

• The encoder maps a random source sequence $\mathbf{X} \in \mathcal{X}^n$ to an index $f(\mathbf{X})$ in an index set

$$\mathcal{I} = \{1, 2, \cdots, M\}.$$

• The encoder maps a random source sequence $\mathbf{X} \in \mathcal{X}^n$ to an index $f(\mathbf{X})$ in an index set

$$\mathcal{I} = \{1, 2, \cdots, M\}.$$

• Such a code is called a block code with n being the block length of the code.

• The encoder maps a random source sequence $\mathbf{X} \in \mathcal{X}^n$ to an index $f(\mathbf{X})$ in an index set

$$\mathcal{I} = \{1, 2, \cdots, M\}.$$

- Such a code is called a block code with n being the block length of the code.
- The encoder sends $f(\mathbf{X})$ to the decoder through a noiseless channel.

• The encoder maps a random source sequence $\mathbf{X} \in \mathcal{X}^n$ to an index $f(\mathbf{X})$ in an index set

$$\mathcal{I} = \{1, 2, \cdots, M\}.$$

- Such a code is called a block code with n being the block length of the code.
- The encoder sends $f(\mathbf{X})$ to the decoder through a noiseless channel.
- Based on the index, the decoder outputs $\hat{\mathbf{X}}$ as an estimate on \mathbf{X} .

$$f: \mathcal{X}^n \to \mathcal{I} = \{1, 2, \cdots, M\}.$$

$$f: \mathcal{X}^n \to \mathcal{I} = \{1, 2, \cdots, M\}.$$

• The rate of the code is given by $R = n^{-1} \log M$ in bits per source symbol, where M is the size of the index set and n is the block length.

$$f: \mathcal{X}^n \to \mathcal{I} = \{1, 2, \cdots, M\}.$$

- The rate of the code is given by $R = n^{-1} \log M$ in bits per source symbol, where M is the size of the index set and n is the block length.
- If $M = |\mathcal{X}^n| = |\mathcal{X}|^n$, the rate of the code is

$$\frac{1}{n}\log M = \frac{1}{n}\log |\mathcal{X}|^n = \log |\mathcal{X}|.$$

$$f: \mathcal{X}^n \to \mathcal{I} = \{1, 2, \cdots, M\}.$$

- The rate of the code is given by $R = n^{-1} \log M$ in bits per source symbol, where M is the size of the index set and n is the block length.
- If $M = |\mathcal{X}^n| = |\mathcal{X}|^n$, the rate of the code is

$$\frac{1}{n}\log M = \frac{1}{n}\log |\mathcal{X}|^n = \log |\mathcal{X}|.$$

• Typically, $R < \log |\mathcal{X}|$ for data compression.

$$f: \mathcal{X}^n \to \mathcal{I} = \{1, 2, \cdots, M\}.$$

- The rate of the code is given by $R = n^{-1} \log M$ in bits per source symbol, where M is the size of the index set and n is the block length.
- If $M = |\mathcal{X}^n| = |\mathcal{X}|^n$, the rate of the code is

$$\frac{1}{n}\log M = \frac{1}{n}\log |\mathcal{X}|^n = \log |\mathcal{X}|.$$

- Typically, $R < \log |\mathcal{X}|$ for data compression.
- An error occurs if $\hat{\mathbf{X}} \neq \mathbf{X}$, and $P_e = \Pr{\{\hat{\mathbf{X}} \neq \mathbf{X}\}}$ is called the error probability.

Direct Part: For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

Direct Part: For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

• This part says that reliable communication can be achieved if the coding rate is at least H(X).

Direct Part: For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

• This part says that reliable communication can be achieved if the coding rate is at least H(X).

Converse: For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Direct Part: For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

• This part says that reliable communication can be achieved if the coding rate is at least H(X).

Converse: For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

• This part says that it is impossible to achieve reliable communication if the coding rate is less than H(X).

Direct Part

• For an arbitrarily small but fixed $\epsilon > 0$, construct a sequence of codes with block length n such that $P_e < \epsilon$ when n is sufficiently large.

Direct Part

- For an arbitrarily small but fixed $\epsilon > 0$, construct a sequence of codes with block length n such that $P_e < \epsilon$ when n is sufficiently large.
- We will consider a class of block codes with a particular structure.

Encoder:

1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.

Encoder:

1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.

2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in \mathcal{I}$, i.e.,

 $f(\mathbf{x}) \neq f(\mathbf{x'}) \quad \text{for } \mathbf{x} \neq \mathbf{x'}.$

Encoder:

- 1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
- 2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in \mathcal{I}$, i.e.,

 $f(\mathbf{x}) \neq f(\mathbf{x}') \quad \text{for } \mathbf{x} \neq \mathbf{x}'.$

3. For each source sequence $\mathbf{x} \notin \mathcal{A}$, let $f(\mathbf{x}) = 1$.

Encoder:

- 1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
- 2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in \mathcal{I}$, i.e.,

$$f(\mathbf{x}) \neq f(\mathbf{x'}) \quad \text{for } \mathbf{x} \neq \mathbf{x'}.$$

3. For each source sequence $\mathbf{x} \notin \mathcal{A}$, let $f(\mathbf{x}) = 1$.

Decoder:

1. For an index $i \in \mathcal{I}$, decode it to the unique $\mathbf{x} \in \mathcal{A}$ such that $f(\mathbf{x}) = i$.

Encoder:

- 1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
- 2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in \mathcal{I}$, i.e.,

$$f(\mathbf{x}) \neq f(\mathbf{x}') \quad \text{for } \mathbf{x} \neq \mathbf{x}'.$$

3. For each source sequence $\mathbf{x} \notin \mathcal{A}$, let $f(\mathbf{x}) = 1$.

Decoder:

1. For an index $i \in \mathcal{I}$, decode it to the unique $\mathbf{x} \in \mathcal{A}$ such that $f(\mathbf{x}) = i$.

2. If the source sequence $\mathbf{x} \in \mathcal{A}$, then it is decoded correctly.

Encoder:

- 1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
- 2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in \mathcal{I}$, i.e.,

$$f(\mathbf{x}) \neq f(\mathbf{x'}) \quad \text{for } \mathbf{x} \neq \mathbf{x'}.$$

3. For each source sequence $\mathbf{x} \notin \mathcal{A}$, let $f(\mathbf{x}) = 1$.

Decoder:

1. For an index $i \in \mathcal{I}$, decode it to the unique $\mathbf{x} \in \mathcal{A}$ such that $f(\mathbf{x}) = i$.

2. If the source sequence $\mathbf{x} \in \mathcal{A}$, then it is decoded correctly.

3. If source sequence $\mathbf{x} \not\in \mathcal{A}$, then it is decoded incorrectly.

Encoder:

- 1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
- 2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in \mathcal{I}$, i.e.,

$$f(\mathbf{x}) \neq f(\mathbf{x'}) \quad \text{for } \mathbf{x} \neq \mathbf{x'}.$$

3. For each source sequence $\mathbf{x} \notin \mathcal{A}$, let $f(\mathbf{x}) = 1$.

Decoder:

1. For an index $i \in \mathcal{I}$, decode it to the unique $\mathbf{x} \in \mathcal{A}$ such that $f(\mathbf{x}) = i$.

2. If the source sequence $\mathbf{x} \in \mathcal{A}$, then it is decoded correctly.

3. If source sequence $\mathbf{x} \not\in \mathcal{A}$, then it is decoded incorrectly.

4. Thus $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\}}.$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

 \mathbf{Proof}

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

 \mathbf{Proof}

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

1. We need to choose the set \mathcal{A} suitably.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

1. We need to choose the set \mathcal{A} suitably.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

1. We need to choose the set \mathcal{A} suitably.

2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.

3. For sufficiently large n, by WAEP,

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

1. We need to choose the set \mathcal{A} suitably.

2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.

3. For sufficiently large n, by WAEP,

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

1. We need to choose the set \mathcal{A} suitably.

2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.

3. For sufficiently large n, by WAEP,

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \le |W_{[X]\epsilon}^n| \le 2^{n(H(X)+\epsilon)}$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{\mathbf{X} \notin \mathcal{A}\} = \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \epsilon.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{\mathbf{X} \notin \mathcal{A}\} = \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \epsilon.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{\mathbf{X} \notin \mathcal{A}\} = \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \epsilon.$$

6. Letting $\epsilon \to 0$, the coding rate tends to H(X), while P_e tends to 0.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{\mathbf{X} \notin \mathcal{A}\} = \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \epsilon.$$

6. Letting $\epsilon \to 0$, the coding rate tends to H(X), while P_e tends to 0.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{\mathbf{X} \notin \mathcal{A}\} = \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \epsilon.$$

6. Letting $\epsilon \to 0$, the coding rate tends to H(X), while P_e tends to 0.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{\mathbf{X} \notin \mathcal{A}\} = \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \epsilon.$$

6. Letting $\epsilon \to 0$, the coding rate tends to H(X), while P_e tends to 0.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to H(X) when n is sufficiently large.

\mathbf{Proof}

- 1. We need to choose the set \mathcal{A} suitably.
- 2. Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- 3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

4. The coding rate satisfies

$$\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{\mathbf{X} \notin \mathcal{A}\} = \Pr\{\mathbf{X} \notin W^n_{[X]\epsilon}\} < \mathscr{A}$$

6. Letting $\epsilon \to 0$, the coding rate tends to H(X), while P_e tends to 0.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

Converse

• We will prove the converse for the class of block codes we use for proving the direct part.

Converse

- We will prove the converse for the class of block codes we use for proving the direct part.
- For a general converse, see Problem 2.

Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

 \mathbf{Proof}

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$. 2) For *n* sufficiently large, $\Pr{\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon}.$ 3) For *n* sufficiently large,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

 \mathbf{Proof}

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$. 2) For *n* sufficiently large, $\Pr{\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon}.$ 3) For *n* sufficiently large,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$. Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$. Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$M \le 2^{n(H(X) - \zeta)}.$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$M \le 2^{n(H(X)-\zeta)}.$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)} 2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}$$

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$\underline{2^{-n(\zeta-\epsilon)}} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon$$

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \underline{\epsilon}.$$

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \underline{2^{-n(\zeta-\epsilon)} + \epsilon}.$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon$$

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)}$ holds for any $\epsilon > 0$ and n sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < \frac{2^{-n(\zeta-\epsilon)}+\epsilon}{2^{-n(\zeta-\epsilon)}+\epsilon}.$$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)}$ holds for any $\epsilon > 0$ and n sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W^n_{[X]\epsilon}$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W^n_{[X]\epsilon}$, while the others cover $\mathbf{x} \notin W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)}$ holds for any $\epsilon > 0$ and n sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If
$$\mathbf{x} \in W_{[X]\epsilon}^n$$
, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\}} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)$ holds for any $\epsilon > 0$ and n sufficiently large.

6. Take $\epsilon < \zeta$. Then $P_e > 1 - 2\epsilon$ for $n(\epsilon)$ sufficiently large.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\} > 1 - (2^{-n}(\zeta - \epsilon) + \epsilon)}$ holds for any $\epsilon > 0$ and n sufficiently large.

6. Take $\epsilon < \zeta$. Then $P_e > 1 - 2\epsilon$ for $n(\epsilon)$ sufficiently large.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

 $< \epsilon$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\}} > 1 - (2^{-n(\boldsymbol{\zeta} - \boldsymbol{\epsilon})} + \boldsymbol{\epsilon})$ holds for any $\boldsymbol{\epsilon} > 0$ and *n* sufficiently large.

6. Take $\epsilon < \zeta$. Then $P_e > 1 - 2\epsilon$ for $n(\epsilon)$ sufficiently large.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M < 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

 $< \epsilon$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\}} > 1 - (2^{-n(\boldsymbol{\zeta} - \boldsymbol{\epsilon})} + \boldsymbol{\epsilon})$ holds for any $\boldsymbol{\epsilon} > 0$ and *n* sufficiently large.

6. Take $\epsilon < \zeta$. Then $\underline{P_e > 1 - 2\epsilon}$ for $n(\epsilon)$ sufficiently large.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then $2^{-n(H(X)+\epsilon)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\epsilon)}$.

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)}$ holds for any $\epsilon > 0$ and n sufficiently large.

6. Take $\epsilon < \zeta$. Then $\underline{P_e > 1 - 2\epsilon}$ for $n(\epsilon)$ sufficiently large.

7. Finally, let $\epsilon \to 0$.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

\mathbf{Proof}

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n}\log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with *n*. Then total number of codewords

$$M \le 2^{n(H(X) - \zeta)}$$

2. In general, some of the indices in \mathcal{I} cover $\mathbf{x} \in W_{[X]\epsilon}^n$, while the others cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I} , i.e., $\Pr{\mathbf{X} \in \mathcal{A}}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \notin W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

5. Then $P_e = \Pr{\{\mathbf{X} \notin \mathcal{A}\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)}$ holds for any $\epsilon > 0$ and n sufficiently large.

6. Take $\epsilon < \zeta$. Then $\underline{P_e > 1 - 2\epsilon}$ for $n(\epsilon)$ sufficiently large.

7. Finally, let $\epsilon \to 0$.

Theorem 5.2 (Weak AEP II) 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then

$$2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W_{[X]\epsilon}^n\} > 1 - \epsilon.$$

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_{[X]\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}.$$

