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e To obtain information identities is WYSIWYG.
e To obtain information inequalities:

— If p* is nonnegative, then
ACB = p*(4) < (B)
because

p(d) < p(A)+p(B—A4)
= p(AU(B—A4))
= ' (B)

— It u* is a signed measure, need to invoke the basic inequalities to
compare p*(A) and p*(B).
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Interpretation The entropy of a mixture of distribu-
tions is at least equal to the mixture of the correspond-
ing entropies.
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Interpretation For a fixed input distribution p(x),
the mutual information between the input and the out-
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mixture of the 2 mutual informations corresponding to

p1(y|lx) and po(y|x), respectively.
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Interpretation For a fixed channel, by mixing the
input distribution, the mutual information is at least
equal to the mixture of the corresponding mutual in-
formations.
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Example 3.15 (Imperfect Secrecy Theorem) Let X be the plain text, YV
be the cipher text, and Z be the key in a secret key cryptosystem. Since X can
be recovered from Y and Z, we have

H(X|Y,Z)=0.
Show that this constraint implies

I[(X:Y) > H(X)— H(Z2).

Exercise Study Example 3.15.
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Remark

e /(X;Y) measures the “leakage of information.” When I(X;Y) = 0, it
reduces Shannon’s perfect secrecy theorem.
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o [(X;1)<I(Y;Z)
e in fact

Y 2)=1(X;T)+ 1(X; Z|T)+ 1(Y;T|X)+ I(Y; Z|X,T)




Example 3.18 If X - Y — Z — 1 — U, then

HY)+H(T)=I1(Z;X,Y,T,U)+ I(X,Y;T,U) + HY|Z) + H(T|Z)



Example 3.18 If X - Y — Z — 1 — U, then
HY)+HT) =1Z;X,Y, T, U)+ I(X,Y;T,U)+ HY|Z)+ H(T\|Z)
Remarks

e Very difficult to discover without an information diagram.

e Instrumental in proving an outer bound for the multiple description prob-
lem.



Example 3.18 If X - Y — Z — 1 — U, then
HY)+HT) =1Z;X,Y, T, U)+ I(X,Y;T,U)+ HY|Z)+ H(T\|Z)
Remarks

e Very difficult to discover without an information diagram.

e Instrumental in proving an outer bound for the multiple description prob-
lem.

Exercise Verity the following information diagram for the above equality.
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Proving Information Inequalities

Information inequalities that are implied by the basic inequalities are
called Shannon-type inequalities.

They can be proved by means of a linear program called ITIP (Information
Theoretic Inequality Prover), developed on Matlab at CUHK (1996):

http://user-www.ie.cuhk.edu.hk /~ITIP/

A version running on C called Xitip was developed at EPFL (2007):

http:/ /xitip.epfl.ch/

See Ch. 13 and 14 for discussion.



ITIP Examples

. >> ITIP(CPH(XYZ) <= H(X) + H(Y) + H(Z)?)
True

. >> ITIPCPI(X;Z) = 0°,°I(X;2lY) = 02,°I(X;Y) = 07)
True

. >> ITIPC’X/Y/Z/T’, *X/Y/Z°, °Y/Z/T’)
Not provable by ITIP

. >> ITIP(C’I(Z;U) - I(Z;UlX) - I(Z;UlY) <=
0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)
Not provable by ITIP



ITIP Examples

. >> ITIP(CPH(XYZ) <= H(X) + H(Y) + H(Z)?)
True

. >> ITIPCPI(X;Z) = 0°,°I(X;2lY) = 02,°I(X;Y) = 07)
True

. >> ITIPC’X/Y/Z/T’, *X/Y/Z°, °Y/Z/T’)
Not provable by ITIP

. >> ITIPC’I(Z;U) - I(Z;UlX) - I(Z;UlY) <=
0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)
Not provable by ITIP

#4 is a so-called non-Shannon-type inequality which is valid but not im-
plied by the basic inequalities. See Ch. 15 for discussion.



