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Two equivalent models of a discrete memoryless channel (DMC)
How to communicate reliably through a DMC?

The capacity of a DMC

Shannon’s channel coding theorem: achievability and converse
The capacity when there is feedback

Separation theorem for source coding and channel coding
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the simplest channel model
input alphabet X = {0, 1}
output alphabet Y = {0,1}

Crossover probability =€, 0 <e <1
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A Simple Code

Assume € < 0.5.
Two possible messages, A and B, are to be sent through the channel.

Coding Scheme 1

)

Encoding {g : Decoding {(1) : é

A decoding error if and only if a crossover occurs. Therefore, P. = e.
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A Repetition Code

To improve reliability, use the BSC n times for a large n.

Let
Nog = # 0’s received
N1 = # 1’s received
Coding Scheme 2
Encoding { B 1.1 Decoding { N, >N, — B

If message is A, by WLLN, Ny ~ n(1 —¢) and Ny = ne w.p. — 1.
Then Ny > N7 because € < 0.5.
Therefore decode correctly w.p. — 1 if message is A (similarly for B).

However, R = = log2 — 0 as n — oo. :(
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x —» p(ylx)

>y

Input random variable X takes values in discrete alphabet X'.

Output random variable Y takes values in discrete output alphabet ).

The channel is specified by a transition matrix p(y|z) from X to ).

Input-output relation:

Pr{X =2,Y =y} = Pr{X = x} p(y|z)

BSC with crossover probability e:

(ol = |

1l —€
€

€
1l — €



Definition 7.1 (Discrete Channel I) Let X and ) be discrete alphabets,
and p(y|x) be a transition matrix from X to ). A discrete channel p(y|z) is a
single-input single-output system with input random variable X taking values
in X and output random variable Y taking values in ) such that

Pr{X =2,V =y} = Pr{X =z} p(y|z)

for all (z,y) € X x V.
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Definition 7.2 (Discrete Channel 1l)

VA

Input random variable X takes values in discrete alphabet X'.
Output random variable Y takes values in discrete alphabet ).
Noise variable Z takes values in discrete alphabet Z.

Z is independent of X.

« 1s a function from X x Z to ).

The channel is specified by («, Z).

Input-output relation: ¥ = a(X, 7).



Definition 7.2 (Discrete Channel II) Let X', ), and Z be discrete alpha-
bets. Let a : X X Z — ), and Z be a random variable taking values in Z, called
the noise variable. A discrete channel («, Z) is a single-input single-output sys-
tem with input alphabet A and output alphabet ). For any input random
variable X, the noise variable Z is independent of X, and the output random
variable Y is given by

Y = a(X, 2).
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e I =1 (a,Z) = p(y|r): Obvious.

o [ = II:

Equivalence of
Discrete Channel | & Discrete Channel |l

For z € X, define Z, with Z, = ) such that Pr{Z, = y} = p(y|x).

Assume Z,., v € X are mutually independent and also independent

of X.

Define the noise variable Z = (Z, : z € X).
Let Y =7, if X =2, s0that Y = a(X, 7).

Then

Pr{X =2z,Y =y}

Pr{X = 2}Pr{Y = y|X =z}
Pr{X = z}Pr{Z, = y| X = =}
Pr{X = z}Pr{Z, = y}

PriX = a}p(y|v)



Definition 7.3 Two discrete channels p(y|x) and («, Z) defined on the same
input alphabet X and output alphabet ) are equivalent if

Pria(z, Z) =y} = p(y|r)

for all x and y.
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Discrete Memoryless Channel

A discrete channel can be used repeatedly at every time index: =1,2, - --.

Assume the noise for the transmission over the channel at different time
indices are independent of each other.

To properly formulate a DMC, we regard it as a subsystem of a discrete-
time stochastic system which will be referred to as “the system”.

In such a system, random variables are generated sequentially in discrete-
time.

More than one random variable may be generated instantaneously but
sequentially at a particular time index.
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Definition 7.4 (DMC |)

p(y|x)

p(y|x)

p(y|x)

Y e A DMC specified by p(y|xz) is a sequence of
1 replicates of a generic discrete channel p(y|x).
e T, : all the random variables in the system

generated before X.

e Memoryless Property (Independent noise):

Pr{Y’L = y,X,I: = x,T,i_ = t}
= PI‘{X?; = w,Tfi_ — t}p(y|ac)
AN

—>XZ —>Y,Z:,OI‘

e FKquivalently, T); _

Given X, Y; is independent of everything
in the past.




Definition 7.4 (DMC I) A discrete memoryless channel (DMC) p(y|z) is
a sequence of replicates of a generic discrete channel p(y|xz). These discrete
channels are indexed by a discrete-time index 2, where ¢+ > 1, with the :th
channel being available for transmission at time ¢. Transmission through a
channel is assumed to be instantaneous. Let X; and Y, be respectively the
input and the output of the DMC at time ¢, and let T;_ denote all the random
variables that are generated in the system before X;. The equality

PlY, =y, X, =a,T;,_ =t} =Pr{X, =2,T,_ =t}p(y|r)

holds for all (x,y,t) € X x Y x 7T;_.
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Definition 7.5 (DMC Il)

Z1 e A DMC specified by (a, Z) is a sequence of
replicates of a generic discrete channel («, Z).

e Z, is the noise variable for transmission at
X1 Y1 time ¢, and has the same distribution as Z.
Z2 e Memoryless Property (Independent noise):
Z; is independent of (X;, T;_).
X5 Y,
e That is,

The noise for transmission at time 7 is
independent of both X; and everything
in the past.




Definition 7.5 (DMC II) A discrete memoryless channel («, Z) is a sequence
of replicates of a generic discrete channel (a, Z). These discrete channels are
indexed by a discrete-time index 2, where ¢+ > 1, with the th channel being
available for transmission at time ¢. Transmission through a channel is assumed
to be instantaneous. Let X; and Y; be respectively the input and the output
of the DMC at time ¢, and let 7;_ denote all the random variables that are
generated in the system before X;. The noise variable Z; for the transmission
at time 1 is a copy of the generic noise variable Z, and is independent of (X;, T;_).
The output of the DMC at time ¢ is given by

Yi — Ck(Xz', Zz)

Remark: The equivalence of Definitions 7.4 and 7.5 can be shown. See text-
book.
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Assume both X and ) are finite.

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined
as
C'=max I(X;Y),

p(x)

where X and Y are respectively the input and the output of the generic discrete
channel, and the maximum is taken over all input distributions p(x).

Remarks:

e Since I(X;Y) is a continuous functional of p(x) and the set of all p(x) is

a compact set (i.e., closed and bounded) in R!*!, the maximum value of
I(X;Y) can be attained.

e Will see that C' is in fact the maximum rate at which information can be
communicated reliably through a DMC.

e Can communicate through a channel at a positive rate while P, — 0!
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4. Therefore, C = 1 — hy(e) bit per use.



C'(e) =1 — hy(e)

C
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1 — hb(é)

C'(e)
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C'(e) =1 — hy(e)

C
A ® C(O):l
1_
e ((1)=1
e C(0.5)=0
0 0.5 1 ]

Exercise: Show that X and Y are always independent for ¢ = 0.5.
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3. Then

I

e
€.

H(Y) = H(Y, E)

H(E) + H(Y|E)
=  hp(v)+ 1 = v)hp(a).

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h .
max (Y) b (V)

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then

I

e
(&

H(Y) = H(Y,E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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Binary Erasure Channel:
@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

e With probability 1 — v, ¥ = X (regardless of
whether X = 0 or X = 1).

e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h |
max (Y) b ()

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then

I

e
(&

H(Y) = H(Y,E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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Binary Erasure Channel: H(Y) — H(Y, E)

H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

4. Hence,
e With probability 1 — v, ¥ = X (regardless of

whether X = 0 or X = 1). C = max H(Y) — hy(v)

p(x)
e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I (X;Y)
p(x)
= max(H(Y) — H(Y|X))
p(x)
= max H(Y) — hy (7).
p(z)

Exercise: Show that H(Y |E) = (1 — v)hp(a).

Thus we only have to maximize H(Y ) over all p(x).
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4. Hence,
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Thus we only have to maximize H(Y ) over all p(x).
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Binary Erasure Channel:
@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

e With probability 1 — v, ¥ = X (regardless of
whether X = 0 or X = 1).

e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h .
max (Y) b (V)

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then

I

e
(&

H(Y) = H(Y, E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

4. Hence,

C = max H(Y) — hy(7v)
p(x)

= max[hy () + (1 — Vhy(a)] — hy ()

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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Binary Erasure Channel:
@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

e With probability 1 — v, ¥ = X (regardless of
whether X = 0 or X = 1).

e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h .
max (Y) b (V)

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then

I

e
(&

H(Y) = H(Y, E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

4. Hence,

C = max H(Y) — hy(7v)
p(x)

= max[uT) + (1 — hy(a)] = hy(7)

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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Binary Erasure Channel:
@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

e With probability 1 — v, ¥ = X (regardless of
whether X = 0 or X = 1).

e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h .
max (Y) b (V)

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then
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e
(&

H(Y) = H(Y, E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

4. Hence,

C = max H(Y) — hy(7v)
p(x)

= max[lt9) + (1 — Vhp(a)] — hyt)

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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Binary Erasure Channel:
@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

e With probability 1 — v, ¥ = X (regardless of
whether X = 0 or X = 1).

e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h .
max (Y) b (V)

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then

I

e
(&

H(Y) = H(Y,E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

4. Hence,

C = max H(Y) — hy(7v)
p(x)

= max[lt9) + (1 — Vhp(a)] — hyt)

= (1 — ~) max hy (a)

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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Binary Erasure Channel:
@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

e With probability 1 — v, ¥ = X (regardless of
whether X = 0 or X = 1).

e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h .
max (Y) b (V)

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then

I

e
(&

H(Y) = H(Y,E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

4. Hence,

C = max H(Y) — hy(7v)
p(x)

= max[hhT) + (1 — Ny (a)] — Rk
= (1 — ~) max hy (a)

= (1 — ~) bit per use,

Exercise: Show that H(Y |E) = (1 — v)hp(a).
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Binary Erasure Channel:
@ The output symbol e denotes “erasure”.

e ~ : Erasure probability, 0 < ~v < 1

e With probability 1 — v, ¥ = X (regardless of
whether X = 0 or X = 1).

e With probability v, ¥ = e (erasure).

e If X =0, Y cannot be 1. If X = 1, Y cannot
be O.

Determination of C

1. Consider

C = max I(X;Y
p(x) ( :

=  max(H(Y) — H(Y|X))
p(x)

= max H(Y) — h .
max (Y) b (V)

Thus we only have to maximize H(Y ) over all p(x).

2. Let
p(0) = a

and define a binary random variable E by
. 0 if Y
o 1 if 'Y

The random wvariable E indicates whether an erasure
has occurred, and it is a function of Y.

3. Then

I

e
(&

H(Y) = H(Y,E)
H(E) + H(Y|E)
=  hp(v)+ (1 = v)hp(a).

4. Hence,

C = max H(Y) — hy(7v)
p(x)

= max[hhT) + (1 — Ny (a)] — Rk
= (1 — ~) max hy (a)

= (1 — ~) bit per use,

where the capacity is achieved by letting a = 0.5, i.e.,
the input distribution is uniform.

Exercise: Show that H(Y |E) = (1 — v)hp(a).



