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• This is a 2-dimensional representation of an

information diagram for 4 r.v.’s.

• First check that there are 2

4 � 1 = 15

nonempty atoms.

• This is a correct representation because the
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• Fill the nonempty atoms of the information

diagram with arbitrary nonnegative numbers

a, b, · · · , g.

• Theorem 3.11 says that there exist r.v.’s X, Y ,

and Z whose I-measure µ⇤
is as shown.

• This can be seen by considering mutually in-

dependent r.v.’s A,B, · · · , G with entropies

a, b, · · · , g, respectively, and let

X = (A,B,C,D)

Y = (B,D,E, F )

Z = (C,D, F,G).

Theorem 3.11 If there is no constraint on X1, X2, · · · , Xn, then µ⇤
can take

any set of nonnegative values on the nonempty atoms of Fn.

Idea
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Theorem 3.11 If there is no constraint on
X1, X2, · · · , Xn, then µ⇤ can take any set of non-
negative values on the nonempty atoms of Fn.

Proof

1. Let YA,A 2 A be mutually independent random
variables. Note that these r.v.’s are labeled by the
nonempty atoms of Fn.

2. Define the random variables Xi, i = 1, 2, · · · , n by

Xi = (YA : A 2 A and A ⇢ X̃i).

We will determine the I-Measure µ⇤ for X1, X2, · · · ,
Xn so defined.

3. Since YA are mutually independent, for any
nonempty subsets G of Nn, we have

H(XG) = H(Xi, i 2 G)

= H((YA : A 2 A and A ⇢ X̃i), i 2 G)

= H(YA : A 2 A and A ⇢ X̃G)

=
X

A2A:A⇢X̃G

H(YA). (1)

4. On the other hand, by set-additivity, we have

H(XG) = µ
⇤(X̃G) =

X

A2A:A⇢X̃G

µ
⇤(A). (2)

Equating the right hand sides of (1) and (2), we have

X

A2A:A⇢X̃G

H(YA) =
X

A2A:A⇢X̃G

µ
⇤(A).

5. Here µ⇤(A) are the unknowns. Evidently, we can
make the above equality hold for all nonempty subsets
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Theorem 3.9 µ⇤
is the unique signed measure on

Fn which is consistent with all Shannon’s information

measures.
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Corollary 2.44 The entropy of a random variable may

take any nonnegative real value.



Information Diagrams for  
Markov Chains

• If X1 ! X2 ! · · · ! Xn form a Markov chain, then the structure of µ⇤

is much simpler and hence the information diagram can be simplified.

• For n = 3, X1 ! X2 ! X3 i↵ I(X1;X3|X2) = 0, or µ⇤
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! X
2

! X
3
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sure.
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X 
3 

X 
1 

X 
2 



• For X1 ! X2 ! X3 ! X4, µ⇤
vanishes on the following 5 atoms:

˜X1 \ ˜Xc
2 \ ˜X3 \ ˜Xc

4

˜X1 \ ˜Xc
2 \ ˜X3 \ ˜X4

˜X1 \ ˜Xc
2 \ ˜Xc

3 \ ˜X4

˜X1 \ ˜X2 \ ˜Xc
3 \ ˜X4

˜Xc
1 \ ˜X2 \ ˜Xc

3 \ ˜X4

• The information diagram can be displayed in two dimensions.

• The values of µ⇤
on the remaining atoms correspond to Shannon’s infor-

mation measures and hence are nonnegative. Thus, µ⇤
is a measure.



• For X1 ! X2 ! X3 ! X4, µ⇤
vanishes on the following 5 atoms:

˜X1 \ ˜Xc
2 \ ˜X3 \ ˜Xc

4

˜X1 \ ˜Xc
2 \ ˜X3 \ ˜X4

˜X1 \ ˜Xc
2 \ ˜Xc

3 \ ˜X4

˜X1 \ ˜X2 \ ˜Xc
3 \ ˜X4

˜Xc
1 \ ˜X2 \ ˜Xc

3 \ ˜X4

• The information diagram can be displayed in two dimensions.

• The values of µ⇤
on the remaining atoms correspond to Shannon’s infor-

mation measures and hence are nonnegative. Thus, µ⇤
is a measure.



• For X1 ! X2 ! X3 ! X4, µ⇤
vanishes on the following 5 atoms:

˜X1 \ ˜Xc
2 \ ˜X3 \ ˜Xc

4

˜X1 \ ˜Xc
2 \ ˜X3 \ ˜X4

˜X1 \ ˜Xc
2 \ ˜Xc

3 \ ˜X4

˜X1 \ ˜X2 \ ˜Xc
3 \ ˜X4

˜Xc
1 \ ˜X2 \ ˜Xc

3 \ ˜X4

• The information diagram can be displayed in two dimensions.

• The values of µ⇤
on the remaining atoms correspond to Shannon’s infor-

mation measures and hence are nonnegative. Thus, µ⇤
is a measure.



X 
1 

X 
4 

X 
3 

X 
2 



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

______ ______ ______



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

______ __ ______ ________ __



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

______ __ ______ ________ ____



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

______ __ ______ ________ ____ __



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
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Then
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Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

a
-aa

-a

a



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

a
-aa

-a

a



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

a
-a

a

-a

a



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

a
-a

a

-a

a



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

a
-a

a

-a

a

_____



Structure of µ⇤ for X
1

! X
2

! X
3

! X
4

1. The Markov subchain X
1

! X
2

! X
3

implies

0 = I(X
1

; X
3

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
3

|X
2

, X
4

).

Let I(X
1

; X
3

|X
2

, X
4

) = a � 0. Then

I(X
1

; X
3

; X
4

|X
2

) = �a.

2. The Markov subchain X
1

! X
2

! X
4

implies

0 = I(X
1

; X
4

|X
2

) = I(X
1

; X
3

; X
4

|X
2

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
3

; X
4

|X
2

) = �a,

I(X
1

; X
4

|X
2

, X
3

) = a.

3. The Markov subchain X
1

! X
3

! X
4

implies

0 = I(X
1

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
1

; X
4

|X
2

, X
3

).

Since I(X
1

; X
4

|X
2

, X
3

) = a,

I(X
1

; X
2

; X
4

|X
3

) = �a.

4. The Markov subchain X
2

! X
3

! X
4

implies

0 = I(X
2

; X
4

|X
3

) = I(X
1

; X
2

; X
4

|X
3

)+I(X
2

; X
4

|X
1

, X
3

).

Since I(X
1

; X
2

; X
4

|X
3

) = �a,

I(X
2

; X
4

|X
1

, X
3

) = a.

5. The Markov subchain (X
1

, X
2

) ! X
3

! X
4

im-

plies

0 = I(X
1

, X
2

; X
4

|X
3

) =

I(X
1

; X
4

|X
2

, X
3

) + I(X
1

; X
2

; X
4

|X
3

) + I(X
2

; X
4

|X
1

, X
3

).

Then

0 = a � a + a = a.

Therefore a = 0, and so µ⇤ vanishes on the correspond-

ing 5 atoms as shown in the information diagram.

X 
1 

X 
2 

X 
3 

X 
4 

_____

0
0

0

0

0



Nonnegatvity of µ⇤
for X

1

! X
2

! X
3

! X
4

1. We have proved that µ⇤
vanishes on the 5 atoms

shown in the information diagram.

2. Suppress these atoms by setting them to ; to obtain

the information diagram below.

3. From this information diagram, it can readily be

checked that the values of µ⇤
on the remaining

(2

4 � 1) � 5 = 10

nonempty atoms are equal to
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3. There are all Shannon’s information measures which

are always nonnegative. Therefore, µ⇤
is a measure.

Exercise: Identify these 10 atoms in the information

diagram at the bottom.
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• For a general n, the information diagram can be displayed in two dimen-
sions because certain atoms can be suppressed.

• The values of µ� on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. Thus, µ� is a measure.

• See Ch. 12 for a detailed discussion in the context of Markov random field.
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