

Chapter 6 Strong Typicality

© Raymond W. Yeung 2014 The Chinese University of Hong Kong

6.1 Strong AEP

• $\{X_k, k \ge 1\}, X_k \text{ i.i.d. } \sim p(x).$

- $\{X_k, k \ge 1\}, X_k \text{ i.i.d. } \sim p(x).$
- X denotes generic r.v. with entropy $H(X) < \infty$.

- $\{X_k, k \ge 1\}, X_k \text{ i.i.d. } \sim p(x).$
- X denotes generic r.v. with entropy $H(X) < \infty$.
- $\mathbf{X} = (X_1, X_2, \cdots, X_n)$. Then

$$p(\mathbf{X}) = p(X_1)p(X_2)\cdots p(X_n).$$

- $\{X_k, k \ge 1\}, X_k \text{ i.i.d. } \sim p(x).$
- X denotes generic r.v. with entropy $H(X) < \infty$.
- $\mathbf{X} = (X_1, X_2, \cdots, X_n)$. Then

$$p(\mathbf{X}) = p(X_1)p(X_2)\cdots p(X_n).$$

• Assume $|\mathcal{X}| < \infty$.

- $\{X_k, k \ge 1\}, X_k \text{ i.i.d. } \sim p(x).$
- X denotes generic r.v. with entropy $H(X) < \infty$.
- $\mathbf{X} = (X_1, X_2, \cdots, X_n)$. Then

$$p(\mathbf{X}) = p(X_1)p(X_2)\cdots p(X_n).$$

- Assume $|\mathcal{X}| < \infty$.
- Let the base of the logarithm be 2, i.e., H(X) is in bits.

• Consider $\mathbf{x} \in \mathcal{X}^n$.

- Consider $\mathbf{x} \in \mathcal{X}^n$.
- Let $N(\mathbf{x}; \mathbf{x})$ be the number of occurrences of \mathbf{x} in the sequence \mathbf{x} .

- Consider $\mathbf{x} \in \mathcal{X}^n$.
- Let $N(x; \mathbf{x})$ be the number of occurrences of x in the sequence \mathbf{x} .
- $n^{-1}N(\mathbf{x};\mathbf{x})$ is the relative frequency of \mathbf{x} in \mathbf{x} .

- Consider $\mathbf{x} \in \mathcal{X}^n$.
- Let $N(\mathbf{x}; \mathbf{x})$ be the number of occurrences of \mathbf{x} in the sequence \mathbf{x} .
- $n^{-1}N(x; \mathbf{x})$ is the relative frequency of x in \mathbf{x} .
- $\{n^{-1}N(x; \mathbf{x}) : x \in \mathcal{X}\}$ is the empirical distribution of \mathbf{x} .

- Consider $\mathbf{x} \in \mathcal{X}^n$.
- Let $N(\mathbf{x}; \mathbf{x})$ be the number of occurrences of \mathbf{x} in the sequence \mathbf{x} .
- $n^{-1}N(x; \mathbf{x})$ is the relative frequency of x in \mathbf{x} .
- $\{n^{-1}N(x; \mathbf{x}) : x \in \mathcal{X}\}$ is the empirical distribution of \mathbf{x} .

Example Let $\mathbf{x} = (1, 3, 2, 1, 1)$.

- $N(1; \mathbf{x}) = 3, N(2; \mathbf{x}) = N(3; \mathbf{x}) = 1$
- The empirical distribution of **x** is $\left\{\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\right\}$.

$$N(x; \mathbf{x}) = 0 \quad \text{for } x \notin \mathcal{S}_X \tag{1}$$

and

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T_{[X]\delta}^n$ are called strongly δ -typical sequences.

$$N(x; \mathbf{x}) = 0 \quad \text{for } x \notin \mathcal{S}_X \tag{1}$$

and

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T_{[X]\delta}^n$ are called strongly δ -typical sequences.

Remarks

• If $\sum_{x} |n^{-1}N(x; \mathbf{x}) - p(x)|$ is small, then so is $|n^{-1}N(x; \mathbf{x}) - p(x)|$ for every $x \in \mathcal{X}$.

$$N(x; \mathbf{x}) = 0 \quad \text{for } x \notin \mathcal{S}_X \tag{1}$$

and

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T_{[X]\delta}^n$ are called strongly δ -typical sequences.

- If $\sum_{x} |n^{-1}N(x; \mathbf{x}) p(x)|$ is small, then so is $|n^{-1}N(x; \mathbf{x}) p(x)|$ for every $x \in \mathcal{X}$.
- In other words, $n^{-1}N(x; \mathbf{x}) \approx p(x)$ for all $x \in \mathcal{X}$.

$$N(x; \mathbf{x}) = 0 \quad \text{for } x \notin \mathcal{S}_X \tag{1}$$

and

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T_{[X]\delta}^n$ are called strongly δ -typical sequences.

- If $\sum_{x} |n^{-1}N(x; \mathbf{x}) p(x)|$ is small, then so is $|n^{-1}N(x; \mathbf{x}) p(x)|$ for every $x \in \mathcal{X}$.
- In other words, $n^{-1}N(x; \mathbf{x}) \approx p(x)$ for all $x \in \mathcal{X}$.
- Therefore, if \mathbf{x} is strongly typical, the empirical distribution of \mathbf{x} is approximately equal to the generic distribution p(x).

$$N(x; \mathbf{x}) = 0 \quad \text{for } x \notin \mathcal{S}_X \tag{1}$$

and

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T_{[X]\delta}^n$ are called strongly δ -typical sequences.

- If $\sum_{x} |n^{-1}N(x; \mathbf{x}) p(x)|$ is small, then so is $|n^{-1}N(x; \mathbf{x}) p(x)|$ for every $x \in \mathcal{X}$.
- In other words, $n^{-1}N(x; \mathbf{x}) \approx p(x)$ for all $x \in \mathcal{X}$.
- Therefore, if \mathbf{x} is strongly typical, the empirical distribution of \mathbf{x} is approximately equal to the generic distribution p(x).
- If **x** is strongly typical, then $p(x_k) > 0$ for all k because of (1).

1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

1) If $\mathbf{x} \in T^n_{[X]\boldsymbol{\delta}}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\boldsymbol{\delta}}\} > 1 - \boldsymbol{\delta}.$$

1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\boldsymbol{\delta}}\} > 1 - \boldsymbol{\delta}.$$

3) For n sufficiently large,

$$(1-\delta)2^{n(H(X)-\eta)} \le |T^n_{[X]\delta}| \le 2^{n(H(X)+\eta)}.$$

1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof Idea

1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof Idea

• If \mathbf{x} is strongly typical, then the empirical distribution is "about right".

1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof Idea

- If \mathbf{x} is strongly typical, then the empirical distribution is "about right".
- If the empirical distribution is about right, then everything else, including the empirical entropy, would be about right, i.e.,

$$-\frac{1}{n}\log p(\mathbf{x}) \approx H(X).$$

1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof Idea

- If \mathbf{x} is strongly typical, then the empirical distribution is "about right".
- If the empirical distribution is about right, then everything else, including the empirical entropy, would be about right, i.e.,

$$-\frac{1}{n}\log p(\mathbf{x}) \approx H(X).$$

• This is equivalent to $p(\mathbf{x}) \approx 2^{-nH(X)}$.

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold: 1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$
$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$
1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$
$$= \sum_{x} (N(x; \mathbf{x}) - np(x)) + np(x)) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$
$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$
$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$
$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$
$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (\underline{N(x; \mathbf{x}) - np(x)} + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (\underline{N(x; \mathbf{x}) - np(x)} + np(x)) \underline{\log p(x)}$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (\underline{N(x; \mathbf{x}) - np(x)} + np(x)) \underline{\log p(x)}$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (\underline{-} \log p(x))$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (\underline{N(x; \mathbf{x}) - np(x)} + np(x)) \underline{\log p(x)}$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-\underline{n} \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (\underline{-} \log p(x))$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x}) = \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[\underline{H(X)} + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \right].$$
(1)

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \right].$$
(1)

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \right].$$
(1)

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \right].$$
(1)

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x;\mathbf{x})=0$ for all $x\not\in \mathcal{S}_X.$ Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x;\mathbf{x})=0$ for all $x\not\in \mathcal{S}_X.$ Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then

 $2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

$$\sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) \left(-\log p(x)\right)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

$$\sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(-\log p(x) \right)$$
$$\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \left(-\log p(x) \right)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

$$\left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(-\log p(x) \right) \right|$$
$$\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \left(-\log p(x) \right)$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \end{aligned}$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.$$

Now consider

| .

$$\left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right|$$

$$\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x))$$

$$\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right|$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.$$

Now consider

.

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \end{aligned}$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

| .

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \end{aligned}$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

•

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \end{aligned}$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

|.

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

\mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

 $\log p(\mathbf{x})$ $= \sum_{x} N(x; \mathbf{x}) \log p(x)$ $= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$ $= n \sum_{x} p(x) \log p(x)$ $-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$ $= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$ (1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

$$\begin{split} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{split}$$

where

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

 $\log p(\mathbf{x})$ $= \sum_{x} N(x; \mathbf{x}) \log p(x)$ $= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$ = $n \sum_{x} p(x) \log p(x)$ $-n\sum_{x}\left(rac{1}{n}N(x;\mathbf{x})-p(x)
ight)\left(-\log p(x)
ight)$ $= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(-\log p(x) \right) \right].$

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

(1)

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(-\log p(x) \right) \leq \eta.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

 $\log p(\mathbf{x})$ $= \sum_{x} N(x; \mathbf{x}) \log p(x)$ $= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$ $= n \sum_{x} p(x) \log p(x)$ $-n\sum_{m}\left(rac{1}{n}N(x;\mathbf{x})-p(x)
ight)\left(-\log p(x)
ight)$ $= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(-\log p(x) \right) \right].$

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.$$

Now consider

$$\begin{split} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{split}$$

where

(1)

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(-\log p(x) \right) \leq \eta.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

 \mathbf{Proof}

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

 $\log p(\mathbf{x})$ $= \sum_{x} N(x; \mathbf{x}) \log p(x)$ $= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$ $= n \sum_{x} p(x) \log p(x)$ $-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \stackrel{-\eta \leq}{=} \stackrel{\leq}{=} \eta$ $= -n \left[H(X) + \left(\sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right) \right].$ (1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) \left(-\log p(x)\right) \leq \eta.$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \quad -\eta \leq \mathbf{x}$$

$$= -n \left[H(X) + \left(\sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right) \right].$$
(1)

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) \left(-\log p(x)\right) \leq \eta.$$

4. It then follows from (1) that

$$-n(H(X) + \eta) \le \log p(\mathbf{x}) \le -n(H(X) - \eta),$$

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$
1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x)) \stackrel{-\eta \leq}{=} \leq \eta$$

$$= -n \left[H(X) + \left(\sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right) \right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) \left(-\log p(x)\right) \leq \eta.$$

4. It then follows from (1) that

$$-n(H(X) + \eta) \leq \log p(\mathbf{x}) \leq -n(H(X) - \eta),$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) \left(-\log p(x)\right) \leq \eta.$$

4. It then follows from (1) that

$$-n(H(X) + \eta) \le \log p(\mathbf{x}) \le -n(H(X) - \eta),$$

or

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)},$$

1) If
$$\mathbf{x} \in T^n_{[X]\delta}$$
, then
$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$-n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) (-\log p(x))\right].$$
(1)

Now consider

$$\begin{aligned} \left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right| \\ &\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x)) \\ &\leq -\log \left(\min_{x} p(x) \right) \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \\ &\leq -\delta \log \left(\min_{x} p(x) \right) \\ &= \eta, \end{aligned}$$

where

$$\eta = -\delta \log \left(\min_{x} p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x)\right) \left(-\log p(x)\right) \leq \eta.$$

4. It then follows from (1) that

$$-n(H(X) + \eta) \le \log p(\mathbf{x}) \le -n(H(X) - \eta),$$

or

$$2^{-n(H(X)+\eta)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\eta)},$$

where $\eta \to 0$ as $\delta \to 0$, proving Property 1.

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \le \delta.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

Proof Idea

• By WLLN, w.p. $\rightarrow 1$ (with probability tends to 1), the empirical distribution of **X** is close to p(x), and so by definition **X** is strongly typical.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

 \mathbf{Proof}

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

 \mathbf{Proof}

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

4. Then

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

$$\Pr\left\{\left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x\right\}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right|>\frac{\delta}{|\mathcal{X}|}\right\}<\frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

$$\Pr\left\{\left|\frac{1}{n}\underline{N(x;\mathbf{X})} - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x\right\}$$

$$(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x;\mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

$$\Pr\left\{\left|\frac{1}{n}\underline{N(x;\mathbf{X})} - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x\right\}$$

$$(0 \quad \prod X_k \neq x.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x;\mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

 $\Pr\left\{ \left| \frac{1}{n} \underline{N(x; \mathbf{X})} - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$ $= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

 $\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$ $= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$
$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$
$$= \Pr\left\{ \bigcup_{\underline{x}} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_{k}(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$
$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$
$$= \Pr\left\{ \bigcup_{\underline{x}} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\Pr(A \cup B) \le \Pr(A) + \Pr(B)$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_{k}(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$\Pr(A \cup B) \le \Pr(A) + \Pr(B)$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x)$$

Note that

$$EB_{k}(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$\Pr(A \cup B) \le \Pr(A) + \Pr(B)$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x)$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$\Pr(A \cup B) \le \Pr(A) + \Pr(B)$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in T^n_{[X]\delta}\} > 1 - \delta.$$

\mathbf{Proof}

1. To prove Property 2, we write

$$N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n}\sum_{k=1}^{n}B_{k}(x)-p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\sum_x \left|rac{1}{n}N(x;\mathbf{x})-p(x)
ight|>$$

 δ

5. Now

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.
$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}.$$

Then we have

$$\Pr\left\{\sum_{x}\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right|>\delta\right\}$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$

Then we have

$$\Pr\left\{ \frac{\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta}{\leq} \right\}$$

$$\leq \Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \delta\right\}$$
$$\leq \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}.$$

$$\Pr\left\{\mathbf{X} \in T^n_{[X]\delta}\right\}$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\}$$
$$\leq \Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.$$

$$\Pr\left\{\mathbf{X} \in T_{[X]\delta}^{n}\right\}$$
$$= \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x; \mathbf{X}) - p(x)\right| \le \delta\right\}$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\}$$
$$\leq \Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.$$

$$\Pr\left\{\mathbf{X} \in T_{[X]\delta}^{n}\right\}$$

$$= \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| \le \delta\right\}$$

$$= 1 - \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| \ge \delta\right\}$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\}$$
$$\leq \Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.$$

$$\Pr\left\{\mathbf{X} \in T_{[X]\delta}^{n}\right\}$$

$$= \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| \le \delta\right\}$$

$$= 1 - \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \delta\right\}$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \delta\right\}$$
$$\leq \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}.$$

$$\Pr\left\{\mathbf{X} \in T_{[X]\delta}^{n}\right\}$$

$$= \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| \le \delta\right\}$$

$$= 1 - \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \delta\right\}$$

$$\ge 1 - \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$\leq \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta_{t}$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \delta\right\}$$

$$\leq \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}.$$

$$\Pr\left\{\mathbf{X} \in T_{[X]\delta}^{n}\right\}$$

$$= \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| \le \delta\right\}$$

$$= 1 - \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \delta\right\}$$

$$\ge 1 - \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$\leq \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \delta\right\}$$

$$\leq \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}.$$

$$\Pr\left\{\mathbf{X} \in T_{[X]\delta}^{n}\right\}$$

$$= \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| \le \delta\right\}$$

$$= 1 - \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \delta\right\}$$

$$\geq 1 - \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}$$

$$> 1 - \delta,$$

$$\Pr\left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$< \sum_{x} \frac{\delta}{|\mathcal{X}|}$$

$$= \delta.$$

5. Now

$$\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta$$

implies

$$\left|\frac{1}{n}N(x;\mathbf{x})-p(x)\right| > \frac{\delta}{|\mathcal{X}|}$$
 for some $x \in \mathcal{X}$.

Then we have

$$\Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \delta\right\}$$

$$\leq \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{x}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}.$$

Then

$$\Pr\left\{\mathbf{X} \in T_{[X]\delta}^{n}\right\}$$

$$= \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| \le \delta\right\}$$

$$= 1 - \Pr\left\{\sum_{x} \left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \delta\right\}$$

$$\geq 1 - \Pr\left\{\left|\frac{1}{n}N(x;\mathbf{X}) - p(x)\right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}\right\}$$

$$> 1 - \delta,$$

proving Property 2.

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

3) For n sufficiently large,

$$(1-\delta)2^{n(H(X)-\eta)} \leq |T^n_{[X]\delta}| \leq 2^{n(H(X)+\eta)}.$$

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

3) For n sufficiently large,

$$(1-\delta)2^{n(H(X)-\eta)} \leq |T_{[X]\delta}^n| \leq 2^{n(H(X)+\eta)}.$$

Proof Follows from Property 1 and Property 2 in exactly the same way as in Theorem 5.3. (Exercise)

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

3) For n sufficiently large,

$$(1-\delta)2^{n(H(X)-\eta)} \leq |T^n_{[X]\delta}| \leq 2^{n(H(X)+\eta)}$$

Proof Follows from Property 1 and Property 2 in exactly the same way as in Theorem 5.3. (Exercise)

Theorem 5.3 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$. 2) For *n* sufficiently large, $\Pr{\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon}.$ 3) For *n* sufficiently large, $(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$ **Theorem 6.3** For sufficiently large n, there exists $\varphi(\delta) > 0$ such that $\Pr{\{\mathbf{X} \notin T_{[X]\delta}^n\}} < 2^{-n\varphi(\delta)}.$

Proof Chernoff bound.