
3.6 Examples of Applications



• To obtain information identities is WYSIWYG.

• To obtain information inequalities:

– If µ⇤
is nonnegative, then

A ⇢ B ) µ⇤
(A)  µ⇤

(B)

because

µ⇤
(A)  µ⇤

(A) + µ⇤
(B �A)

= µ⇤
(A [ (B �A))

= µ⇤
(B)

– If µ⇤
is a signed measure, need to invoke the basic inequalities to

compare µ⇤
(A) and µ⇤

(B).
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Example 3.12 (Concavity of Entropy) Let X1 ⌅ p1(x) and X2 ⌅ p2(x).
Let

X ⌅ p(x) = �p1(x) + �̄p2(x),

where 0 ⇥ � ⇥ 1 and �̄ = 1� �. Show that

H(X) ⇤ �H(X1) + �̄H(X2).
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1

(x) +

¯�p
2

(x),

where 0  �  1 and

¯� = 1 � �. Show that

H(X) � �H(X
1

) +

¯�H(X
2

). (1)

1. Consider the system as shown in which the position

of the switch is determined by a random variable Z
with

Pr{Z = 1} = � and Pr{Z = 2} =

¯�,

where Z is independent of X
1

and X
2

.

2. The switch takes position i if Z = i, i = 1, 2.
The random variable Z is called a mixing random vari-

able for the probability distributions p
1

(x) and p
2

(x).

Then

X ⇠ p(x) = �p
1

(x) +

¯�p
2

(x).

3. From the information diagram for X and Z, we see

that

˜X � ˜Z is a subset of

˜X. Since µ⇤
is nonnegative

for two random variables, we can conclude that

µ
⇤
(

˜X) � µ
⇤
(

˜X � ˜Z),

which is equivalent to

H(X) � H(X|Z).

4. Then

H(X)

� H(X|Z)

= Pr{Z = 1}H(X|Z = 1) + Pr{Z = 2}H(X|Z = 2)

= �H(X
1

) +

¯�H(X
2

),

proving (1). This shows that H(X) is a concave func-

tional of p(x).
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Interpretation The entropy of a mixture of distribu-

tions is at least equal to the mixture of the correspond-

ing entropies.
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(X, Y ) ⇠ p(x, y) = p(x)p(y|x).

Show that for fixed p(x), I(X;Y ) is a convex func-

tional of p(y|x).

1. Let p

1

(y|x) and p

2

(y|x) be 2 transition matrices

representing 2 channels.

2. Consider the system as shown in which the position

of the switch is determined by a random variable Z as

in the last example, where Z is independent of X, i.e.,

I(X;Z) = 0.

3. In the information diagram for X, Y , and Z, let

I(X;Z|Y ) = a � 0.

Then

I(X;Y ;Z) = �a

because I(X;Z) = 0.

4. Recall that Pr{Z = 1} = � and Pr{Z = 2} =

¯

�.

5. Then

I(X;Y )

= I(X;Y |Z) + I(X;Y ;Z)

 I(X;Y |Z)

= Pr{Z = 1}I(X;Y |Z = 1)

+Pr{Z = 2}I(X;Y |Z = 2)

= �I(p(x), p

1

(y|x)) +

¯

�I(p(x), p

2

(y|x)),

where I(p(x), p

1

(y|x)) is the mutual information

between X and Y when the switch is up, and

I(p(x), p

2

(y|x)) is the mutual information between X

and Y when the switch is down. This shows that

I(X;Y ) is a convex functional of p(y|x).
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Interpretation For a fixed input distribution p(x),

the mutual information between the input and the out-

put of the system as shown, which is obtained by mix-

ing 2 channels p

1

(y|x) and p

2

(y|x), is at most the

mixture of the 2 mutual informations corresponding to

p

1

(y|x) and p

2

(y|x), respectively.
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Interpretation For a fixed channel, by mixing the

input distribution, the mutual information is at least

equal to the mixture of the corresponding mutual in-

formations.



Shannon’s Perfect Secrecy Theorem

X X
Y

Z

X � plaintext

Y � ciphertext

Z � key

• Perfect Secrecy: I(X;Y ) = 0

• Decipherability: H(X|Y, Z) = 0

• These requirement implies H(Z) � H(X), i.e., the length of the key is at

least the same as the length of the plaintext.

• Shannon (1949) gave a combinatorial proof.

• Can readily be proved by an information diagram.
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Perfect Secrecy I(X;Y ) = 0

Decipherbility H(X|Y, Z) = 0

1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
(Z̃ � X̃) � µ

⇤
(X̃ � Z̃).

6. Therefore we conclude that H(Z) � H(X), as is to
be shown.

X X
Y

Z

X � plaintext

Y � ciphertext

Z � key



Perfect Secrecy I(X;Y ) = 0

Decipherbility H(X|Y, Z) = 0

1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
(Z̃ � X̃) � µ

⇤
(X̃ � Z̃).

6. Therefore we conclude that H(Z) � H(X), as is to
be shown.

X X
Y

Z

X � plaintext

Y � ciphertext

Z � key



Perfect Secrecy I(X;Y ) = 0

Decipherbility H(X|Y, Z) = 0

1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
(Z̃ � X̃) � µ

⇤
(X̃ � Z̃).

6. Therefore we conclude that H(Z) � H(X), as is to
be shown.

X Z 

Y 

a 

- a 

X X
Y

Z

X � plaintext

Y � ciphertext

Z � key



Perfect Secrecy I(X;Y ) = 0

Decipherbility H(X|Y, Z) = 0

1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
(Z̃ � X̃) � µ

⇤
(X̃ � Z̃).

6. Therefore we conclude that H(Z) � H(X), as is to
be shown.

X Z 

Y 

a 

- a 

X X
Y

Z

X � plaintext

Y � ciphertext

Z � key

a



Perfect Secrecy I(X;Y ) = 0

Decipherbility H(X|Y, Z) = 0

1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.
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2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
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and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
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atoms do not need to be considered. Only the atoms
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.
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and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
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⇤
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6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
(Z̃ � X̃) � µ

⇤
(X̃ � Z̃).

6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
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6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that
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⇤
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6. Therefore we conclude that H(Z) � H(X), as is to
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
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⇤
(X̃ � Z̃).

6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.
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and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
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6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that
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6. Therefore we conclude that H(Z) � H(X), as is to
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Perfect Secrecy I(X;Y ) = 0

Decipherbility H(X|Y, Z) = 0

1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that

µ
⇤
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⇤
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6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
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6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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Decipherbility H(X|Y, Z) = 0

1. Since I(Y ;Z) � 0, we have

I(Y ;Z|X) � a.

2. We also have H(Z|X, Y ) � 0.

3. We need to show that µ⇤(Z̃) � µ⇤(X̃). Compare in
the information diagram at the bottom the atoms of X̃
and Z̃.

4. The atoms in X̃ \ Z̃ are common to both X̃ and
Z̃. Their measures cancel with each other and so these
atoms do not need to be considered. Only the atoms
in X̃ � Z̃ and Z̃ � X̃ need to be compared.

5. From the information diagram at the top, it is evi-
dent that
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⇤
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6. Therefore we conclude that H(Z) � H(X), as is to
be shown.
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Example 3.15 (Imperfect Secrecy Theorem) Let X be the plain text, Y
be the cipher text, and Z be the key in a secret key cryptosystem. Since X can

be recovered from Y and Z, we have

H(X|Y, Z) = 0.

Show that this constraint implies

I(X;Y ) � H(X)�H(Z).

Exercise Study Example 3.15.

Remark

• I(X;Y ) measures the “leakage of information.” When I(X;Y ) = 0, it

reduces Shannon’s perfect secrecy theorem.
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Example 3.17 (Data Processing Theorem) If X ! Y ! Z ! T , then

• I(X;T )  I(Y ;Z)

• in fact

I(Y ;Z) = I(X;T ) + I(X;Z|T ) + I(Y ;T |X) + I(Y ;Z|X,T )
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Example 3.17 (Data Processing Theorem) If X ! Y ! Z ! T , then
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• in fact

I(Y ;Z) = I(X;T ) + I(X;Z|T ) + I(Y ;T |X) + I(Y ;Z|X,T )_________



Example 3.18 If X ! Y ! Z ! T ! U , then

H(Y ) +H(T ) = I(Z;X,Y, T, U) + I(X,Y ;T, U) +H(Y |Z) +H(T |Z)

Remarks

• Very di�cult to discover without an information diagram.

• Instrumental in proving an outer bound for the multiple description prob-

lem.

Exercise Verify the following information diagram for the above equality.
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Proving Information Inequalities

• Information inequalities that are implied by the basic inequalities are
called Shannon-type inequalities.

• They can be proved by means of a linear program called ITIP (Information
Theoretic Inequality Prover), developed on Matlab at CUHK (1996):

http://user-www.ie.cuhk.edu.hk/�ITIP/

• A version running on C called Xitip was developed at EPFL (2007):

http://xitip.epfl.ch/

• See Ch. 13 and 14 for discussion.
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1. >> ITIP(’H(XYZ) <= H(X) + H(Y) + H(Z)’)

True

2. >> ITIP(’I(X;Z) = 0’,’I(X;Z|Y) = 0’,’I(X;Y) = 0’)

True

3. >> ITIP(’X/Y/Z/T’, ’X/Y/Z’, ’Y/Z/T’)

Not provable by ITIP

4. >> ITIP(’I(Z;U) - I(Z;U|X) - I(Z;U|Y) <=

0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)

Not provable by ITIP

• #4 is a so-called non-Shannon-type inequality which is valid but not im-

plied by the basic inequalities. See Ch. 15 for discussion.

ITIP Examples



ITIP Examples

1. >> ITIP(’H(XYZ) <= H(X) + H(Y) + H(Z)’)

True

2. >> ITIP(’I(X;Z) = 0’,’I(X;Z|Y) = 0’,’I(X;Y) = 0’)

True

3. >> ITIP(’X/Y/Z/T’, ’X/Y/Z’, ’Y/Z/T’)

Not provable by ITIP

4. >> ITIP(’I(Z;U) - I(Z;U|X) - I(Z;U|Y) <=

0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)

Not provable by ITIP

• #4 is a so-called non-Shannon-type inequality which is valid but not im-

plied by the basic inequalities. See Ch. 15 for discussion.


