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5.2 The Source Coding Theorem
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The encoder maps a random source sequence X € X" to an index f(X)

in an index set

7T={1,2,---, M}

Such a code is called a block code with n being the block length of the

code.

The encoder sends f(X) to the decoder through a noiseless channel.

Based on the index, the decoder outputs X as an estimate on X.
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where M is the size of the index set and n is the block length.
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Typically, R < log|X| for data compression.
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e The encoder is specified by the mapping

fiX" > T={1,2---, M}

e The rate of the code is given by R = n~! log M in bits per source symbol,
where M is the size of the index set and n is the block length.

o If M = |X"| =|X|", the rate of the code is

1 1
—log M = —log |X|" = log |X|.
n n

e Typically, R < log|X| for data compression.

e An error occurs if X # X, and P, = Pr{X # X} is called the error
probability.
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The Source Coding Theorem

Direct Part: For arbitrarily small P,, there exists a block code whose coding
rate is arbitrarily close to H(X) when n is sufficiently large.

e This part says that reliable communication can be achieved it the coding
rate is at least H(X).

Converse: For any block code with block length n and coding rate less than
H(X) — ¢, where ( > 0 does not change with n, then P, — 1 as n — o0.

e This part says that it is impossible to achieve reliable communication if
the coding rate is less than H(X).
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Direct Part

e For an arbitrarily small but fixed € > 0, construct a sequence of codes
with block length n such that P, < ¢ when n is sufficiently large.

e We will consider a class of block codes with a particular structure.
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A Class of Block Codes

Encoder:

1. Choose a subset A of X™ and let M = | A]|.

2. For each source sequence x € A, assign it to a unique
index f(x) € Z, i.e.,

F(x) # f(x")  for x # x'.

3. For each source sequence x € A, let f(x) = 1.

Decoder:
1. For an index i € Z, decode it to the unique x € A
such that f(x) = 4.

2. If the source sequence x € A, then it is decoded
correctly.

3. If source sequence x ¢ A, then it is decoded incor-
rectly.

4. Thus P = Pr{X & A}.
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