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e How are typical sequences related to data compression?

e A second look at data compression: Shannon’s source coding theorem
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The Notion of Typical Sequences

Toss a fair coin n times.

If the outcome is “head” approximately half of the time, the sequence of
outcomes is “normal”, or “typical”.

How to measure the typicality of a sequence w.r.t. to the generic distribu-
tion of an i.i.d. process?

Two common such measures in information theory: weak typicality and
strong typicality.

The main theorems are weak and strong Asymptotic Equipartition Prop-
erties (AEP), which are consequences of WLLN.
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Setup

{Xk,k > ].}, Xk 1.1.d. Np(.il?).
X denotes generic r.v. with entropy H(X) < oo.
X = (X1, Xs,- -, X,,). Then

p(X) = p(X1)p(X2) - p(X,,).

X may be countably infinite.

Let the base of the logarithm be 2, i.e., H(X) is in bits.
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——logp(X) — H(X) in probability
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3. For any € > 0, for n sufficiently large,

Pr{|—%logp(X) —H(X)| < e} S 1-—e
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1 For i.i.d. random variables Y7, Y9, -+ with generic
— — log p(X) — H(X) random variable Y,
n
1 n
in probability as n — oo. — Z Y, & EY
" k=1
Proof as n — oo
1. Since X1, Xo, -+ , Xpn are i.i.d.,
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1
— — log p(X)
n
1
= ——log[p(X1)p(X2) - p(Xn)]
n
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=  —— > logp(Xy). (1)
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3. The random variables log p(X, ) are also i.i.d. Then
by WLLN, (1) tends to

—Elogp(X) = H(X),

in probability, proving the theorem.
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Empirical Entropy

e The empirical entropy of a sequence x = (x1,,Z2, - ,T,) is defined as
— L log p(x) =——longxk ——Zlogp k) li [~ log p(z)]
n n —

e The empirical entropy of a weakly typical sequence is close to the true
entropy H(X).
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WAEP says that for large n,

e the probability of occurrence of the sequence drawn is close to 27 7H(X)

with very high probability:;

e the total number of weakly typical sequences is approximately equal to
2nH(X)

WAEP does not say that

e most of the sequences in X" are weakly typical;

e the most likely sequence is weakly typical.
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Example Consider a binary r.v. X such that p(0) = 0.2 and p(1) = 0.8.
e The most likely sequence is 1 = (1,1,--- ,1) with p(1) = 0.8™.

e Then
1 1

——logp(1l) = ——1log0.8" = —log(0.8) # H(X),
n n

so 1 is not weakly typical.

e This seems to be a contradiction because Pr{W["}(]e} ~1butl¢g Wixie:

e But there is actually no contradiction because p(1) — 0 as n — oo.
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When n is large, one can almost think of the sequence X as being obtained
by choosing a sequence from the weakly typical set according to the uniform
distribution.

X’I’L

4 )
° |W[?}(]e| ~ 2nH (X)
o If H(X) < log|X|, then
onH(X) o gnlog|X| _ (2log|»c|)” — x| = X7
o Therefore, [W/, | < [X"].
Xe o Pr{llViy ;=1

o p(x)~ 27 "HX) for x € Wik

e The conditional distribution on W&]e is almost uniform.




