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Chapter 5 
Weak Typicality 
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• Toss a fair coin n times.
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• How to measure the typicality of a sequence w.r.t. to the generic distribu-
tion of an i.i.d. process?
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strong typicality.
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erties (AEP), which are consequences of WLLN.
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Theorem 5.1 (Weak AEP I)
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1
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log p(X) ! H(X)

in probability as n ! 1.

Proof

1. Since X
1

, X
2

, · · · , Xn are i.i.d.,
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1

)p(X
2

) · · · p(Xn).
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log p(Xk). (1)

3. The random variables log p(Xk) are also i.i.d. Then

by WLLN, (1) tends to

�E log p(X) = H(X),

in probability, proving the theorem.
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where ✏ is an arbitrarily small positive real number. The sequences in Wn
[X]✏ are

called weakly ✏-typical sequences.
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This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have
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�n(H(X)�✏)

.

Then

|Wn
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n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

_________



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

_______________



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

___________ _______________



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

_____________



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

_________



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

_________ ______



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

_________ ______ ____________



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.

________________



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



Theorem 5.2 (Weak AEP II) The following hold for
any ✏ > 0:

1) If x 2 Wn
[X]✏

, then

2
�n(H(X)+✏)  p(x)  2

�n(H(X)�✏)
. (1)

2) For n sufficiently large,

Pr{X 2 W
n
[X]✏} > 1 � ✏.

3) For n sufficiently large,

(1 � ✏)2
n(H(X)�✏)  |Wn

[X]✏|  2
n(H(X)+✏)

.

Proof

1. From Definition 5.2, for x 2 Wn
[X]✏

,

n(H(X) � ✏)  � log p(x)  n(H(X) + ✏)

or

�n(H(X) + ✏)  log p(x)  �n(H(X) � ✏).

This is equivalent to (1).

2. Property 2 is equivalent to Theorem 5.1.

3. To prove Property 3, we use the lower bound in (1)
and consider

|Wn
[X]✏|2

�n(H(X)+✏)  Pr{Wn
[X]✏}  1,

which implies

|Wn
[X]✏|  2

n(H(X)+✏)
. (2)

Note that this upper bound holds for any n � 1.

4. On the other hand, using the upper bound in (1)
and Property 2, for n sufficiently large, we have

1 � ✏  Pr{Wn
[X]✏}  |Wn

[X]✏|2
�n(H(X)�✏)

.

Then

|Wn
[X]✏| � (1 � ✏)2

n(H(X)�✏)
. (3)

5. Combining (2) and (3) gives Property 3. The theo-
rem is proved.

Definition 5.2 The weakly typical set Wn
[X]✏

with respect to p(x) is the set of sequences x =

(x
1

, x
2

, · · · , xn) 2 Xn
such that

H(X) � ✏  �
1

n
log p(x)  H(X) + ✏.

Theorem 5.1 (Weak AEP I) For any ✏ > 0, for n
sufficiently large,

Pr

⇢�����
1

n
log p(X) � H(X)

����  ✏

�
> 1 � ✏.



WAEP says that for large n,

• the probability of occurrence of the sequence drawn is close to 2

�nH(X)

with very high probability;

• the total number of weakly typical sequences is approximately equal to

2

nH(X)
.

WAEP does not say that

• most of the sequences in Xn
are weakly typical;

• the most likely sequence is weakly typical.
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Example Consider a binary r.v. X such that p(0) = 0.2 and p(1) = 0.8.

• The most likely sequence is 1 = (1, 1, · · · , 1) with p(1) = 0.8n.

• Then

� 1

n
log p(1) = � 1

n
log 0.8n = � log(0.8) 6= H(X),

so 1 is not weakly typical.

• This seems to be a contradiction because Pr{Wn
[X]✏} ⇡ 1 but 1 62 Wn

[X]✏.

• But there is actually no contradiction because p(1) ! 0 as n ! 1.
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When n is large, one can almost think of the sequence X as being obtained

by choosing a sequence from the weakly typical set according to the uniform

distribution.

Wn
X✏

Xn

• |Wn
[X]✏| ⇡ 2

nH(X)

• If H(X) < log |X |, then

2

nH(X) ⌧ 2

n log |X |
=

⇣
2

log |X |
⌘n

= |X |n = |Xn|

• Therefore, |Wn
[X]✏| ⌧ |Xn|.

• Pr{Wn
[X]✏} ⇡ 1

• p(x) ⇡ 2

�nH(X)

for x 2 Wn
[X]✏

• The conditional distribution on Wn
[X]✏ is almost uniform.
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