X

y
2

· · ·
X

yn

Y

i

p(yi|xi)

3

5

=

2

4
X

w
q(w)

Y

i

q(xi|w)

3

5
Y

i

0

@
X

yi

p(yi|xi)

1

A

=

X

w
q(w)

Y

i

q(xi|w).

3. Therefore, for x such that q(x) > 0,

q(y|x) =

q(x, y)

q(x)

=

Y

i

p(yi|xi).



Proposition Show that for x such that q(x) > 0,

q(y|x) =

nY

i=1

p(yi|xi). (1)

Proof

1. First, for x and y such that q(x) > 0 and q(y) > 0,

q(x, y) =

X

w

X

ŵ
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Why C is related to I(X;Y)?

• Consider the information diagram for

W ! X ! Y ! ˆW .

• H(X|W ) = 0

• H(

ˆW |Y) = 0

• Since W and

ˆW are essentially identical for

reliable communication, assume

H(

ˆW |W ) = H(W | ˆW ) = 0.

• Then we see that

H(W ) = I(X;Y).

• This suggests that the channel capacity is ob-

tained by maximizing I(X; Y ).
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Lemma 7.16 I(X;Y) 
Pn

i=1 I(Xi;Yi).

Proof

1. From the previous proposition, we have
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Theorem 7.15 (Channel Coding Theorem) A rate

R is achievable for a discrete memoryless channel if

and only if R  C, the capacity of the channel.

Proof of Converse

1. Let R be an achievable rate, i.e., for any ✏ > 0, there

exists for sufficiently large n an (n, M) code such that

1

n
log M > R � ✏ and �max < ✏.

2. Consider

log M = H(W )

= H(W | ˆW ) + I(W ;

ˆW )

 H(W | ˆW ) + I(X;Y)

 H(W | ˆW ) +

nX

i=1

I(Xi; Yi)

 H(W | ˆW ) + nC.

3. By Fano’s inequality,

H(W | ˆW ) < 1 + Pe log |W|

= 1 + Pe log M.

4. Then,

log M  H(W | ˆW ) + nC

< 1 + Pe log M + nC

 1 + �max log M + nC

< 1 + ✏ log M + nC,

or

(1 � ✏) log M < 1 + nC

log M <
1 + nC

1 � ✏

1

n
log M <

1

n
+ C

1 � ✏
.

5. Therefore,

R � ✏ <
1

n
log M <

1

n
+ C

1 � ✏
.

6. Letting n ! 1 and then ✏ ! 0 to conclude that

R  C.
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then
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Asymptotic Analysis of Pe

• For large n,

Pe � 1 �
C

1

n
log M

.

• 1

n
log M is the rate of the channel code.

• If

1

n
log M > C, then Pe is bounded away

from 0 for large n.

• This implies that if

1

n
log M > C, then

Pe > 0 for all n.

• Also note that this lower bound on Pe tends

to 1 as

1

n
log M ! 1.
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