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mapping from X to D*, the set of all finite length sequences of symbols taken
from a D-ary code alphabet.

Definition 4.2 A code C is uniquely decodable if for any finite source sequence,
the sequence of code symbols corresponding to this source sequence is different
from the sequence of code symbols corresponding to any other (finite) source
sequence.
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Therefore, C not uniquely decodable.



Theorem 4.4 (Kraft Inequality) Let C be a D-ary source code, and let
l1,l9,--- ,l,, be the lengths of the codewords. If C is uniquely decodable, then

f:D_lk < 1.
k=1
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Expected Length

e Source random variable X ~ {p1,p2, -+ ,pm}

L = sz'lq;

e Intuitively, for a uniquely decodable code C,

e Expected length of C:

Hp(X) <L

because each D-ary symbol can carry at most 1 D-it of information.
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holds, we have
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i.e., (3) is also tight. This completes the proof of the
theorem.
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Definition 4.8 The redundancy R of a D-ary uniquely decodable code is the
difference between the expected length of the code and the entropy of the source.

By the entropy bound,
R=L—-Hp(X)>0.



