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e We will present an alternative proof specifically for prefix codes which
offers much insight into the redundancy of such codes.
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Let X be a source random variable with probability distribution
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where m > 2.

A D-ary prefix code for X can be represented by a D-ary code tree with
m leaves, where each leaf corresponds to a codeword.

Denote the leat corresponding to p; by c¢; and the order of ¢; by [;.

Let the alphabet be
{0,1,---,D —1}.

Let Z be the index set of all the internal nodes (including the root) in the
code tree.
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To decode a codeword of a prefix code, we can trace the path specified by
the codeword from the root of the code tree until it terminates at the leaf
corresponding to that codeword.

Let q; be the probability of reaching an internal node k£ during the decod-
Ing process.

The probability g is called the reaching probability of internal node k.

¢r is equal to the sum of the probabilities of all the leaves descending from

node k.
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Branching at an Internal Node

Let pi. ; be the probability that the jth branch of node £ is taken during
the decoding process.

The probabilities p;, ;,0 < 7 < D—1, are called the branching probabilities

of node k, and
dk = Zﬁk,j-
J

Once node k is reached, the conditional branching distribution is

{ﬁk,o Pra ﬁk,D—1}

) ) Y,

qk qk q

Then define the conditional entropy of node &k by

he — Hp ({pk,ojpk,1’m Prp- }) <log, D 1.
dr. 4k qk
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Local Redundancy

Define the local redundancy of an internal node k by
Tk — qk(l — hk)

This quantity is local to node k£ in the sense that it depends only on the
branching probabilities of node k.

rr = 0 if and only if

Dk = dk tor all 7,

D
i.e., if and only if the internal node £ is balanced.

r. > 0 because hy < 1.
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Corollary 4.22 (Entropy Bound for Prefix Code) Let R be the redun-
dancy of a prefix code. Then R > 0 with equality if and only if all the internal

nodes in the code tree are balanced.

Proof

1. Consider

R:ZTR.

kel
2. R > 0 because rr > 0 for all internal nodes k.

3. R = 0 if and only if rp = 0 for all £, which means that all the internal
nodes in the code tree are balanced.
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Remarks

The entropy bound says that for a D-ary uniquely decodable code C,

Hp(X) < L.

This makes sense because intuitively each D-ary symbol can carry at most
1 D-it of information.

Therefore, when the entropy bound is tight, each code symbol has to carry
exactly one D-it of information.

In the context of a prefix code, the interpretation is as follows:

1.
2.

Consider revealing a random codeword one symbol after another.

Corollary 4.22 states that in order for the entropy bound to be tight,
all the internal nodes in the code tree must be balanced.

. That is, as long as the codeword is not completed, the next code

symbol to be revealed always carries one D-it of information because
it is distributed uniformly on the alphabet.
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In the binary Huffman procedure, the two smallest probabilities p,,,—1 and

pm are merged to form an internal node of the code tree.

The reaching probability of this internal node is p,,,—1 + P,

The conditional entropy of this internal node is

H2 ({ Pm—1 ’ Pm }) .
Pm—1 _l_pm Pm—1 —I_pm

The local redundancy of this internal node is

S

which is a lower bound on R.
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