) w2+ xxe
.:f._\,

< The Chinese University of Hong Kong

4.3 Redundancy of Prefix Codes

The Entropy Bound Revisited

The Entropy Bound Revisited

e In Section 4.1, we have proved the entropy bound for a D-ary uniquely
decodable code, i.e.,

L>Hp(X).

The Entropy Bound Revisited

e In Section 4.1, we have proved the entropy bound for a D-ary uniquely
decodable code, i.e.,

L > Hp(X).

e We will present an alternative proof specifically for prefix codes which
offers much insight into the redundancy of such codes.

A D-ary Code Tree

A D-ary Code Tree

e Let X be a source random variable with probability distribution

{plap27 nhe 7pm}7

where m > 2.

A D-ary Code Tree

e Let X be a source random variable with probability distribution

{plap27”' 7pm}7
where m > 2.

o A D-ary prefix code for X can be represented by a D-ary code tree with
m leaves, where each leaf corresponds to a codeword.

A D-ary Code Tree

e Let X be a source random variable with probability distribution

{plap27”' 7pm}7
where m > 2.

o A D-ary prefix code for X can be represented by a D-ary code tree with
m leaves, where each leaf corresponds to a codeword.

e Denote the leaft corresponding to p; by ¢; and the order of ¢; by [;.

A D-ary Code Tree

Let X be a source random variable with probability distribution

{plap27”' 7pm}7
where m > 2.

A D-ary prefix code for X can be represented by a D-ary code tree with
m leaves, where each leaf corresponds to a codeword.

Denote the leat corresponding to p; by c¢; and the order of ¢; by [;.

Let the alphabet be
{0,1,---,D —1}.

A D-ary Code Tree

Let X be a source random variable with probability distribution

{plap27”' 7pm}7
where m > 2.

A D-ary prefix code for X can be represented by a D-ary code tree with
m leaves, where each leaf corresponds to a codeword.

Denote the leat corresponding to p; by c¢; and the order of ¢; by [;.

Let the alphabet be
{0,1,---,D —1}.

Let Z be the index set of all the internal nodes (including the root) in the
code tree.

Reaching Probability

Reaching Probability

e To decode a codeword of a prefix code, we can trace the path specified by
the codeword from the root of the code tree until it terminates at the leaf
corresponding to that codeword.

Reaching Probability

e To decode a codeword of a prefix code, we can trace the path specified by
the codeword from the root of the code tree until it terminates at the leaf
corresponding to that codeword.

e Let q; be the probability of reaching an internal node k£ during the decod-
Ing process.

Reaching Probability

e To decode a codeword of a prefix code, we can trace the path specified by
the codeword from the root of the code tree until it terminates at the leaf
corresponding to that codeword.

e Let q; be the probability of reaching an internal node k£ during the decod-
Ing process.

e The probability qi is called the reaching probability of internal node k.

Reaching Probability

To decode a codeword of a prefix code, we can trace the path specified by
the codeword from the root of the code tree until it terminates at the leaf
corresponding to that codeword.

Let q; be the probability of reaching an internal node k£ during the decod-
Ing process.

The probability g is called the reaching probability of internal node k.

¢r is equal to the sum of the probabilities of all the leaves descending from

node k.

dk

Reaching Probability

—

Branching at an Internal Node

Branching at an Internal Node

e Let pi ; be the probability that the jth branch of node & is taken during
the decoding process.

Branching at an Internal Node

e Let pi ; be the probability that the jth branch of node & is taken during
the decoding process.

e The probabilities p;, ;,0 < 7 < D—1, are called the branching probabilities

of node k, and
dk = Zﬁk,j-
J

Branching at an Internal Node

e Let pi ; be the probability that the jth branch of node & is taken during
the decoding process.

e The probabilities p;, ;,0 < 7 < D—1, are called the branching probabilities

of node k, and
dk = Zﬁk,j-
J

e Once node k is reached, the conditional branching distribution is

{ﬁk,o Pra ﬁk,D—1}

)) Y,

qk qk qk

Branching at an Internal Node

Let pi. ; be the probability that the jth branch of node £ is taken during
the decoding process.

The probabilities p;, ;,0 < 7 < D—1, are called the branching probabilities

of node k, and
dk = Zﬁk,j-
J

Once node k is reached, the conditional branching distribution is

{ﬁk,o Pra ﬁk,D—1}

)) Y,

qk qk q

Then define the conditional entropy of node &k by

he — Hp ({pk,ojpk,1’m Prp- }) <log, D 1.
dr. 4k qk

Conditional Branching Distribution

Lemma 4.19 Hp(X) = >, 7 gk hs.

Lemma 4.19 Hp(X) = >, 7 gk hs.

¢r: reaching probability of internal node &

Lemma 4.19 Hp(X) = >, 7 gk hs.

¢r: reaching probability of internal node &

hi: conditional entropy of internal node &

Lemma 4.19 HD(X) = ZkEI qkjh’k’

Proof

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

® Recall that the source distribution is

{p17p27"' 7pm}°

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

® Recall that the source distribution is

{p17p27"' 7pm}°

e m < D, otherwise the code tree must have at
least 2 internal nodes.

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Recall that the source distribution is

{p17p27"' 7pm}°

m < D, otherwise the code tree must have at
least 2 internal nodes.

All the codewords have length equal to 1.

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Recall that the source distribution is

{p17p27"' 7pm}°

m < D, otherwise the code tree must have at
least 2 internal nodes.

All the codewords have length equal to 1.

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Recall that the source distribution is

{p17p27"' 7pm}°

m < D, otherwise the code tree must have at
least 2 internal nodes.

All the codewords have length equal to 1.

Since gpppot = 1, it is easy to see that the
conditional branching distribution of the root
is

{p17p27 7pma07 ’0}

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Recall that the source distribution is

{p17p27"' 7pm}°

m < D, otherwise the code tree must have at
least 2 internal nodes.

All the codewords have length equal to 1.

Since gpppot = 1, it is easy to see that the
conditional branching distribution of the root
is

{p17p27 7pma07 ’0}

Then

hroot :HD ({pl,an“‘ yPm 0, - - - aO})a

which is equal to Hp (X).

Lemma 4.19 HD(X) = Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Recall that the source distribution is

{p17p27"' 7pm}°

m < D, otherwise the code tree must have at
least 2 internal nodes.

All the codewords have length equal to 1.

Since gpppot = 1, it is easy to see that the
conditional branching distribution of the root
is

{p17p27 7pma07 ’0}

Then

hroot :HD ({pl,an“‘ yPm 0, - - - aO})a

which is equal to Hp (X).

It follows that

Z dph = droot - hroot =1 - Hp(X).
kel

Lemma 4.19 HD(X) — ZkEI qkh’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Recall that the source distribution is

{p17p27"' 7pm}°

m < D, otherwise the code tree must have at
least 2 internal nodes.

All the codewords have length equal to 1.

Since gpppot = 1, it is easy to see that the
conditional branching distribution of the root
is

{p17p27 7pma07 ’0}

Then

hroot :HD ({pl,an“‘ yPm 0, - - - aO})a

which is equal to Hp (X).

It follows that

Z dph = droot - hroot =1 - Hp(X).
kel

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

n + 1 internal
nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

n + 1 internal

nodes

i

n internal nodes

)

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

n + 1 internal

nodes

i

n internal nodes

)

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

n + 1 internal
nodes

i

n internal nodes

Lemma 4.19 HD(X) — Zk‘,EI qk‘,h’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) =

> qprhpr.

k'eZ\{k}

n + 1 internal

nodes

i

n internal nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) =

12. Then we have

> qprhpr.

k'eZ\{k}

n + 1 internal

nodes

i

n internal nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) = > dprhpr-
k' €I\{k}
12. TThen we have
H(X) = H(V, W)

n + 1 internal
nodes

i

n internal nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) = > dprhpr-
k' €I\{k}
12. TThen we have
H(X) = H(V, W)

— H(V) + HW|V)

n + 1 internal
nodes

i

n internal nodes

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) = > dprhpr-
k' €I\{k}
12. TThen we have
H(X) = H(V, W)

— H(V) + HW|V)

n + 1 internal
nodes

i

n internal nodes

Lemma 4.19 Hp(X) = Y peT a9k hg- 11. By the induction hypothesis,

Proof H(V) = Z ap./ hk"

/
1. We prove the lemma by induction on the number of k'€ZI\{k}
internal nodes of the code tree.

2. If there is only one internal node, it must be the 12. Then we have
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is

equal to 1. H(X) - H(V, W)

3. Assume the lemma is true for all code trees with HV) + HWIV)
n internal nodes, and consider a code tree with n + 1 — Z aprhyr + (1 —qz) -0+ qrphy

internal nodes.
k'eZ\{k}

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two

steps. In the first step, if the outcome of X is not

a leaf descending from node k, we identify the out-

come exactly, otherwise we identify the outcome to be n + 1 internal
a child of node k. We call this random variable V. nodes

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child) V
of node k the outcome is (there is only one child of node

k which can be the outcome if all the siblings of c are

not leaves). We call this random variable W. i RN, MGEER

8. If the second step is not necessary, we assume that @
W takes a constant value with probability 1.
9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

Lemma 4.19 Hp(X) = Y peT a9k hg- 11. By the induction hypothesis,

Proof H((V) = Z aprhyr-

/
1. We prove the lemma by induction on the number of k'eZ\{k}
internal nodes of the code tree.

2. If there is only one internal node, it must be the 12. Then we have
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is

equal to 1. H(X) - H(V, W)

3. Assume the lemma is true for all code trees with = HV)+ HW]|V)
n internal nodes, and consider a code tree with n + 1 — Z aprhyr + (1 —qz) -0+ qrphy

internal nodes.
k'eZ\{k}

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two

steps. In the first step, if the outcome of X is not

a leaf descending from node k, we identify the out-

come exactly, otherwise we identify the outcome to be n + 1 internal
a child of node k. We call this random variable V. nodes

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child) V
of node k the outcome is (there is only one child of node

k which can be the outcome if all the siblings of c are

not leaves). We call this random variable W. i RN, MGEER

8. If the second step is not necessary, we assume that @
W takes a constant value with probability 1.
9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

Lemma 4.19 Hp(X) = Y peT a9k hg- 11. By the induction hypothesis,

Proof H((V) = Z aprhyr-

/
1. We prove the lemma by induction on the number of k'eZ\{k}
internal nodes of the code tree.

2. If there is only one internal node, it must be the 12. Then we have
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is

equal to 1. H(X) - H(V, W)

3. Assume the lemma is true for all code trees with = HV)+ HW]|V)
n internal nodes, and consider a code tree with n + 1 — Z aprhyr + (1 —qz) -0+ qrphy

internal nodes.
k'eZ\{k}

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two

steps. In the first step, if the outcome of X is not

a leaf descending from node k, we identify the out-

come exactly, otherwise we identify the outcome to be n + 1 internal
a child of node k. We call this random variable V. nodes

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child) V
of node k the outcome is (there is only one child of node

k which can be the outcome if all the siblings of c are

not leaves). We call this random variable W. i RN, MGEER

8. If the second step is not necessary, we assume that @
W takes a constant value with probability 1.
9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

Lemma 4.19 Hp(X) = Y peT a9k hg- 11. By the induction hypothesis,

Proof H((V) = Z aprhyr-

/
1. We prove the lemma by induction on the number of k'eZ\{k}
internal nodes of the code tree.

2. If there is only one internal node, it must be the 12. Then we have
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is

equal to 1. H(X) - H(V, W)

3. Assume the lemma is true for all code trees with = HV)+ HW]|V)
n internal nodes, and consider a code tree with n + 1 — Z aprhyr + (1 —qz) -0+ qrphy

internal nodes.
k'eZ\{k}

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two

steps. In the first step, if the outcome of X is not

a leaf descending from node k, we identify the out-

come exactly, otherwise we identify the outcome to be n + 1 internal
a child of node k. We call this random variable V. nodes

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child) V
of node k the outcome is (there is only one child of node

k which can be the outcome if all the siblings of c are

not leaves). We call this random variable W. i RN, MGEER

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.
9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

Lemma 4.19 Hp(X) = Y peT a9k hg- 11. By the induction hypothesis,

Proof H((V) = Z aprhyr-

/
1. We prove the lemma by induction on the number of k'eZ\{k}
internal nodes of the code tree.

2. If there is only one internal node, it must be the 12. Then we have
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is

equal to 1. H(X) = H(V, W)

3. Assume the lemma is true for all code trees with = H(V) + H(W|V)

n internal nodes, and consider a code tree with n + 1 — h 1/}%%/0 h
internal nodes. Z Ut hper + Akl
k' eZ\{k}

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two

steps. In the first step, if the outcome of X is not

a leaf descending from node k, we identify the out-

come exactly, otherwise we identify the outcome to be n + 1 internal
a child of node k. We call this random variable V. nodes

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child) V
of node k the outcome is (there is only one child of node

k which can be the outcome if all the siblings of c are

not leaves). We call this random variable W. nalnkernalinodes

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.
9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) = > dprhpr-
k'eI\{k}

12. Then we have

H(X) = H(V,W)
= H(V)+ H(W|V)

= > qpr by +W+

k'€Z\{k}

n + 1 internal
nodes

i

n internal nodes

qr hp

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) = > dprhpr-
k'eI\{k}

12. Then we have

H(X) = H(V,W)
= H(V)+ H(W|V)

= > qpr by +W+

k'€Z\{k}

n + 1 internal
nodes

i

n internal nodes

qr hp

Lemma 4.19 HD(X) = ZkEI qkh’k’

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of c are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) = > dprhpr-
k'eI\{k}

12. Then we have

H(X)

H(V, W)
H(V)+ H(W|V)

Z Q. hpr +W+qkhk

k'€Z\{k}

n + 1 internal
nodes

i

n internal nodes

Lemma 4.19 HD(X) — ZkEI qkh’k'

Proof

1. We prove the lemma by induction on the number of
internal nodes of the code tree.

2. If there is only one internal node, it must be the
root of the tree. Then the lemma is trivially true upon
observing that the reaching probability of the root is
equal to 1.

3. Assume the lemma is true for all code trees with
n internal nodes, and consider a code tree with n 4+ 1
internal nodes.

4. Let kK be an internal node such that k is the parent
of a leaf ¢ with maximum order.

5. Each sibling of ¢ may or may not be a leaf. If it is
not a leaf, then it cannot be the ascendent of another
leaf because we assume that c is a leaf with maximum
order.

6. Now consider revealing the outcome of X in two
steps. In the first step, if the outcome of X is not
a leaf descending from node k, we identify the out-
come exactly, otherwise we identify the outcome to be
a child of node k. We call this random variable V.

7. If we do not identify the outcome exactly in the first
step, which happens with probability qp, we further
identify in the second step which of the children (child)
of node k the outcome is (there is only one child of node
k which can be the outcome if all the siblings of ¢ are
not leaves). We call this random variable W.

8. If the second step is not necessary, we assume that
W takes a constant value with probability 1.

9. Then X = (V, W).

10. The outcome of V can be represented by a code tree
with n internal nodes which is obtained by pruning the
original code tree at node k.

11. By the induction hypothesis,

H(V) =

12. Then we have

> qprhpr.

k'€Z\{k}

EEE - e

H(V)+ HW]|V)

-z

k'€Z\{k}

qprhyr + (1 —qg) -0+ qphyg

The lemma is proved.

n + 1 internal

nodes

i

n internal nodes

Lemma 4.20 L =), _;qx.

Lemma 4.20 L =), _;qx
ez 9k-

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
ez 9k-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
ez 9k-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e 1k~

L =3
p1 + 3p2 + 3p3 + 3ps + 2p5 + 2p
6

P1

P3

P4
® D5

P6

Lemma 4.20 L=), _-q
e 1k~

L =3
p1 + 3p2 + 3p3 + 3ps + 2ps + 2p
6

P1

P2

P4
® D5

P6

Lemma 4.20 L =), _;qx
ez 9k-

L =3
p1 + 3p2 + 3ps + 3ps + 2ps + 2pg

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
ez 9k-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e 1k~

@ D5

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
ez 9k-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Q-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Q-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Q-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e 1k~

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e 1k~

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1
P1

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e 1k~

P1

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1
P1

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e 1k~

P1

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1

P1

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=>,_,q
keT k-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1

P1
P1
@ D2
P1
P3
P4
@ D5

P6

Lemma 4.20 L=>,_,q
keT k-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1
X b b1
@ D2
P1
P3
P4
@® D5

P6

Lemma 4.20 L=>,_,q
keT k-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1
p
P1D2 P2 1
@ D2

P1
P3
P4
@ D5

P6

Lemma 4.20 L =), _;qx
c7 Q-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

p1 P1
P1D2 P2
@ D2
P1 P2
P3
P4
@ D5

P6

Lemma 4.20 L =), _;qx
c7 Q-

L =3
p1 + 3p2 + 3p3 + 3pa + 2p5 + 2pe

p1 P1
P1D2 P2
@ D2
P1 P2
P3
P4
@ D5

P6

Lemma 4.20 L =), _;qx
c7 Q-

P1 D2

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

D1 P1
P1D2 P2
P2
@ P3
P4
@ D5

P6

Lemma 4.20 L =), _;qx
c7 Q-

P1 D2

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

P1

P1D2 P2

P3

@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Q-

P1 D2

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

P1
P1D2 P2
P3
P3
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Q-

P1 P2 P3

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

P1
P1D2 P2
P3
P3
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Q-

P1 P2 P3

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pe

P1
P1D2 P2
P3
P3
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Q-

P1 P2 P3

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

P1
P1D2 P2
P3
P3
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
§)

P1
P1D2 b2
P3
P3
P4
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
§)

P1
P1D2 b2
P3 P4
P3
P4
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3
P4

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
§)

P1
P1D2 b2
P3 P4
P3
P4
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3
P4

L - 3
P1 3]92 | 3p3 | 3p4 - 2D5 1+ 2D
Y4 2 2 6

P1
P1D2 b2
P3 P4
P3
P4
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e k-

P1 P2 P3
P4

L =3
p1 + 3p2 + 3p3 + 3ps + 2ps + 2p
6

P1
P1D2 b2
P3 P4
P3
P4
@ D5

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e k-

P1 P2 P3
P4

L =3
p1 + 3p2 + 3p3 + 3ps + 2ps + 2p
6

P1
P1D2 b2
P3 P4
P3
P4
@
P5 "

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e k-

P1 P2 P3
P4 Ps

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
6

P1
P1D2 b2
P3 P4
P3
P4
@
P5 "

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
e k-

P1 P2 P3
P4 Ps

L_ 3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
2ps + 2ps

P1
P1D2 b2
P3 P4
P3
P4
@
P5 "

P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3
P4 Ps

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
§)

P1
P1D2 b2
P3 P4
P3
P4
@
P5 "
@) D6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3
P4 Ps

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
§)

P1
P1D2 b2
P3 P4
P3
P4
@
N P5
P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3
P4 P5Pe6

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2p
§)

P1
P1D2 b2
P3 P4
P3
P4
@
N P5
P6

P1

P2

P3
P4

Lemma 4.20 L=), _-q
ez k-

P1 P2 P3
P4 P5Pe6

P1
P1D2 b2
P3 P4
P3
P4
@
N P5
P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Tk

P1 P2 P3
P4 P5Pe6

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2ps

P1
P1D2 b2
P3 P4
P3
P4
@ D5
P5
P6

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Tk

P1 P2 P3
P4 P5Pe6

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2ps

P1
P1D2 b2
P3 P4
P3
P4
@ D5
P5
P6

P6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx.

P1 P2 P3
P4 P5Pe6

[=
3p1 + 3p2 + 3p3 + 3pa + 2ps + 2ps

@ D5

P5
P6

P6

Lemma 4.20 L =), _;qx
c7 Q-

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2pg

P1

P1D2 P

//pgp<4
P1P2 P3 —
< P4

P4 P5Pe6

® D5
P5
P6
Pé6

P1

P2

P3
P4

Lemma 4.20 L =), _;qx
c7 Qk-

P1 P2 P3
P4 Ps p6

L =3
p1 + 3p2 + 3p3 + 3pa + 2ps + 2ps

P1

Pl P2 P2

p3 P4
P3

/ o
~__ L
\.

P1

P2

P3
P4

Lemma 4.20 L =), _;qx.

P1 P2]93
P4 Ps p6

L = 3p1 + 3p2 + 3p3 + 3pa + 2ps5 + 2pe

Lemma 4.20 L=), _-q
e k-

L =3
p1 + 3p2 + 3p3 + 3P4 + 2ps + 2p
6

D1 /.pl
P1P2 / b2 \0
P2

P3 P4
D1 P2 D3 / \
D3 /. p3
Pa \.
P4

P4 p5p6 \
/. Ps
D6

Lemma 4.20 L = } 7 qf-

Proof

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > ap;i

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,

Qg =D kP

(2

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,

Qg =D kP

(2

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,

Qg =D kP

(2

4. Then

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,

Qg =D kP

(2

4. Then

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

l; = > kg,

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,
qp. = Zakipi-
7
4. Then
L = > pily
i
= 2P > Ak

7 kel

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,
qp. = Zakipi-
7
4. Then
L = > pil
1
= D> P; D ap;

7 kel

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

Ly

because there are exactly [,
dent if the order of c; is [;.

3. On the other hand,

di

4. Then

= Z ki

kel

internal nodes of which c; is a descen-

=D akiPi-
7

sz'li

1

dopi > ap;
i keT

Z sz'am'

kel 1

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

Ly

because there are exactly [,
dent if the order of c; is [;.

3. On the other hand,

di

4. Then

= Z ki

kel

internal nodes of which c; is a descen-

=D akiPi-
7

sz'li

1

dopi > ap;
i keT

Z sz'am'

kel 1

Lemma 4.20 L = } 7 qf-

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,

= D akiPi-
7

4. Then
L f— Zp’ili
7
= 2P > Ak

7 kel
= D D _Pioy
kel 1

— Z qk7

ke

Lemma 4.20 L = 3 pc7 qf -

Proof
1. Define
o 1 if leaf c,; is a descendent of internal node k
Yk = 0 otherwise.
2. Then

li = > Qg

kel

because there are exactly [; internal nodes of which c; is a descen-
dent if the order of c; is [;.

3. On the other hand,

Qg =D kP

(2

4. Then
L f— Zp’ili
7
= 2P > Ak

7 kel

= > D> piag;

kel 1

— Z qk7

kel

proving the lemma.

Local Redundancy

Local Redundancy

e Define the local redundancy of an internal node k by

T — qk(l — hk)

Local Redundancy

e Define the local redundancy of an internal node k by

T — qk(l — hk)

¢r: reaching probability of internal node &

Local Redundancy

e Define the local redundancy of an internal node k by

e — qk(l — hk)

¢r: reaching probability of internal node &

hi: conditional entropy of internal node &

Local Redundancy

e Define the local redundancy of an internal node k by

T — qk(l — hk)

Local Redundancy

e Define the local redundancy of an internal node k by
Tk — qk(l — hk)

e This quantity is local to node k£ in the sense that it depends only on the
branching probabilities of node k.

Local Redundancy

e Define the local redundancy of an internal node k by
Tk — qk(l — hk)

e This quantity is local to node k£ in the sense that it depends only on the
branching probabilities of node k.

e 7, = 0 if and only if

Dk = % tor all 7,

i.e., if and only if the internal node £ is balanced.

Local Redundancy

e Define the local redundancy of an internal node k by
Tk — qk(l — hk)

e This quantity is local to node k£ in the sense that it depends only on the
branching probabilities of node k.

e 7, = 0 if and only if
Dk =) tor all 7,

i.e., if and only if the internal node £ is balanced.

Local Redundancy

e Define the local redundancy of an internal node k by
Tk — qk(l — hk)

e This quantity is local to node k£ in the sense that it depends only on the
branching probabilities of node k.

e 7, = 0 if and only if
Dk =) tor all 7,

i.e., if and only if the internal node £ is balanced.

Local Redundancy

Define the local redundancy of an internal node k by
Tk — qk(l — hk)

This quantity is local to node k£ in the sense that it depends only on the
branching probabilities of node k.

rr = 0 if and only if

Dk = dk tor all 7,

D
i.e., if and only if the internal node £ is balanced.

r. > 0 because hy < 1.

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

R:Z’Fk.

kel

Proof

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

R:Z’Fk.

kel

Proof

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

R:Z’Fk.

kel

Proof

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

}2::2537%.

kel

Proof

R = L-Hp(X)

=) @ aha

kel kel

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

}2::2537%.

kel

Proof

R = L-Hp(X)

=) @ aha

kel kel

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

}2::2537%.

kel

Proof

R = L-Hp(X)

=) @ aha

kel kel

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

}2::2537%.

kel

Proof

R = L-Hp(X)

= > @) arh

kel kel

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

}2::2537%.

kel

Proof

R = L-Hp(X)

= Z@—:qkhk

kel kel

=) qp(1— hy)

kel

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

}2::2537%.

kel

Proof

R = L-Hp(X)

=) @ aha

kel kel

=) qp(1— hy)

kel

- Y

kel

Theorem 4.21 (Local Redundancy Theorem) Let R be the redundancy
of a D-ary prefix code for a source random variable X. Then

}2::2537%.

kel

Proof

R = L-Hp(X)

=) @ aha

kel kel

= Z%(l — hy)

kel

- Y

kel

Corollary 4.22 (Entropy Bound for Prefix Code) Let R be the redun-
dancy of a prefix code. Then R > 0 with equality if and only if all the internal

nodes in the code tree are balanced.

Proof

Corollary 4.22 (Entropy Bound for Prefix Code) Let R be the redun-
dancy of a prefix code. Then R > 0 with equality if and only if all the internal

nodes in the code tree are balanced.

Proof

1. Consider

R:ZTR.

kel

Corollary 4.22 (Entropy Bound for Prefix Code) Let R be the redun-
dancy of a prefix code. Then R > 0 with equality if and only if all the internal

nodes in the code tree are balanced.

Proof

1. Consider

R:ZTR.

kel

2. R > 0 because rr > 0 for all internal nodes k.

Corollary 4.22 (Entropy Bound for Prefix Code) Let R be the redun-
dancy of a prefix code. Then R > 0 with equality if and only if all the internal

nodes in the code tree are balanced.

Proof

1. Consider

R:ZTR.

kel
2. R > 0 because rr > 0 for all internal nodes k.

3. R = 0 if and only if rp = 0 for all £, which means that all the internal
nodes in the code tree are balanced.

Remarks

Remarks

e The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.

Remarks

e The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.

e This makes sense because intuitively each D-ary symbol can carry at most
1 D-it of information.

Remarks

e The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.

e This makes sense because intuitively each D-ary symbol can carry at most
1 D-it of information.

e Therefore, when the entropy bound is tight, each code symbol has to carry
exactly one D-it of information.

Remarks

The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.

This makes sense because intuitively each D-ary symbol can carry at most
1 D-it of information.

Therefore, when the entropy bound is tight, each code symbol has to carry
exactly one D-it of information.

In the context of a prefix code, the interpretation is as follows:

Remarks

The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.
This makes sense because intuitively each D-ary symbol can carry at most

1 D-it of information.

Therefore, when the entropy bound is tight, each code symbol has to carry
exactly one D-it of information.

In the context of a prefix code, the interpretation is as follows:

1. Consider revealing a random codeword one symbol after another.

Remarks

The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.

This makes sense because intuitively each D-ary symbol can carry at most
1 D-it of information.

Therefore, when the entropy bound is tight, each code symbol has to carry
exactly one D-it of information.

In the context of a prefix code, the interpretation is as follows:

1. Consider revealing a random codeword one symbol after another.

2. Corollary 4.22 states that in order for the entropy bound to be tight,
all the internal nodes in the code tree must be balanced.

Remarks

The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.

This makes sense because intuitively each D-ary symbol can carry at most
1 D-it of information.

Therefore, when the entropy bound is tight, each code symbol has to carry
exactly one D-it of information.

In the context of a prefix code, the interpretation is as follows:

1.
2.

Consider revealing a random codeword one symbol after another.

Corollary 4.22 states that in order for the entropy bound to be tight,
all the internal nodes in the code tree must be balanced.

. That is, as long as the codeword is not completed, the next code

symbol to be revealed always carries one D-it of information because
it is distributed uniformly on the alphabet.

A Lower Bound on R

A Lower Bound on R

e Consider

RZZTk

kel

A Lower Bound on R

e Consider

RZZTk

A Lower Bound on R

e Consider

R = 2537};23 :E:‘Tk

kel kel’

for any subset Z” of .

A Lower Bound on R

e Consider

R = 2537};23 :E:‘Tk

kel kel’

for any subset Z” of .

e If we can compute ry, for all £k € 77, we can compute the lower bound

f%;z jg::Tk.

kel’

A Lower Bound on R

e Consider

R = 2537};23 jg:‘rk

kel kel’

for any subset Z” of .

e If we can compute ry, for all £k € 77, we can compute the lower bound

f%;z jg::Tk.

kel’

Example 4.23

Example 4.23

e In the binary Huffman procedure, the two smallest probabilities p,,,—1 and
pm are merged to form an internal node of the code tree.

Example 4.23

e In the binary Huffman procedure, the two smallest probabilities p,,,—1 and
pm are merged to form an internal node of the code tree.

e The reaching probability of this internal node is p,,,—1 + P,

Example 4.23

e In the binary Huffman procedure, the two smallest probabilities p,,,—1 and
pm are merged to form an internal node of the code tree.

e The reaching probability of this internal node is p,,,—1 + P,

Pm+1 + Pm

Pm

Example 4.23

e In the binary Huffman procedure, the two smallest probabilities p,,,—1 and
pm are merged to form an internal node of the code tree.

e The reaching probability of this internal node is p,,,—1 + P,

Example 4.23

e In the binary Huffman procedure, the two smallest probabilities p,,,—1 and
pm are merged to form an internal node of the code tree.

e The reaching probability of this internal node is p,,,—1 + P,

e The conditional entropy of this internal node is

H2 ({ Pm—1 ’ Pm }) .
Pm—1 _l_pm Pm—1 —I_pm

Example 4.23

In the binary Huffman procedure, the two smallest probabilities p,,,—1 and

pm are merged to form an internal node of the code tree.

The reaching probability of this internal node is p,,,—1 + P,

The conditional entropy of this internal node is

H2 ({ Pm—1 ’ Pm }) .
Pm—1 _l_pm Pm—1 —I_pm

The local redundancy of this internal node is

S

which is a lower bound on R.

Pm—1 Pm

Pm—1 _|_pm 7 Pm—1 _|_pm

i

