
4.3 Redundancy of Prefix Codes



The Entropy Bound Revisited

• In Section 4.1, we have proved the entropy bound for a D-ary uniquely

decodable code, i.e.,

L � HD(X).

• We will present an alternative proof specifically for prefix codes which

o↵ers much insight into the redundancy of such codes.
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• To decode a codeword of a prefix code, we can trace the path specified by

the codeword from the root of the code tree until it terminates at the leaf

corresponding to that codeword.

• Let qk be the probability of reaching an internal node k during the decod-

ing process.

• The probability qk is called the reaching probability of internal node k.

• qk is equal to the sum of the probabilities of all the leaves descending from

node k.
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Branching at an Internal Node



• Let p̃k,j be the probability that the jth branch of node k is taken during
the decoding process.

• The probabilities p̃k,j , 0  j  D�1, are called the branching probabilities
of node k, and

qk =
X

j

p̃k,j .

• Once node k is reached, the conditional branching distribution is

⇢
p̃k,0
qk

,
p̃k,1
qk

, · · · , p̃k,D�1

qk

�
.

• Then define the conditional entropy of node k by

hk = HD

✓⇢
p̃k,0
qk

,
p̃k,1
qk

, · · · , p̃k,D�1

qk

�◆
 logD D = 1.
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Conditional Branching Distribution
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Lemma 4.19 HD(X) =

P
k2I qkhk.

Proof

1. We prove the lemma by induction on the number of

internal nodes of the code tree.

2. If there is only one internal node, it must be the

root of the tree. Then the lemma is trivially true upon

observing that the reaching probability of the root is

equal to 1.

3. Assume the lemma is true for all code trees with

n internal nodes, and consider a code tree with n + 1

internal nodes.

4. Let k be an internal node such that k is the parent

of a leaf c with maximum order.

5. Each sibling of c may or may not be a leaf. If it is

not a leaf, then it cannot be the ascendent of another

leaf because we assume that c is a leaf with maximum

order.

6. Now consider revealing the outcome of X in two

steps. In the first step, if the outcome of X is not

a leaf descending from node k, we identify the out-

come exactly, otherwise we identify the outcome to be

a child of node k. We call this random variable V .

7. If we do not identify the outcome exactly in the first

step, which happens with probability qk, we further

identify in the second step which of the children (child)

of node k the outcome is (there is only one child of node

k which can be the outcome if all the siblings of c are

not leaves). We call this random variable W .

8. If the second step is not necessary, we assume that

W takes a constant value with probability 1.

9. Then X = (V ,W ).

10. The outcome of V can be represented by a code tree

with n internal nodes which is obtained by pruning the

original code tree at node k.

11. Then by the induction hypothesis,

H(V ) =

X

k02I\{k}
q
k0hk0 .

12. By the chain rule for entropy, we have

H(X) = H(V,W )

= H(V ) + H(W |V )

=

X

k02I\{k}
q
k0hk0 + (1 � qk) · 0 + qkhk

=

X

k02I
q
k0hk0 .

The lemma is proved.
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• Recall that the source distribution is

{p
1

, p
2

, · · · , pm} .

• m  D, otherwise the code tree must have at

least 2 internal nodes.

• All the codewords have length equal to 1.

• Since qroot = 1, it is easy to see that the

conditional branching distribution of the root

is

{p
1

, p
2

, · · · , pm, 0, · · · , 0} .

• Then

hroot = HD ({p
1

, p
2

, · · · , pm, 0, · · · , 0}) ,

which is equal to HD(X).

• It follows that

X

k2I
qkhk = qroot · hroot = 1 · HD(X).
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Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
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i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

__

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

__

_______

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

_______

ci

k



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

_______

ci

k

__



Lemma 4.20 L =
P

k2I qk.

Proof

1. Define

aki =

⇢
1 if leaf ci is a descendent of internal node k
0 otherwise.

2. Then
li =

X

k2I
aki,

because there are exactly li internal nodes of which ci is a descen-
dent if the order of ci is li.

3. On the other hand,

qk =
X

i

akipi.

4. Then

L =
X

i

pili

=
X

i

pi
X

k2I
aki

=
X

k2I

X

i

piaki

=
X

k2I
qk,

proving the lemma.

ci

k



Local Redundancy



• Define the local redundancy of an internal node k by

rk = qk(1� hk).

qk: reaching probability of internal node k

hk: conditional entropy of internal node k
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branching probabilities of node k.

• rk = 0 if and only if

p̃k,j =
qk
D

for all j,

i.e., if and only if the internal node k is balanced.

• rk � 0 because hk  1.
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Corollary 4.22 (Entropy Bound for Prefix Code) Let R be the redun-

dancy of a prefix code. Then R � 0 with equality if and only if all the internal

nodes in the code tree are balanced.

Proof

1. Consider

R =

X

k2I
rk.

2. R � 0 because rk � 0 for all internal nodes k.

3. R = 0 if and only if rk = 0 for all k, which means that all the internal

nodes in the code tree are balanced.
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Remarks



• The entropy bound says that for a D-ary uniquely decodable code C,

HD(X)  L.

• This makes sense because intuitively each D-ary symbol can carry at most

1 D-it of information.

• Therefore, when the entropy bound is tight, each code symbol has to carry

exactly one D-it of information.

• In the context of a prefix code, the interpretation is as follows:

1. Consider revealing a random codeword one symbol after another.

2. Corollary 4.22 states that in order for the entropy bound to be tight,

all the internal nodes in the code tree must be balanced.

3. That is, as long as the codeword is not completed, the next code

symbol to be revealed always carries one D-it of information because

it is distributed uniformly on the alphabet.
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A Lower Bound on R

• Consider

R =

X

k2I
rk �

X

k2I0

rk

for any subset I 0
of I.

• If we can compute rk for all k 2 I 0
, we can obtain the lower bound

R �
X

k2I0

rk.



• Consider

R =

X

k2I
rk �

X

k2I0

rk

for any subset I 0
of I.

• If we can compute rk for all k 2 I 0
, we can compute the lower bound

R �
X

k2I0

rk.

A Lower Bound on R



• Consider

R =

X

k2I
rk �

X

k2I0

rk

for any subset I 0
of I.

• If we can compute rk for all k 2 I 0
, we can compute the lower bound

R �
X

k2I0

rk.

A Lower Bound on R

__



• Consider

R =

X

k2I
rk �

X

k2I0

rk

for any subset I 0
of I.

• If we can compute rk for all k 2 I 0
, we can compute the lower bound

R �
X

k2I0

rk.

A Lower Bound on R

__ __



A Lower Bound on R

• Consider

R =

X

k2I
rk �

X

k2I0

rk

for any subset I 0
of I.

• If we can compute rk for all k 2 I 0
, we can compute the lower bound

R �
X

k2I0

rk.



A Lower Bound on R

• Consider

R =

X

k2I
rk �

X

k2I0

rk

for any subset I 0
of I.

• If we can compute rk for all k 2 I 0
, we can compute the lower bound

R �
X

k2I0

rk.



Example 4.23



• In the binary Hu↵man procedure, the two smallest probabilities pm�1 and
pm are merged to form an internal node of the code tree.

• The reaching probability of this internal node is pm�1 + pm.

• The conditional entropy of this internal node is

H2

✓⇢
pm�1

pm�1 + pm
,

pm
pm�1 + pm

�◆
.

• The local redundancy of this internal node is

(pm�1 + pm)


1�H2

✓⇢
pm�1

pm�1 + pm
,

pm
pm�1 + pm

�◆�
,

which is a lower bound on R.
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