
© Raymond  W.  Yeung 2014
The Chinese University of Hong Kong 

Chapter 4 
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4.1 The Entropy Bound



Definition 4.1 A D-ary source code C for a source random variable X is a
mapping from X to D�, the set of all finite length sequences of symbols taken
from a D-ary code alphabet.

Definition 4.2 A code C is uniquely decodable if for any finite source sequence,
the sequence of code symbols corresponding to this source sequence is di�erent
from the sequence of code symbols corresponding to any other (finite) source
sequence.
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Theorem 4.4 (Kraft Inequality) Let C be a D-ary source code, and let

l1, l2, · · · , lm be the lengths of the codewords. If C is uniquely decodable, then
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Example 4.5 In this example, we illustrate a tech-

nique used in the proof of Theorem 4.4.
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Theorem 4.4 (Kraft Inequality) Let C be a D-ary
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Expected Length



• Source random variable X ⇠ {p1, p2, · · · , pm}

• Expected length of C:
L =

X

i

pili

• Intuitively, for a uniquely decodable code C,

HD(X)  L

because each D-ary symbol can carry at most 1 D-it of information.
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Theorem 4.6 (Entropy Bound) Let C be a D-ary

uniquely decodable code for a source random variable

X with entropy HD(X). Then the expected length of

C is lower bounded by HD(X), i.e.,

L � HD(X). (1)

This lower bound is tight if and only if li = � logD pi
for all i.

Proof

1. Since C is uniquely decodable, the lengths of its

codewords satisfy the Kraft inequality. Write

L =

X

i

pili =

X

i

pi logD D
li

and recall that

HD(X) = �
X

i

pi logD pi.

2. Then

L �HD(X) =

X

i

pi(logD pi + logD D
li

)

=

X

i

pi logD(piD
li

)

= (ln D)

�1

X

i

pi ln(piD
li

)

� (ln D)

�1

X

i

pi

 
1 �

1

piDli

!
(2)

= (ln D)

�1

X

i

(pi �D
�li

)

= (ln D)

�1

2

4
X

i

pi �
X

i

D
�li

3

5

= (ln D)

�1

2

4
1 �

X

i

D
�li

3

5

� (ln D)

�1

(1 � 1) (3)

= 0.

This proves the entropy bound in (1).

3. In order for this bound to be tight, both (2) and (3)

have to be tight simultaneously. Now (2) is tight if and

only if piDli
= 1, or li = � logD pi for all i. If this

holds, we have

X

i

D
�li

=

X

i

D
logD pi

=

X

i

pi = 1,

i.e., (3) is also tight. This completes the proof of the

theorem.
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Corollary 4.7 (Theorem 2.43) H(X)  log |X |.

Proof

• Let X = {0, 1, · · · , |X |� 1}.

• Let C be the identity code, i.e.,

x 0 1 · · · |X |� 1

C(x) 0 1 · · · |X |� 1

• Evidently, C is an |X |-ary uniquely decodable code, with expected length

equals 1.

• By the entropy bound, we have

1 = L � H|X |(X).

• Leaving the base unspecified, we have

H(X)  log |X |,

recovering Theorem 2.43.
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Definition 4.8 The redundancy R of a D-ary uniquely decodable code is the

di↵erence between the expected length of the code and the entropy of the source.

By the entropy bound,

R = L�HD(X) � 0.


