

Chapter 7 Discrete Memoryless Channels

© Raymond W. Yeung 2014 The Chinese University of Hong Kong

• Two equivalent models of a discrete memoryless channel (DMC)

- Two equivalent models of a discrete memoryless channel (DMC)
- How to communicate reliably through a DMC?

- Two equivalent models of a discrete memoryless channel (DMC)
- How to communicate reliably through a DMC?
- The capacity of a DMC

- Two equivalent models of a discrete memoryless channel (DMC)
- How to communicate reliably through a DMC?
- The capacity of a DMC
- Shannon's channel coding theorem: achievability and converse

- Two equivalent models of a discrete memoryless channel (DMC)
- How to communicate reliably through a DMC?
- The capacity of a DMC
- Shannon's channel coding theorem: achievability and converse
- The capacity when there is feedback

- Two equivalent models of a discrete memoryless channel (DMC)
- How to communicate reliably through a DMC?
- The capacity of a DMC
- Shannon's channel coding theorem: achievability and converse
- The capacity when there is feedback
- Separation theorem for source coding and channel coding

An Informal Discussion

• the simplest channel model

- the simplest channel model
- input alphabet $\mathcal{X} = \{0, 1\}$

- the simplest channel model
- input alphabet $\mathcal{X} = \{0, 1\}$
- output alphabet $\mathcal{Y} = \{0, 1\}$

- the simplest channel model
- input alphabet $\mathcal{X} = \{0, 1\}$
- output alphabet $\mathcal{Y} = \{0, 1\}$
- Crossover probability = ϵ , $0 \le \epsilon \le 1$

• Assume $\epsilon < 0.5$.

- Assume $\epsilon < 0.5$.
- Two possible messages, A and B, are to be sent through the channel.

- Assume $\epsilon < 0.5$.
- Two possible messages, A and B, are to be sent through the channel.
- Coding Scheme 1

Encoding
$$\begin{cases} A \to 0 \\ B \to 1 \end{cases}$$
 Decoding $\begin{cases} 0 \to A \\ 1 \to B \end{cases}$

- Assume $\epsilon < 0.5$.
- Two possible messages, A and B, are to be sent through the channel.
- Coding Scheme 1

Encoding
$$\begin{cases} A \to 0 \\ B \to 1 \end{cases}$$
 Decoding
$$\begin{cases} 0 \to A \\ 1 \to B \end{cases}$$

• A decoding error if and only if a crossover occurs. Therefore, $P_e = \epsilon$.

• To improve reliability, use the BSC n times for a large n.

- To improve reliability, use the BSC n times for a large n.
- Let

 $N_0 = \# 0$'s received $N_1 = \# 1$'s received

- To improve reliability, use the BSC n times for a large n.
- Let

$$N_0 = \# 0$$
's received
 $N_1 = \# 1$'s received

Encoding
$$\begin{cases} A \to 00\cdots 0 \\ B \to 11\cdots 1 \end{cases}$$
 Decoding
$$\begin{cases} N_0 > N_1 \to A \\ N_1 > N_0 \to B \end{cases}$$

- To improve reliability, use the BSC n times for a large n.
- Let

$$N_0 = \# 0$$
's received
 $N_1 = \# 1$'s received

• Coding Scheme 2

Encoding
$$\begin{cases} A \to 00\cdots 0 \\ B \to 11\cdots 1 \end{cases}$$
 Decoding
$$\begin{cases} N_0 > N_1 \to A \\ N_1 > N_0 \to B \end{cases}$$

• If message is A, by WLLN, $N_0 \approx n(1-\epsilon)$ and $N_1 \approx n\epsilon$ w.p. $\rightarrow 1$.

- To improve reliability, use the BSC n times for a large n.
- Let

$$N_0 = \# 0$$
's received
 $N_1 = \# 1$'s received

Encoding
$$\begin{cases} A \to 00\cdots 0 \\ B \to 11\cdots 1 \end{cases}$$
 Decoding
$$\begin{cases} N_0 > N_1 \to A \\ N_1 > N_0 \to B \end{cases}$$

- If message is A, by WLLN, $N_0 \approx n(1-\epsilon)$ and $N_1 \approx n\epsilon$ w.p. $\rightarrow 1$.
- Then $N_0 > N_1$ because $\epsilon < 0.5$.

- To improve reliability, use the BSC n times for a large n.
- Let

$$N_0 = \# 0$$
's received
 $N_1 = \# 1$'s received

Encoding
$$\begin{cases} A \to 00\cdots 0 \\ B \to 11\cdots 1 \end{cases} \quad \text{Decoding} \quad \begin{cases} N_0 > N_1 \to A \\ N_1 > N_0 \to B \end{cases}$$

- If message is A, by WLLN, $N_0 \approx n(1-\epsilon)$ and $N_1 \approx n\epsilon$ w.p. $\rightarrow 1$.
- Then $N_0 > N_1$ because $\epsilon < 0.5$.
- Therefore decode correctly w.p. $\rightarrow 1$ if message is A (similarly for B).

- To improve reliability, use the BSC n times for a large n.
- Let

$$N_0 = \# 0$$
's received
 $N_1 = \# 1$'s received

Encoding
$$\begin{cases} A \to 00\cdots 0 \\ B \to 11\cdots 1 \end{cases}$$
 Decoding
$$\begin{cases} N_0 > N_1 \to A \\ N_1 > N_0 \to B \end{cases}$$

- If message is A, by WLLN, $N_0 \approx n(1-\epsilon)$ and $N_1 \approx n\epsilon$ w.p. $\rightarrow 1$.
- Then $N_0 > N_1$ because $\epsilon < 0.5$.
- Therefore decode correctly w.p. $\rightarrow 1$ if message is A (similarly for B).

• However,
$$R = \frac{1}{n} \log 2 \to 0$$
 as $n \to \infty$. :(

7.1 Definition and Capacity

$$x \longrightarrow p(y|x) \longrightarrow y$$

$$x \longrightarrow p(y|x) \longrightarrow y$$

• Input random variable X takes values in discrete alphabet \mathcal{X} .

$$x \longrightarrow p(y|x) \longrightarrow y$$

• Input random variable X takes values in discrete alphabet \mathcal{X} .

Г

• Output random variable Y takes values in discrete output alphabet \mathcal{Y} .

$$x \longrightarrow p(y|x) \longrightarrow y$$

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete output alphabet \mathcal{Y} .
- The channel is specified by a transition matrix p(y|x) from \mathcal{X} to \mathcal{Y} .

$$x \longrightarrow p(y|x) \longrightarrow y$$

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete output alphabet \mathcal{Y} .
- The channel is specified by a transition matrix p(y|x) from \mathcal{X} to \mathcal{Y} .
- Input-output relation:

$$\Pr\{X = x, Y = y\} = \Pr\{X = x\} p(y|x)$$

$$x \longrightarrow p(y|x) \longrightarrow y$$

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete output alphabet \mathcal{Y} .
- The channel is specified by a transition matrix p(y|x) from \mathcal{X} to \mathcal{Y} .
- Input-output relation:

$$\Pr\{X = x, Y = y\} = \Pr\{X = x\} p(y|x)$$

• BSC with crossover probability ϵ :

$$[p(y|x)] = \begin{bmatrix} 1-\epsilon & \epsilon \\ \epsilon & 1-\epsilon \end{bmatrix}$$

Definition 7.1 (Discrete Channel I) Let \mathcal{X} and \mathcal{Y} be discrete alphabets, and p(y|x) be a transition matrix from \mathcal{X} to \mathcal{Y} . A discrete channel p(y|x) is a single-input single-output system with input random variable X taking values in \mathcal{X} and output random variable Y taking values in \mathcal{Y} such that

$$\Pr\{X = x, Y = y\} = \Pr\{X = x\} p(y|x)$$

for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$.

• Input random variable X takes values in discrete alphabet \mathcal{X} .

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete alphabet \mathcal{Y} .

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete alphabet \mathcal{Y} .
- Noise variable Z takes values in discrete alphabet \mathcal{Z} .

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete alphabet \mathcal{Y} .
- Noise variable Z takes values in discrete alphabet \mathcal{Z} .
- Z is independent of X.

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete alphabet \mathcal{Y} .
- Noise variable Z takes values in discrete alphabet \mathcal{Z} .
- Z is independent of X.
- α is a function from $\mathcal{X} \times \mathcal{Z}$ to \mathcal{Y} .

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete alphabet \mathcal{Y} .
- Noise variable Z takes values in discrete alphabet Z.
- Z is independent of X.
- α is a function from $\mathcal{X} \times \mathcal{Z}$ to \mathcal{Y} .
- The channel is specified by (α, Z) .

- Input random variable X takes values in discrete alphabet \mathcal{X} .
- Output random variable Y takes values in discrete alphabet \mathcal{Y} .
- Noise variable Z takes values in discrete alphabet \mathcal{Z} .
- Z is independent of X.
- α is a function from $\mathcal{X} \times \mathcal{Z}$ to \mathcal{Y} .
- The channel is specified by (α, Z) .
- Input-output relation: $Y = \alpha(X, \mathbb{Z})$.

Definition 7.2 (Discrete Channel II) Let \mathcal{X} , \mathcal{Y} , and \mathcal{Z} be discrete alphabets. Let $\alpha : \mathcal{X} \times \mathcal{Z} \to \mathcal{Y}$, and Z be a random variable taking values in \mathcal{Z} , called the noise variable. A discrete channel (α, Z) is a single-input single-output system with input alphabet \mathcal{X} and output alphabet \mathcal{Y} . For any input random variable X, the noise variable Z is independent of X, and the output random variable Y is given by

$$Y = \alpha(X, \mathbf{Z}).$$

• II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:

- For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$
 - Let $Y = Z_x$ if X = x, so that $Y = \alpha(X, Z)$.

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$
 - Let $Y = Z_x$ if X = x, so that $Y = \alpha(X, Z)$.

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$
 - Let $Y = Z_x$ if X = x, so that $Y = \alpha(X, Z)$.
 - Then

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$
 - Let $Y = Z_x$ if X = x, so that $Y = \alpha(X, Z)$.
 - Then

$$\Pr\{X = \mathbf{x}, Y = \mathbf{y}\} = \Pr\{X = \mathbf{x}\}\Pr\{Y = \mathbf{y}|X = \mathbf{x}\}$$

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$
 - Let $Y = Z_x$ if X = x, so that $Y = \alpha(X, Z)$.
 - Then

$$\Pr\{X = \mathbf{x}, Y = \mathbf{y}\} = \Pr\{X = \mathbf{x}\}\Pr\{Y = \mathbf{y}|X = \mathbf{x}\}$$
$$= \Pr\{X = \mathbf{x}\}\Pr\{Z_x = \mathbf{y}|X = \mathbf{x}\}$$

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$
 - Let $Y = Z_x$ if X = x, so that $Y = \alpha(X, Z)$.
 - Then

$$\Pr\{X = \mathbf{x}, Y = \mathbf{y}\} = \Pr\{X = \mathbf{x}\}\Pr\{Y = \mathbf{y}|X = \mathbf{x}\}$$
$$= \Pr\{X = \mathbf{x}\}\Pr\{Z_x = \mathbf{y}|X = \mathbf{x}\}$$
$$= \Pr\{X = \mathbf{x}\}\Pr\{Z_x = \mathbf{y}\}$$

- II \Rightarrow I $(\alpha, Z) \Rightarrow p(y|x)$: Obvious.
- $I \Rightarrow II$:
 - For $\mathbf{x} \in \mathcal{X}$, define $Z_{\mathbf{x}}$ with $\mathcal{Z}_{\mathbf{x}} = \mathcal{Y}$ such that $\Pr\{Z_{\mathbf{x}} = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$.
 - Assume $Z_x, x \in \mathcal{X}$ are mutually independent and also independent of X.
 - Define the noise variable $Z = (Z_x : x \in \mathcal{X}).$
 - Let $Y = Z_x$ if X = x, so that $Y = \alpha(X, Z)$.
 - Then

$$Pr\{X = \boldsymbol{x}, Y = \boldsymbol{y}\} = Pr\{X = \boldsymbol{x}\}Pr\{Y = \boldsymbol{y}|X = \boldsymbol{x}\}$$
$$= Pr\{X = \boldsymbol{x}\}Pr\{Z_x = \boldsymbol{y}|X = \boldsymbol{x}\}$$
$$= Pr\{X = \boldsymbol{x}\}Pr\{Z_x = \boldsymbol{y}\}$$
$$= Pr\{X = \boldsymbol{x}\}p(\boldsymbol{y}|\boldsymbol{x})$$

Definition 7.3 Two discrete channels p(y|x) and (α, Z) defined on the same input alphabet \mathcal{X} and output alphabet \mathcal{Y} are equivalent if

$$\Pr\{\alpha(\mathbf{x}, Z) = \mathbf{y}\} = p(\mathbf{y}|\mathbf{x})$$

for all x and y.

• A discrete channel can be used repeatedly at every time index $i = 1, 2, \cdots$.

- A discrete channel can be used repeatedly at every time index $i = 1, 2, \cdots$.
- Assume the noise for the transmission over the channel at different time indices are independent of each other.

- A discrete channel can be used repeatedly at every time index $i = 1, 2, \cdots$.
- Assume the noise for the transmission over the channel at different time indices are independent of each other.
- To properly formulate a DMC, we regard it as a subsystem of a discretetime stochastic system which will be referred to as "the system".

- A discrete channel can be used repeatedly at every time index $i = 1, 2, \cdots$.
- Assume the noise for the transmission over the channel at different time indices are independent of each other.
- To properly formulate a DMC, we regard it as a subsystem of a discretetime stochastic system which will be referred to as "the system".
- In such a system, random variables are generated sequentially in discrete-time.

- A discrete channel can be used repeatedly at every time index $i = 1, 2, \cdots$.
- Assume the noise for the transmission over the channel at different time indices are independent of each other.
- To properly formulate a DMC, we regard it as a subsystem of a discretetime stochastic system which will be referred to as "the system".
- In such a system, random variables are generated sequentially in discretetime.
- More than one random variable may be generated instantaneously but sequentially at a particular time index.

- •
- •

• A DMC specified by p(y|x) is a sequence of replicates of a generic discrete channel p(y|x).

 Y_2

 Y_3

 \geq

$$X_1 \longrightarrow p(y|x) \longrightarrow Y_1$$

p(y|x)

p(y|x)

۲

 X_2

 X_3

- A DMC specified by p(y|x) is a sequence of replicates of a generic discrete channel p(y|x).
- T_{i-} : all the random variables in the system generated before X_i .

$$X_1 \longrightarrow p(y|x) \longrightarrow Y_1$$

۲

- A DMC specified by p(y|x) is a sequence of replicates of a generic discrete channel p(y|x).
- T_{i-} : all the random variables in the system generated before X_i .
- Memoryless Property (Independent noise):

$$Pr\{Y_i = y, X_i = x, T_{i-} = t\}$$
$$= Pr\{X_i = x, T_{i-} = t\}p(y|x)$$

$$X_1 \longrightarrow p(y|x) \longrightarrow Y_1$$

۲

- A DMC specified by p(y|x) is a sequence of replicates of a generic discrete channel p(y|x).
- T_{i-} : all the random variables in the system generated before X_i .
- Memoryless Property (Independent noise):

$$\Pr\{Y_{i} = \boldsymbol{y}, X_{i} = \boldsymbol{x}, T_{i-} = t\}$$

$$= \Pr\{X_{i} = \boldsymbol{x}, T_{i-} = t\}p(\boldsymbol{y}|\boldsymbol{x})$$

$$\Pr\{Y_{i} = \boldsymbol{y}|X_{i} = \boldsymbol{x}, T_{i-} = t\}$$

$$X_1 \longrightarrow p(y|x) \longrightarrow Y_1$$

۲

- A DMC specified by p(y|x) is a sequence of replicates of a generic discrete channel p(y|x).
- T_{i-} : all the random variables in the system generated before X_i .
- Memoryless Property (Independent noise):

$$\Pr\{Y_{i} = \boldsymbol{y}, X_{i} = \boldsymbol{x}, T_{i-} = t\}$$

$$= \Pr\{X_{i} = \boldsymbol{x}, T_{i-} = t\}p(\boldsymbol{y}|\boldsymbol{x})$$

$$\Pr\{Y_{i} = \boldsymbol{y}|X_{i} = \boldsymbol{x}, T_{i-} = t\}$$

• Equivalently,
$$T_{i-} \rightarrow X_i \rightarrow Y_i$$
, or

$$X_1 \longrightarrow p(y|x) \longrightarrow Y_1$$

۲

- A DMC specified by p(y|x) is a sequence of replicates of a generic discrete channel p(y|x).
- T_{i-} : all the random variables in the system generated before X_i .
- Memoryless Property (Independent noise):

$$Pr\{Y_{i} = y, X_{i} = x, T_{i-} = t\}$$

$$= Pr\{X_{i} = x, T_{i-} = t\}p(y|x)$$

$$Pr\{Y_{i} = y|X_{i} = x, T_{i-} = t\}$$

• Equivalently, $T_{i-} \rightarrow X_i \rightarrow Y_i$, or

Given X_i , Y_i is independent of everything in the past. **Definition 7.4 (DMC I)** A discrete memoryless channel (DMC) p(y|x) is a sequence of replicates of a generic discrete channel p(y|x). These discrete channels are indexed by a discrete-time index i, where $i \ge 1$, with the ith channel being available for transmission at time i. Transmission through a channel is assumed to be instantaneous. Let X_i and Y_i be respectively the input and the output of the DMC at time i, and let T_{i-} denote all the random variables that are generated in the system before X_i . The equality

$$\Pr\{Y_i = y, X_i = x, T_{i-} = t\} = \Pr\{X_i = x, T_{i-} = t\}p(y|x)$$

holds for all $(x, y, t) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{T}_{i-}$.

- •
- •

• A DMC specified by (α, Z) is a sequence of replicates of a generic discrete channel (α, Z) .

- A DMC specified by (α, Z) is a sequence of replicates of a generic discrete channel (α, Z) .
 - Z_i is the noise variable for transmission at time *i*, and has the same distribution as *Z*.

- Z_{1} $X_{1} \longrightarrow \alpha \longrightarrow Y_{1}$ Z_{2} $X_{2} \longrightarrow \alpha \longrightarrow Y_{2}$ Z_{3} $X_{3} \longrightarrow \alpha \longrightarrow Y_{3}$
- A DMC specified by (α, Z) is a sequence of replicates of a generic discrete channel (α, Z) .
- Z_i is the noise variable for transmission at time *i*, and has the same distribution as *Z*.
- Memoryless Property (Independent noise):

 Z_i is independent of (X_i, T_{i-}) .

- A DMC specified by (α, Z) is a sequence of replicates of a generic discrete channel (α, Z) .
- Z_i is the noise variable for transmission at time *i*, and has the same distribution as *Z*.
- Memoryless Property (Independent noise):

 Z_i is independent of (X_i, T_{i-}) .

• That is,

The noise for transmission at time i is independent of both X_i and everything in the past. **Definition 7.5 (DMC II)** A discrete memoryless channel (α, Z) is a sequence of replicates of a generic discrete channel (α, Z) . These discrete channels are indexed by a discrete-time index i, where $i \geq 1$, with the ith channel being available for transmission at time i. Transmission through a channel is assumed to be instantaneous. Let X_i and Y_i be respectively the input and the output of the DMC at time i, and let T_{i-} denote all the random variables that are generated in the system before X_i . The noise variable Z_i for the transmission at time i is a copy of the generic noise variable Z, and is independent of (X_i, T_{i-}) . The output of the DMC at time i is given by

 $Y_i = \alpha(X_i, Z_i).$

Remark: The equivalence of Definitions 7.4 and 7.5 can be shown. See text-book.

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

where X and Y are respectively the input and the output of the generic discrete channel, and the maximum is taken over all input distributions p(x).

Remarks:

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

where X and Y are respectively the input and the output of the generic discrete channel, and the maximum is taken over all input distributions p(x).

Remarks:

Since I(X;Y) is a continuous functional of p(x) and the set of all p(x) is a compact set (i.e., closed and bounded) in R^{|X|}, the maximum value of I(X;Y) can be attained.

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

where X and Y are respectively the input and the output of the generic discrete channel, and the maximum is taken over all input distributions p(x).

Remarks:

- Since I(X;Y) is a continuous functional of p(x) and the set of all p(x) is a compact set (i.e., closed and bounded) in R^{|X|}, the maximum value of I(X;Y) can be attained.
- Will see that C is in fact the maximum rate at which information can be communicated reliably through a DMC.

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

where X and Y are respectively the input and the output of the generic discrete channel, and the maximum is taken over all input distributions p(x).

Remarks:

- Since I(X;Y) is a continuous functional of p(x) and the set of all p(x) is a compact set (i.e., closed and bounded) in R^{|X|}, the maximum value of I(X;Y) can be attained.
- Will see that C is in fact the maximum rate at which information can be communicated reliably through a DMC.
- Can communicate through a channel at a positive rate while $P_e \rightarrow 0!$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon \text{ and } \Pr\{Z=1\} = \epsilon$$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon \text{ and } \Pr\{Z=1\} = \epsilon$$

Determination of C

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon \text{ and } \Pr\{Z=1\} = \epsilon$$

Determination of C

1. Consider

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon \text{ and } \Pr\{Z=1\} = \epsilon$$

 $\begin{array}{c} Z \\ \downarrow \\ X & \longrightarrow & Y \end{array}$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon \text{ and } \Pr\{Z=1\} = \epsilon$$

and Z is independent of X.

Determination of C

1. Consider

$$I(X;Y) = H(Y) - H(Y|X)$$

 $\begin{array}{c} Z \\ \downarrow \\ X & \longrightarrow & Y \end{array}$

Determination of C

1. Consider

$$I(X;Y) = H(Y) - H(Y|X)$$

= $H(Y) - \sum_{x} p(x)H(Y|X = x)$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon$$
 and $\Pr\{Z=1\} = \epsilon$

Determination of C

1. Consider

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum_{x} p(x) H(Y|X=x) \\ &= H(Y) - \sum_{x} p(x) h_{b}(\epsilon) \end{split}$$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon$$
 and $\Pr\{Z=1\} = \epsilon$

Determination of C

1. Consider

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum_{x} p(x)H(Y|X=x) \\ &= H(Y) - \sum_{x} p(x)h_{b}(\epsilon) \\ &= H(Y) - h_{b}(\epsilon) \end{split}$$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon$$
 and $\Pr\{Z=1\} = \epsilon$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon$$
 and $\Pr\{Z=1\} = \epsilon$

and Z is independent of X.

Determination of C

1. Consider

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum_{x} p(x)H(Y|X=x) \\ &= H(Y) - \sum_{x} p(x)h_{b}(\epsilon) \\ &= H(Y) - h_{b}(\epsilon) \\ &\leq 1 - h_{b}(\epsilon). \end{split}$$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\}=1-\epsilon$$
 and $\Pr\{Z=1\}=\epsilon$

and Z is independent of X.

Determination of C

1. Consider

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum_{x} p(x)H(Y|X=x) \\ &= H(Y) - \sum_{x} p(x)h_{b}(\epsilon) \\ &= H(Y) - h_{b}(\epsilon) \\ &\leq 1 - h_{b}(\epsilon). \end{split}$$

2. So,

$$C = \max_{p(x)} I(X;Y) \le 1 - h_b(\epsilon).$$

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon \text{ and } \Pr\{Z=1\} = \epsilon$$

and Z is independent of X.

Determination of C

1. Consider

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum_{x} p(x)H(Y|X=x) \\ &= H(Y) - \sum_{x} p(x)h_{b}(\epsilon) \\ &= H(Y) - h_{b}(\epsilon) \\ &\leq 1 - h_{b}(\epsilon). \end{split}$$

2. So,

$$C = \max_{p(x)} I(X;Y) \le 1 - h_b(\epsilon).$$

3. The upper bound on I(X; Y) is tight if

$$H(Y) = 1.$$

This can be achieved by taking the uniform input distribution.
Example 7.7 (BSC)

Alternative representation of a BSC with crossover probability ϵ :

$$Y = X + Z \mod 2$$

 with

$$\Pr\{Z=0\} = 1 - \epsilon \text{ and } \Pr\{Z=1\} = \epsilon$$

and Z is independent of X.

Determination of C

1. Consider

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum_{x} p(x) H(Y|X=x) \\ &= H(Y) - \sum_{x} p(x) h_b(\epsilon) \\ &= H(Y) - h_b(\epsilon) \\ &\leq 1 - h_b(\epsilon). \end{split}$$

2. So,

$$C = \max_{p(x)} I(X; Y) \le 1 - h_b(\epsilon).$$

3. The upper bound on I(X; Y) is tight if

$$H(Y) = 1.$$

This can be achieved by taking the uniform input distribution.

4. Therefore, $C = 1 - h_b(\epsilon)$ bit per use.

 $C(\epsilon) = 1 - h_b(\epsilon)$

 $C(\epsilon) = 1 - h_b(\epsilon)$

Exercise: Show that X and Y are always independent for $\epsilon = 0.5$.

Binary Erasure Channel:

Binary Erasure Channel:

• The output symbol *e* denotes "erasure".

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \leq \gamma \leq 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \leq \gamma \leq 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

$$C = \max_{p(x)} I(X;Y)$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

$$C = \max_{p(x)} I(X; Y)$$
$$= \max_{p(x)} (H(Y) - \underline{H(Y|X)})$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - \underline{H(Y|X)})$$

=
$$\max_{p(x)} H(Y) - \underline{h_b(\gamma)}.$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \leq \gamma \leq 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

$$p(0) = \mathbf{a}$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \leq \gamma \leq 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

$$p(0) = a$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \leq \gamma \leq 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

and define a binary random variable E by

$$p(0) = \mathbf{a}$$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

$$p(0) = \mathbf{a}$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

$$p(0) = \mathbf{a}$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

 $p(0) = \mathbf{a}$ 0 0 γ X е p(1) = 1 - a1 $1-\gamma$

Binary Erasure Channel:

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e. \end{cases}$$

p(0) = a

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

$$H(Y) = H(Y, E)$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \leq \gamma \leq 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

2. Let

$$p(0) = \mathbf{a}$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e. \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

$$H(Y) = H(Y, E)$$
$$= H(E) + H(Y|E)$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \leq \gamma \leq 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

2. Let

$$p(0) = \mathbf{a}$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e. \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

$$H(Y) = H(Y, E)$$
$$= \underline{H(E)} + H(Y|E)$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

2. Let

$$p(0) = \mathbf{a}$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

2. Let

$$p(0) = \mathbf{a}$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e. \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

$$\begin{array}{lll} H(Y) & = & H(Y,E) \\ & = & H(E) + \underline{H(Y|E)} \\ & = & h_b(\gamma) + (1-\gamma)h_b(a). \end{array}$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

2. Let

$$p(0) = a$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e. \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

$$H(Y) = H(Y, E)$$

= $H(E) + \underline{H(Y|E)}$
= $h_b(\gamma) + (1 - \gamma)h_b(a).$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

p(0) = a

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$H(Y) = H(Y, E)$$

= $H(E) + \underline{H(Y|E)}$
= $h_b(\gamma) + (1 - \gamma)h_b(a)$.

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

p(0) = aand define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

H

2. Let

$$(Y) = H(Y, E)$$

= $H(E) + H(Y|E)$
= $h_b(\gamma) + (1 - \gamma)h_b(a).$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

p(0) = a

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

2. Let

$$\begin{array}{lll} H(Y) & = & H(Y,E) \\ & = & H(E) + H(Y|E) \\ & = & h_b(\gamma) + (1-\gamma)h_b(a). \end{array}$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

p(0) = a

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

2. Let

$$\begin{array}{lll} H(Y) & = & H(Y,E) \\ & = & H(E) + H(Y|E) \\ & = & h_b(\gamma) + (1-\gamma)h_b(a). \end{array}$$

4. Hence,

$$C = \max_{p(x)} H(Y) - h_b(\gamma)$$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

p(0) = a

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$H(Y) = H(Y, E)$$

= $H(E) + H(Y|E)$
= $h_b(\gamma) + (1 - \gamma)h_b(a).$

4. Hence,

$$C = \max_{p(x)} H(Y) - h_b(\gamma)$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

Thus we only have to maximize H(Y) over all p(x).

2. Let

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

2. Let

 $p(0) = \mathbf{a}$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$H(Y) = H(Y, E)$$

= $H(E) + H(Y|E)$
= $h_b(\gamma) + (1 - \gamma)h_b(a).$

4. Hence,

$$C = \max_{p(x)} H(Y) - h_b(\gamma)$$
$$= \max_{a} [h_b(\gamma) + (1 - \gamma)h_b(a)] - h_b(\gamma)$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

p(0) = a

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$H(Y) = H(Y, E)$$

= $H(E) + H(Y|E)$
= $h_b(\gamma) + (1 - \gamma)h_b(a).$

4. Hence,

$$C = \max_{p(x)} H(Y) - h_b(\gamma)$$
$$= \max_{a} [h_b(\gamma) + (1 - \gamma)h_b(a)] - h_b(\gamma)$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

Thus we only have to maximize H(Y) over all p(x).

 $2. \ Let$

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

p(0) = a

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$H(Y) = H(Y, E)$$

= $H(E) + H(Y|E)$
= $h_b(\gamma) + (1 - \gamma)h_b(a).$

4. Hence,

$$C = \max_{p(x)} H(Y) - h_b(\gamma)$$
$$= \max_{a} [h_b(\gamma) + (1 - \gamma)h_b(a)] - h_b(\gamma)$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

Thus we only have to maximize H(Y) over all p(x).

2. Let

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

2. Let

 $p(0) = \mathbf{a}$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$\begin{array}{lll} H(Y) & = & H(Y,E) \\ & = & H(E) + H(Y|E) \\ & = & h_b(\gamma) + (1-\gamma)h_b(a). \end{array}$$

4. Hence,

$$C = \max_{a} H(Y) - h_b(\gamma)$$

=
$$\max_{a} [h_b(\gamma) + (1 - \gamma)h_b(a)] - h_b(\gamma)$$

=
$$(1 - \gamma) \max_{a} h_b(a)$$

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

2. Let

$$p(0) = a$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$\begin{split} H(Y) &= & H(Y,E) \\ &= & H(E) + H(Y|E) \\ &= & h_b(\gamma) + (1-\gamma)h_b(a). \end{split}$$

4. Hence,

$$C = \max_{a} H(Y) - h_b(\gamma)$$

=
$$\max_{a} [h_b(\gamma) + (1 - \gamma)h_b(a)] - h_b(\gamma)$$

=
$$(1 - \gamma) \max_{a} h_b(a)$$

=
$$(1 - \gamma)$$
 bit per use,

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.

- The output symbol *e* denotes "erasure".
- γ : Erasure probability, $0 \le \gamma \le 1$
- With probability 1γ , Y = X (regardless of whether X = 0 or X = 1).
- With probability γ , Y = e (erasure).
- If X = 0, Y cannot be 1. If X = 1, Y cannot be 0.

Determination of C

1. Consider

$$C = \max_{p(x)} I(X; Y)$$

=
$$\max_{p(x)} (H(Y) - H(Y|X))$$

=
$$\max_{p(x)} H(Y) - h_b(\gamma).$$

Thus we only have to maximize H(Y) over all p(x).

2. Let

$$p(0) = a$$

and define a binary random variable E by

$$E = \begin{cases} 0 & \text{if } Y \neq e \\ 1 & \text{if } Y = e \end{cases}$$

The random variable E indicates whether an erasure has occurred, and it is a function of Y.

3. Then

$$\begin{array}{lll} H(Y) & = & H(Y,E) \\ & = & H(E) + H(Y|E) \\ & = & h_b(\gamma) + (1-\gamma)h_b(a). \end{array}$$

4. Hence,

$$C = \max_{a} H(Y) - h_b(\gamma)$$

=
$$\max_{a} [h_b(\gamma) + (1 - \gamma)h_b(a)] - h_b(\gamma)$$

=
$$(1 - \gamma) \max_{a} h_b(a)$$

=
$$(1 - \gamma)$$
 bit per use,

where the capacity is achieved by letting a = 0.5, i.e., the input distribution is uniform.

Exercise: Show that $H(Y|E) = (1 - \gamma)h_b(a)$.