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Strong typicality: empirical distribution ~ p(x)
Strong typicality = weak typicality (Proposition 6.5)
Weak typicality # strong typicality (to be discussed)

Both have AEP, but strong typicality has stronger conditional asymptotic
properties (Theorem 6.10).

Strong typicality works only for finite alphabet, i.e., |X| < oo, but weak
typicality works for any countable alphabet.



Strong Typicality = Weak Typicality

Proposition 6.5 For any x € A", if x € T[}](S, then x € W&]n, where n — 0
as 0 — 0.

Proof Idea

e By strong AEP and the definition of weak typicality.
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Definition 5.2 The weakly typical set W[frj’X]E

with respect to p(xz) is the set of sequences x =
(x1,T9, - ,xp) € X" such that

1
H(X) — e < —— log p(x) < H(X) + e,
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