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Definition 4.9 A code is called a prefix-free code if no codeword is a prefix
of any other codeword. For brevity, a prefix-free code will be referred to as a
prefix code.
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• AD-ary tree is a graphical representation of a collection of finite sequences

of D-ary symbols.

• A node is either an internal node or a leaf.

• The tree representation of a prefix code is called a code tree.
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Code Tree for Prefix Code
• AD-ary tree is a graphical representation of a collection of finite sequences

of D-ary symbols.

• A node is either an internal node or a leaf.

• The tree representation of a prefix code is called a code tree.



Instantaneous Decoding

x C0
(x)

A 0

B 10

C 110

D 1111

• Using the code C0
in Example 4.10:

BCDAC · · · ! 1011011110110 · · ·

• Upon concatenating the codewords, their boundaries are no longer explicit.

• The stream of coded symbols are then transmitted to the receiver.
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is a prefix code, the codewords can be represented by a code tree.

• Instantaneous decoding at the receiver can be done by tracing the code

tree from the root:

1011011110110 · · · ! 10, 110, 1111, 0, 110, · · ·

• The boundaries of the codewords can thus be recovered. In this sense, a

prefix code is said to be self-punctuating.
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Theorem 4.11 There exists a D-ary prefix code with codeword lengths l1,
l2, · · · , lm if and only if the Kraft inequality

m�

k=1

D�lk � 1

is satisfied.

Proof Direct part follows because a prefix code is uniquely decodable and
hence satisfies Kraft’s inequality.
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Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.

lm



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.

lm



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.

lm

l1



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.

lm

l1



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus

choosing the first codeword is always possible.

4. Assume that the first i codewords have been chosen

successfully, where 1  i  m � 1, and we want to

choose a node of order li+1

as the (i + 1)st codeword

such that it is not prefixed by any of the previously

chosen codewords.

5. Since all the previously chosen codewords are not

prefixes of each other, their descendants of order li+1

do not overlap. The (i+1)st node to be chosen cannot

be a descendant of any of the previously chosen code-

words. Therefore, the number of nodes which can be

chosen as the (i + 1)st codeword is

D
li+1 � D

li+1

�l
1 � D

li+1

�l
2 � · · · � D

li+1

�li .

6. If l
1

, l
2

, · · · , lm satisfy the Kraft inequality, we

have

D�l
1

+ · · · + D�li
+ D

�li+1  1.

7. Multiplying by D
li+1

, we have

D
li+1

�l
1

+ · · ·+D
li+1

�li
+D

li+1

�li+1  D
li+1

or

D
li+1 � D

li+1

�l
1 � · · · � D

li+1

�li � 1.

Thus we have shown by induction the existence of

a prefix code with codeword lengths l
1

, l
2

, · · · , lm,

completing the proof.

lm

l1

Dl1



Theorem 4.11 There exists a D-ary prefix code with

codeword lengths l
1

, l
2

, · · · , lm if and only if the

Kraft inequality

mX

k=1

D�lk  1

is satisfied.

Proof (Converse)

1. We need to prove the existence of a D-ary pre-

fix code with codeword lengths l
1

, l
2

, · · · , lm if these

lengths satisfy the Kraft inequality. Without loss of

generality, assume that

l
1

 l
2

 · · ·  lm.

2. Consider all the D-ary sequences of lengths less than

or equal to lm and regard them as the nodes of the full

D-ary tree of depth lm. We will refer to a sequence of

length l as a node of order l.

3. There are Dl
1 > 1 (since l

1

� 1) nodes of order

l
1

which can be chosen as the first codeword. Thus
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�l
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�l
2 � · · · � D
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1
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2
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D�l
1

+ · · · + D�li
+ D
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�l
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+ · · ·+D
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�li
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�l
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1
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2
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li li+1

l1

Dli+1�l1 Dli+1�l2Dli+1�li

Dli+1
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{pi} if and only if {pi} is D-adic.

Proof

A. ‘Only if’
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or
pi = D�li .

Thus {pi} is D-adic.

B. ‘If’

1. Suppose {pi} is D-adic. Let pi = D�ti for all i,
where ti is an integer. Then

ti = � logD pi.

2. Let li = ti for all i. Verify that {li} satisfies the
Kraft inequality:

X

i

D�li =
X

i

D�ti =
X

i

pi = 1  1.

3. Then there exists a prefix code with codeword
lengths {li}. Assign the codeword with length li to
the probability pi for all i.

4. Since for all i,

li = ti = � logD pi,

we see from Theorem 4.6 that this code achieves the
entropy bound.
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Huffman Codes

• A simple construction of optimal prefix codes.

• Binary Case

– Keep merging the two smallest probability masses until one proba-
bility mass (i.e., 1) is left.

• D-ary Case

– Insert zero probability masses until there are D + k(D � 1) masses
(if necessary).

– Keep merging the D smallest probability masses until one probability
mass (i.e., 1) is left.

• In general there can be more than one Hu↵man code.
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Optimality of Huffman Codes

• Without loss of generality, assume p1 � p2 � · · · � pm.
• Denote the codeword assigned to pi by ci, and its length by li.

Theorem 4.17 The Hu↵man procedure produces an optimal prefix code.

Lemma 4.15 In an optimal code, shorter codewords are assigned to larger
probabilities, i.e.,

l1  l2  · · ·  lm.

Lemma 4.16 There exists an optimal code in which the codewords assigned
to the two smallest probabilities are siblings, i.e., the two codewords have the
same length and they di↵er only in the last symbol.



Optimality of Huffman Codes

• Without loss of generality, assume p1 � p2 � · · · � pm.
• Denote the codeword assigned to pi by ci, and its length by li.

Theorem 4.17 The Hu↵man procedure produces an optimal prefix code.

Lemma 4.15 In an optimal code, shorter codewords are assigned to larger
probabilities, i.e.,

l1  l2  · · ·  lm.

Lemma 4.16 There exists an optimal code in which the codewords assigned
to the two smallest probabilities are siblings, i.e., the two codewords have the
same length and they di↵er only in the last symbol.



Optimality of Huffman Codes

• Without loss of generality, assume p1 � p2 � · · · � pm.
• Denote the codeword assigned to pi by ci, and its length by li.

Theorem 4.17 The Hu↵man procedure produces an optimal prefix code.

Lemma 4.15 In an optimal code, shorter codewords are assigned to larger
probabilities, i.e.,

l1  l2  · · ·  lm.

Lemma 4.16 There exists an optimal code in which the codewords assigned
to the two smallest probabilities are siblings, i.e., the two codewords have the
same length and they di↵er only in the last symbol.



Optimality of Huffman Codes

• Without loss of generality, assume p1 � p2 � · · · � pm.
• Denote the codeword assigned to pi by ci, and its length by li.

Theorem 4.17 The Hu↵man procedure produces an optimal prefix code.

Lemma 4.15 In an optimal code, shorter codewords are assigned to larger
probabilities, i.e.,

l1  l2  · · ·  lm.

Lemma 4.16 There exists an optimal code in which the codewords assigned
to the two smallest probabilities are siblings, i.e., the two codewords have the
same length and they di↵er only in the last symbol.



Lemma 4.15 In an optimal code, shorter codewords

are assigned to larger probabilities, i.e.,

l
1

 l
2

 · · ·  lm. (1)

Proof

1. Consider a probability distribution

{p
1

, · · · , pi, · · · , pj , · · · pm}

such that pi > pj . Assume that in a particular code,

the codewords ci and cj are such that li > lj , i.e., a

shorter codeword is assigned to a smaller probability.

2. Intuitively, by exchanging ci and cj , the expected

length of the code should be improved.

3. Specifically, let

L =

X

k

pklk =

X

k 6=i,j

pklk + (pili + pjlj)

be the expected length of the code, and

L0 =

X

k 6=i,j

pklk + (pilj + pjli)

be the expected length of the code obtained by ex-

changing ci and cj .

4. Comparing L0 and L, we see that

L0 � L = (pilj + pjli) � (pili + pjlj)

= (pilj � pili) � (pjlj � pjli)

= pi(lj � li) � pj(lj � li)

= (pi � pj)(lj � li).

This is negative because pi > pj and li > lj . There-

fore, L0 < L.

5. Since the original code can be improved, it is not an

optimal code.

6. Therefore, for an optimal code, shorter codewords

are assigned to larger probabilities, i.e., (1). The

lemma is proved.
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length of the code should be improved.

3. Specifically, let

L =

X

k

pklk =

X

k 6=i,j

pklk + (pili + pjlj)

be the expected length of the code, and

L0 =

X

k 6=i,j

pklk + (pilj + pjli)

be the expected length of the code obtained by ex-

changing ci and cj .

4. Comparing L0 and L, we see that

L0 � L = (pilj + pjli) � (pili + pjlj)

= (pilj � pili) � (pjlj � pjli)

= pi(lj � li) � pj(lj � li)

= (pi � pj)(lj � li).

This is negative because pi > pj and li > lj . There-

fore, L0 < L.

5. Since the original code can be improved, it is not an

optimal code.

6. Therefore, for an optimal code, shorter codewords

are assigned to larger probabilities, i.e., (1). The

lemma is proved.
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the codewords assigned to the two smallest probabili-
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the length of the codeword assigned to pm is reduced
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6. Therefore,
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i.e., ci, cm�1, and cm all have the same order.

7. Then we can exchange the codewords ci and cm�1
without changing the expected length of the code (i.e.,
the code remains optimal) to obtain the desired code.
The lemma is proved.
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Theorem 4.17 The Huffman procedure produces an
optimal prefix code.

Proof

1. Consider an optimal code in which cm and
cm�1 are siblings. Such an optimal code exists by
Lemma 4.16.

2. Let {p0i} be the reduced probability set obtained
from {pi} by merging pm and pm�1.

3. As before, let L and L0 be the expected length of
the original code and the reduced code, respectively.

4. Since
L = L0 + (pm�1 + pm),

we see that L is the expected length of an optimal code
for {pi} if and only if L0 is the expected length of an
optimal code for {p0i}.

5. Therefore, if we can find an optimal code for {p0i},
we can use it to construct an optimal code for {pi}.
Note that by merging pm and pm�1, the size of
the problem, namely the total number of probability
masses, is reduced by one.

6. To find an optimal code for {p0i}, we again merge

the two smallest probability in {p0i}. This is repeated
until the size of the problem is eventually reduced to 2,
which we know that an optimal code has two codewords
of length 1.

7. In the last step of the Huffman procedure, two prob-
ability masses are merged, which corresponds to the
formation of a code with two codewords of length 1.
Thus the Huffman procedure indeed produces an opti-
mal code.
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• The smallest D probability masses are merged
in each step, forming an internal node of the
resulting code tree.

• If the resulting code tree is formed in k + 1
steps, then there will be k + 1 internal nodes
and D + k(D � 1) leaves, where each leaf cor-
responds to a source symbol in the alphabet.

• If the alphabet size has the form D+k(D�1),
then apply the Huffman procedure directly.

• Otherwise, add a few dummy symbols with
probability 0 to the alphabet in order to make
the total number of symbols have the form
D + k(D � 1).

• Example D = 3, k = 2

No. of steps = k + 1 = 3

No. of internal nodes = k + 1 = 3

No. of leaves = D + k(D � 1)
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Upper Bound on LHuff

Theorem 4.18 The expected length of a Hu↵man code, denoted by LHu↵ ,
satisfies

LHu↵ < HD(X) + 1.

This bound is the tightest among all the upper bounds on LHu↵ which depend
only on the source entropy.

Proof Outline

• Construct a code with codeword lengths li = d� logD pie by showing that
the Kraft inequality is satisfied.

• Show that L =
P

i pili < H(X) + 1.

• Then LHu↵  L < H(X) + 1.
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Theorem 4.18 The expected length of a Huffman
code, denoted by LHuff , satisfies

LHuff < HD(X) + 1.

This bound is the tightest among all the upper bounds
on LHuff which depend only on the source entropy.

Proof

1. Consider constructing a prefix code with codeword
lengths {li}, where li = d� logD pie. Then

� logD pi  li < � logD pi + 1

logD pi � �li > logD pi � 1

pi � D
�li > D

�1
pi.

Thus X

i

D
�li 

X

i

pi = 1,

i.e., {li} satisfies the Kraft inequality, which implies
that it is possible to construct a prefix code with code-
word lengths {li}.

2. It remains to show that L, the expected length of
this code, is less than HD(X) + 1. Consider

L =
X

i

pili

<
X

i

pi(� logD pi + 1)

= �
X

i

pi logD pi +
X

i

pi

= HD(X) + 1.

Thus we conclude that

LHuff  L < HD(X) + 1.

3. To see that this upper bound is the tightest possible,
we have to show that there exists a sequence of distri-
butions Pk such that LHuff approaches HD(X)+1 as
k ! 1.

4. This can be done by considering the sequence of D-
ary distributions

Pk =

(
1 �

D � 1

k
,

1

k
, · · · ,

1

k

)
,

where k � D.

5. The Huffman code for each Pk consists of D code-
words of length 1. Thus LHuff is equal to 1 for all k.
As k ! 1, HD(X) ! 0, and hence LHuff approaches
HD(X) + 1. The theorem is proved.
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Asymptotic Achievability of H(X)

•
H(X)  LHu↵ < H(X) + 1.

• Use a Hu↵man code to encode X1, X2, · · · , Xn, n i.i.d. copies of X. Then

nH(X)  Ln
Hu↵ < nH(X) + 1.

• Divide by n to obtain

H(X)  1
n

Ln
Hu↵ < H(X) +

1
n
! H(X) as n!1

• 1
nLn

Hu↵ is called the rate of the code, in D-it per source symbol.
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