

7.3 The Converse

• The communication system consists of the r.v.'s

$$W, X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n, \hat{W}$$

generated in this order.

• The communication system consists of the r.v.'s

$$W, X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n, \hat{W}$$

generated in this order.

• The memorylessness of the DMC imposes the following Markov constraint for each *i*:

$$\underbrace{(W, X_1, Y_1, \cdots, X_{i-1}, Y_{i-1})}_{T_{i-}} \to X_i \to Y_i$$

• The communication system consists of the r.v.'s

$$W, X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n, \hat{W}$$

generated in this order.

• The memorylessness of the DMC imposes the following Markov constraint for each *i*:

$$\underbrace{(W, X_1, Y_1, \cdots, X_{i-1}, Y_{i-1})}_{T_{i-}} \to X_i \to Y_i$$

• The dependency graph can be composed accordingly.

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(\underline{w}, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(\underline{w})q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, \underline{x_1}, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(\underline{x_1}|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(\underline{w}, \underline{x_1}, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(\underline{x_1}|\underline{w})q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, \underline{y_1}, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(\underline{y_1}|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(\underline{w}, x_1, \underline{y_1}, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(\underline{y_1}|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, \underline{x_2}, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(\underline{x_2}|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(\underline{w}, x_1, y_1, \underline{x_2}, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(\underline{x_2}|\underline{w}, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, \underline{y_2}, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(\underline{y_2}|w, x_1, y_1, x_2)\cdots$$

$$q(\underline{w}, x_1, y_1, x_2, \underline{y_2}, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(\underline{y_2}|\underline{w}, x_1, \underline{y_1}, \underline{x_2})\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)\frac{q(y_2|w, x_1, y_1, x_2)}{q(y_2|w, x_1, y_1, x_2)}\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)\frac{q(y_2|w, x_1, y_1, x_2)}{q(y_2|w, x_1, y_1, x_2)}\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots$$

$$\begin{array}{lcl} q(w,x_{1},y_{1},x_{2},y_{2},\cdots,x_{n},y_{n},\hat{w}) & = & q(w)q(x_{1}|w)q(y_{1}|w,x_{1})q(x_{2}|w,x_{1},y_{1})q(y_{2}|w,x_{1},y_{1},x_{2})\cdots \\ & = & q(w)\underline{q(x_{1}|w)}p(y_{1}|x_{1})q(x_{2}|w)p(y_{2}|x_{2})\cdots \end{array}$$

$$\begin{array}{lcl} q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) & = & q(w)q(x_1|w)q(y_1|w,x_1)q(x_2|w,x_1,y_1)q(y_2|w,x_1,y_1,x_2)\cdots \\ & = & q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots \end{array}$$

$$\begin{array}{lcl} q(w,x_{1},y_{1},x_{2},y_{2},\cdots,x_{n},y_{n},\hat{w}) & = & q(w)q(x_{1}|w)q(y_{1}|w,x_{1})q(x_{2}|w,x_{1},y_{1})q(y_{2}|w,x_{1},y_{1},x_{2})\cdots \\ & = & q(w)q(x_{1}|w)\underline{p(y_{1}|x_{1})}q(x_{2}|w)p(y_{2}|x_{2})\cdots \end{array}$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)\underline{p(y_1|x_1)}q(x_2|w)p(y_2|x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots$$

$$\begin{array}{lcl} q(w,x_{1},y_{1},x_{2},y_{2},\cdots,x_{n},y_{n},\hat{w}) & = & q(w)q(x_{1}|w)q(y_{1}|w,x_{1})q(x_{2}|w,x_{1},y_{1})q(y_{2}|w,x_{1},y_{1},x_{2})\cdots \\ & = & q(w)q(x_{1}|w)p(y_{1}|x_{1})\underline{q}(x_{2}|w)p(y_{2}|x_{2})\cdots \end{array}$$

$$\begin{array}{lcl} q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) & = & q(w)q(x_1|w)q(y_1|w,x_1)q(x_2|w,x_1,y_1)q(y_2|w,x_1,y_1,x_2)\cdots \\ & = & q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)\underline{p(y_2|x_2)}\cdots \end{array}$$

$$\begin{array}{lcl} q(w,x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\hat{w}) & = & q(w)q(x_1|w)q(y_1|w,x_1)q(x_2|w,x_1,y_1)q(y_2|w,x_1,y_1,x_2)\cdots \\ & = & q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)\underline{p(y_2|x_2)}\cdots \end{array}$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots$$

$$q(w, x_1, y_1, x_2, y_2, \cdots, x_n, y_n, \hat{w}) = q(w)q(x_1|w)q(y_1|w, x_1)q(x_2|w, x_1, y_1)q(y_2|w, x_1, y_1, x_2)\cdots$$
$$= q(w)q(x_1|w)p(y_1|x_1)q(x_2|w)p(y_2|x_2)\cdots$$

• Use q to denote the joint distribution and marginal distributions of all r.v.'s.

- ullet Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

- Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$q(w, \mathbf{x}, \mathbf{y} \, \hat{w}) = q(w) \left(\prod_{i=1}^n q(x_i | w) \right) \left(\prod_{i=1}^n p(y_i | x_i) \right) q(\hat{w} | \mathbf{y}).$$

- Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$q(w, \mathbf{x}, \mathbf{y} \, \hat{w}) = q(w) \left(\prod_{i=1}^n q(x_i | w) \right) \left(\prod_{i=1}^n p(y_i | x_i) \right) q(\hat{w} | \mathbf{y}).$$

• q(w) > 0 for all w so that $q(x_i|w)$ are well-defined.

- Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$q(w, \mathbf{x}, \mathbf{y} \, \hat{w}) = q(w) \left(\prod_{i=1}^n q(x_i | w) \right) \left(\prod_{i=1}^n p(y_i | x_i) \right) q(\hat{w} | \mathbf{y}).$$

- q(w) > 0 for all w so that $q(x_i|w)$ are well-defined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.

- Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$q(w, \mathbf{x}, \mathbf{y} \, \hat{w}) = q(w) \left(\prod_{i=1}^n q(x_i | w) \right) \left(\prod_{i=1}^n p(y_i | x_i) \right) q(\hat{w} | \mathbf{y}).$$

- q(w) > 0 for all w so that $q(x_i|w)$ are well-defined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.
- The dependency graph suggests the Markov chain $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.

- Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$q(w, \mathbf{x}, \mathbf{y} \, \hat{w}) = q(w) \left(\prod_{i=1}^n q(x_i|w) \right) \left(\prod_{i=1}^n p(y_i|x_i) \right) q(\hat{w}|\mathbf{y}).$$

- q(w) > 0 for all w so that $q(x_i|w)$ are well-defined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.
- The dependency graph suggests the Markov chain $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- This can be formally justified by invoking Proposition 2.9.

- Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$ such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$q(w, \mathbf{x}, \mathbf{y} \, \hat{w}) = \overbrace{q(w)}^{b(w, \mathbf{x})} \underbrace{\begin{pmatrix} c(\mathbf{x}, \mathbf{y}) \\ \prod_{i=1}^{a(w)} q(x_i | w) \end{pmatrix} \begin{pmatrix} \prod_{i=1}^{n} p(y_i | x_i) \end{pmatrix}}_{q(\hat{w} | \mathbf{y})} \underbrace{\begin{pmatrix} \mathbf{y}, \mathbf{w} \\ \mathbf{y} \end{pmatrix}}_{q(\hat{w} | \mathbf{y})}.$$

- q(w) > 0 for all w so that $q(x_i|w)$ are well-defined.
- $q(x_i|w)$ and $q(\hat{w}|\mathbf{y})$ are deterministic.
- The dependency graph suggests the Markov chain $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$.
- This can be formally justified by invoking Proposition 2.9.

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

\mathbf{Proof}

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

${\bf Proof}$

$$q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} \underline{q(w)} \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \underline{q(\hat{w}|\mathbf{y})} \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

$$q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

$$q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} & q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} \overline{q(\mathbf{x}, \mathbf{y})} &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} q(\mathbf{x}) &= & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} \overline{q(\mathbf{x}, \mathbf{y})} &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} q(\mathbf{x}) &= & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\underline{\mathbf{y}}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\underline{\mathbf{y}}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{aligned} &(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \underline{\prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right)} \end{aligned}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$\begin{aligned} &(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \underline{\prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right)} \end{aligned}$$

For n=2,

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{aligned} &(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \underline{\prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right)} \end{aligned}$$

For
$$n = 2$$
,
$$\sum_{y_1} \sum_{y_2} \prod_{i=1}^2 p(y_i|x_i)$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{aligned} &(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \underline{\prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right)} \end{aligned}$$

For
$$n = 2$$
,
$$\sum_{y_1} \sum_{y_2} \prod_{i=1}^{2} p(y_i|x_i)$$

$$= \sum_{y_1} \sum_{y_2} p(y_1|x_1) p(y_2|x_2)$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{aligned} &(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \underline{\prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right)} \end{aligned}$$

For
$$n = 2$$
,
$$\sum_{y_1} \sum_{y_2} \prod_{i=1}^{2} p(y_i|x_i)$$

$$= \sum_{y_1} \sum_{y_2} p(y_1|x_1)p(y_2|x_2)$$

$$= \left(\sum_{y_1} p(y_1|x_1)\right) \left(\sum_{y_2} p(y_2|x_2)\right)$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{aligned} &(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \underline{\prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right)} \end{aligned}$$

For
$$n = 2$$
,
$$\sum_{y_1} \sum_{y_2} \prod_{i=1}^{2} p(y_i|x_i)$$

$$= \sum_{y_1} \sum_{y_2} p(y_1|x_1) p(y_2|x_2)$$

$$= \left(\sum_{y_1} p(y_1|x_1)\right) \left(\sum_{y_2} p(y_2|x_2)\right)$$

$$= \prod_{i=1}^{2} \left(\sum_{y_i} p(y_i|x_i)\right)$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{aligned} &(\mathbf{x}) &= & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \end{aligned}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{aligned} &(\mathbf{x}) &= & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \end{aligned}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} (\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} (\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

$$\begin{split} (\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{aligned} & q(\mathbf{x}, \mathbf{y}) & = & \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ & = & \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ & = & \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{aligned}$$

2. Furthermore,

$$\begin{split} (\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{aligned} & q(\mathbf{x}, \mathbf{y}) & = & \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ & = & \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ & = & \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{aligned}$$

2. Furthermore,

$$\begin{aligned} & = & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ & = & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ & = & \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{aligned}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{aligned} & q(\mathbf{x}, \mathbf{y}) & = & \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ & = & \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ & = & \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{aligned}$$

2. Furthermore,

$$\begin{aligned} & = & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ & = & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ & = & \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{aligned}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{aligned} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{aligned}$$

2. Furthermore,

$$\begin{aligned} & = & \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ & = & \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ & = & \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ & = & \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{aligned}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$-E\log q(\mathbf{Y}|\mathbf{X}) = -E\log\prod_{i=1}^n p(Y_i|X_i) = \sum_{i=1}^n \left[-E\log p(Y_i|X_i) \right],$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$-E\log\underline{q(\mathbf{Y}|\mathbf{X})} = -E\log\prod_{i=1}^n p(Y_i|X_i) = \sum_{i=1}^n \left[-E\log p(Y_i|X_i) \right],$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$-E\log \underline{q(\mathbf{Y}|\mathbf{X})} = -E\log \prod_{i=1}^{n} p(Y_i|X_i) = \sum_{i=1}^{n} \left[-E\log p(Y_i|X_i) \right],$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$-E\log q(\mathbf{Y}|\mathbf{X}) = -E\log\prod_{i=1}^n p(Y_i|X_i) = \sum_{i=1}^n \left[-E\log p(Y_i|X_i) \right],$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$\frac{-E \log q(\mathbf{Y}|\mathbf{X})}{-E \log \prod_{i=1}^{n} p(Y_i|X_i)} = \sum_{i=1}^{n} \left[-E \log p(Y_i|X_i) \right],$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$\frac{-E \log q(\mathbf{Y}|\mathbf{X})}{-E \log \prod_{i=1}^{n} p(Y_i|X_i)} = \sum_{i=1}^{n} [-E \log p(Y_i|X_i)],$$

or

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$\frac{-E \log q(\mathbf{Y}|\mathbf{X})}{-E \log \prod_{i=1}^{n} p(Y_i|X_i)} = \sum_{i=1}^{n} \left[\frac{-E \log p(Y_i|X_i)}{} \right],$$

or

$$\frac{H(\mathbf{Y}|\mathbf{X})}{1} = \sum_{i=1}^{n} H(Y_i|X_i).$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$\frac{-E \log q(\mathbf{Y}|\mathbf{X})}{-E \log \prod_{i=1}^{n} p(Y_i|X_i)} = \sum_{i=1}^{n} \left[\frac{-E \log p(Y_i|X_i)}{\sum_{i=1}^{n} p(Y_i|X_i)} \right],$$

or

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i). \tag{1}$$

Proof

1. First, for **x** and **y** such that $q(\mathbf{x}) > 0$ and $q(\mathbf{y}) > 0$,

$$\begin{split} q(\mathbf{x}, \mathbf{y}) &= \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w}) \\ &= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) q(\hat{w}|\mathbf{y}) \\ &= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w) \right) \left(\prod_{i} p(y_{i}|x_{i}) \right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y}) \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right]. \end{split}$$

Proposition $H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$.

Proof

- 1. For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathcal{Y}^n$, if $q(\mathbf{x}, \mathbf{y}) > 0$, then $q(\mathbf{x}) > 0$. Thus by the above proposition, (1) holds.
- 2. Therefore by (1),

$$\frac{-E \log q(\mathbf{Y}|\mathbf{X})}{-E \log \prod_{i=1}^{n} p(Y_i|X_i)} = \sum_{i=1}^{n} \left[\frac{-E \log p(Y_i|X_i)}{} \right],$$

or

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i).$$

2. Furthermore,

$$\begin{split} q(\mathbf{x}) &= \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y}) \\ &= \sum_{\mathbf{y}} \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right] \\ &= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left(\sum_{y_{i}} p(y_{i}|x_{i}) \right) \\ &= \sum_{w} q(w) \prod_{i} q(x_{i}|w). \end{split}$$

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i).$$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

 $\bullet \quad H(\mathbf{X}|W) = 0$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

 $\bullet \quad H(\mathbf{X}|W) = 0$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

 $\bullet \quad H(\mathbf{X}|W) = 0$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- \bullet Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0.$$

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• Consider the information diagram for

$$W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$$
.

- $\bullet \quad H(\mathbf{X}|W) = 0$
- $\bullet \quad H(\hat{W}|\mathbf{Y}) = 0$
- Since W and \hat{W} are essentially identical for reliable communication, assume

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• This suggests that the channel capacity is obtained by maximizing I(X;Y).

• For all $1 \le i \le n$,

$$I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)$$

• For all $1 \le i \le n$,

$$I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)$$

• Then

$$\sum_{i=1}^{n} I(X_i; Y_i) \le nC$$

• For all $1 \le i \le n$,

$$I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)$$

• Then

$$\sum_{i=1}^{n} I(X_i; Y_i) \le nC$$

• To be established in Lemma 7.16,

$$I(\mathbf{X}; \mathbf{Y}) \le \sum_{i=1}^{n} I(X_i; Y_i).$$

Building Blocks of the Converse

• For all $1 \leq i \leq n$,

$$I(X_i; Y_i) \le C = \max_{p(x)} I(X; Y)$$

• Then

$$\sum_{i=1}^{n} I(X_i; Y_i) \le nC$$

• To be established in Lemma 7.16,

$$I(\mathbf{X}; \mathbf{Y}) \le \sum_{i=1}^{n} I(X_i; Y_i).$$

• Therefore,

$$\frac{1}{n}\log M = \frac{1}{n}\log |\mathcal{W}| = \frac{1}{n}H(W) \approx \frac{1}{n}I(\mathbf{X};\mathbf{Y}) \le \frac{1}{n}\sum_{i=1}^{n}I(X_i;Y_i) \le C.$$

Proof

Proof

1. From the previous proposition, we have

Proof

1. From the previous proposition, we have

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$$

Proof

1. From the previous proposition, we have

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$$

Proof

1. From the previous proposition, we have

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$$

Proof

1. From the previous proposition, we have

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$$

$$I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})$$

Proof

1. From the previous proposition, we have

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$$

$$I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})$$

$$\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i|X_i)$$

Proof

1. From the previous proposition, we have

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$$

$$I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})$$

$$\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i|X_i)$$

$$= \sum_{i=1}^{n} I(X_i; Y_i).$$

Proof of Converse

Proof of Converse

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

2. Consider

$$\log M = H(W)$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

2. Consider

$$\log M = H(W)$$

$$= H(W|\hat{W}) + I(W; \hat{W})$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

2. Consider

$$\begin{array}{lll} \log M & = & H(W) \\ & = & H(W|\hat{W}) + I(W; \hat{W}) \end{array}$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W},$ then

$$I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\log M = H(W)$$

$$= H(W|\hat{W}) + I(W; \hat{W})$$

$$\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W},$ then

$$I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\log M = H(W)$$

$$= H(W|\hat{W}) + I(W; \hat{W})$$

$$\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y})$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W},$ then

$$I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$$

Lemma 7.16 $I(\mathbf{X}; \mathbf{Y}) \leq \sum_{i=1}^{n} I(X_i; Y_i)$.

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \end{split}$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W},$ then

$$I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$$

Lemma 7.16 $I(X;Y) \leq \sum_{i=1}^{n} I(X_i;Y_i)$.

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W},$ then

$$I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$$

Lemma 7.16 $I(X;Y) \leq \sum_{i=1}^{n} I(X_i;Y_i)$.

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

Data Processing Theorem If $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W},$ then

$$I(W; \hat{W}) \leq I(\mathbf{X}; \mathbf{Y}).$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{array}{ll} \log M &=& H(W) \\ &=& H(W|\hat{W}) + I(W;\hat{W}) \\ &\leq& H(W|\hat{W}) + I(\mathbf{X};\mathbf{Y}) \\ &\leq& H(W|\hat{W}) + \sum_{i=1}^n I(X_i;Y_i) \\ &\leq& H(W|\hat{W}) + nC. \end{array}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{array}{ll} \log M &=& H(W) \\ &=& H(W|\hat{W}) + I(W;\hat{W}) \\ &\leq& H(W|\hat{W}) + I(\mathbf{X};\mathbf{Y}) \\ &\leq& H(W|\hat{W}) + \sum_{i=1}^n I(X_i;Y_i) \\ &\leq& H(W|\hat{W}) + nC. \end{array}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$

$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$

$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + \underline{P_e} \log M + nC$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + \underline{P_e} \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\frac{\lambda_{max} < \epsilon}{\epsilon}$.

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + \underline{P_e} \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

$$(1 - \epsilon) \log M < 1 + nC$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$
 and $\lambda_{max} < \epsilon$.

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

$$R - \epsilon < \frac{1}{n} \log M$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

$$R - \epsilon < \frac{1}{n} \log M$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}$$

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

$$R - \epsilon < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

$$R - \epsilon < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

Proof of Converse

1. Let R be an achievable rate, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon.$$

2. Consider

$$\begin{split} \log M &= H(W) \\ &= H(W|\hat{W}) + I(W; \hat{W}) \\ &\leq H(W|\hat{W}) + I(\mathbf{X}; \mathbf{Y}) \\ &\leq H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i; Y_i) \\ &\leq H(W|\hat{W}) + nC. \end{split}$$

3. By Fano's inequality,

$$H(W|\hat{W}) < 1 + P_e \log |\mathcal{W}|$$
$$= 1 + P_e \log M.$$

4. Then,

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

$$\frac{\log M}{\leq} \qquad \leq \qquad H(W|\hat{W}) + nC
\leq \qquad 1 + P_e \log M + nC
\leq \qquad 1 + \lambda_{max} \log M + nC
\leq \qquad 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

$$\frac{\log M}{\leq} \qquad \frac{H(W|\hat{W}) + nC}{\leq} \\
\leq \qquad \frac{1 + P_e \log M + nC}{\leq} \\
\leq \qquad \frac{1 + \lambda_{max} \log M + nC}{\leq} \\
\leq \qquad \frac{1 + \epsilon \log M + nC}{\leq},$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

1. Consider $\log M < 1 + \underline{P_e} \log M + nC$.

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

1. Consider $\log M < 1 + P_e \log M + nC$.

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

- 1. Consider $\log M < 1 + P_e \log M + nC$.
- 2. Then

$$P_e \ge 1 - \frac{1 + nC}{\log M}$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

- 1. Consider $\log M < 1 + P_e \log M + nC$.
- 2. Then

$$P_e \ge 1 - \frac{1 + nC}{\log M} = 1 - \frac{\frac{1}{n} + C}{\frac{1}{n} \log M}$$

$$\log M \leq H(W|\hat{W}) + nC$$

$$< 1 + P_e \log M + nC$$

$$\leq 1 + \lambda_{max} \log M + nC$$

$$< 1 + \epsilon \log M + nC,$$

or

$$(1 - \epsilon) \log M < 1 + nC$$

$$\log M < \frac{1 + nC}{1 - \epsilon}$$

$$\frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

5. Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}.$$

6. Letting $n \to \infty$ and then $\epsilon \to 0$ to conclude that $R \leq C$.

Corollary For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Proof

- 1. Consider $\log M < 1 + P_e \log M + nC$.
- 2. Then

$$P_e \ge 1 - \frac{1 + nC}{\log M} = 1 - \frac{\frac{1}{n} + C}{\frac{1}{n} \log M} \approx 1 - \frac{C}{\frac{1}{n} \log M}$$

for large n.

Asymptotic Analysis of P_e

Asymptotic Analysis of P_e

• For large
$$n$$
,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

Asymptotic Analysis of P_e

• For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

• $\frac{1}{n} \log M$ is the rate of the channel code.

$\begin{array}{c|c} P_e \\ 1 \\ \hline & 1 \\ \hline & 1 \\ \hline & 1 \\ \hline & \frac{C}{\frac{1}{n} \log M} \end{array}$

C

 $\rightarrow \frac{1}{n} \log M$

Asymptotic Analysis of P_e

• For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

• $\frac{1}{n} \log M$ is the rate of the channel code.

P_{e} $1 - \frac{C}{\frac{1}{n} \log M}$ C $1 - \frac{C}{\frac{1}{n} \log M}$

Asymptotic Analysis of P_e

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

- $\frac{1}{n} \log M$ is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large n.

P_{e} $1 - \frac{C}{\frac{1}{n} \log M}$ C $1 - \frac{1}{n} \log M$

Asymptotic Analysis of P_e

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

- $\frac{1}{n} \log M$ is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large n.

$\begin{array}{c|c} P_e \\ \hline 1 - \frac{C}{\frac{1}{n} \log M} \\ \hline C \end{array}$

Asymptotic Analysis of P_e

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

- $\frac{1}{n} \log M$ is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large n.

Asymptotic Analysis of P_e

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

- $\frac{1}{n} \log M$ is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large n.

P_{e} $1 - \frac{C}{\frac{1}{n} \log M}$ C $\frac{1}{n} \log M$

Asymptotic Analysis of P_e

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

- $\frac{1}{n} \log M$ is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large n.
- This implies that if $\frac{1}{n} \log M > C$, then

$$P_e > 0$$
 for all n .

Asymptotic Analysis of P_e

• For large n,

$$P_e \ge 1 - \frac{C}{\frac{1}{n} \log M}.$$

- $\frac{1}{n} \log M$ is the rate of the channel code.
- If $\frac{1}{n} \log M > C$, then P_e is bounded away from 0 for large n.
- This implies that if $\frac{1}{n} \log M > C$, then

$$P_e > 0$$
 for all n .

• Also note that this lower bound on P_e tends to 1 as $\frac{1}{n} \log M \to \infty$.