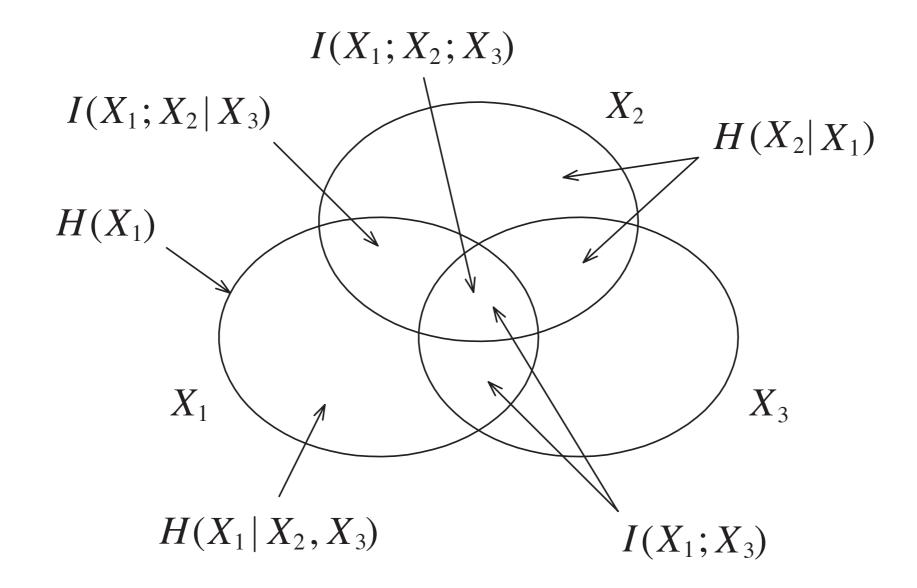
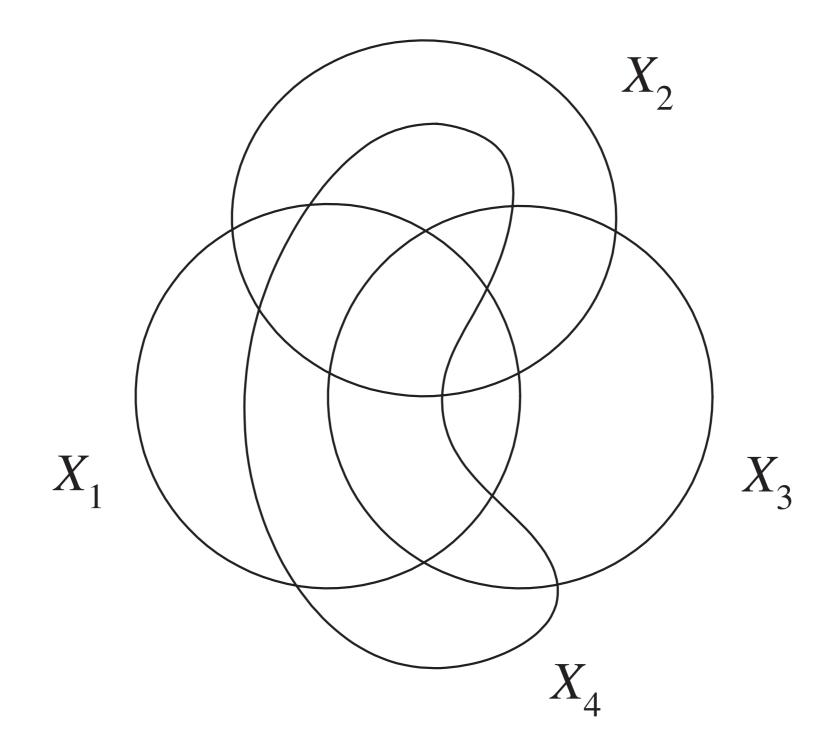
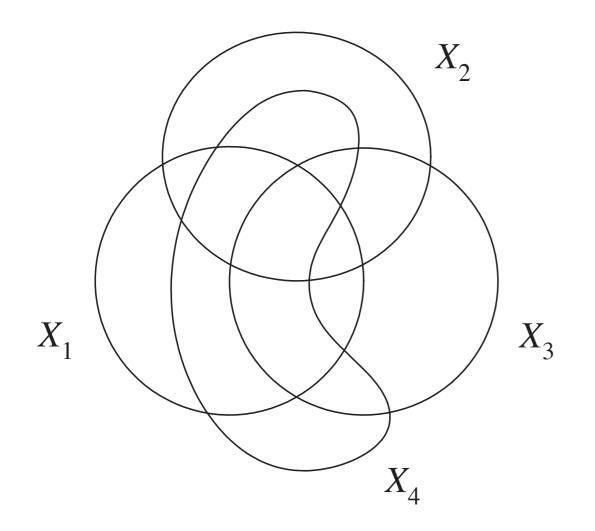
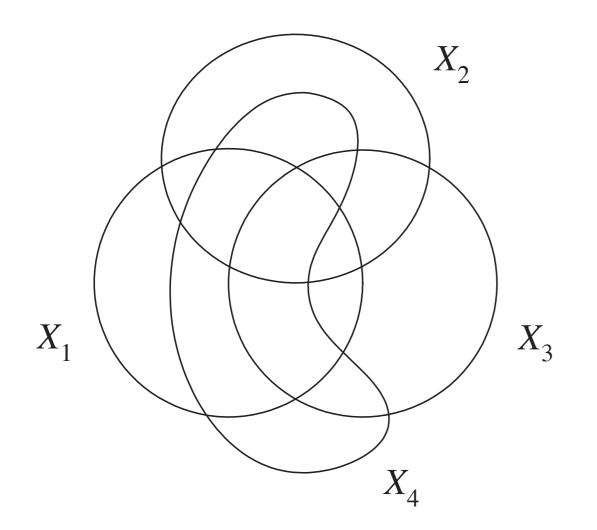


3.5 Information Diagrams

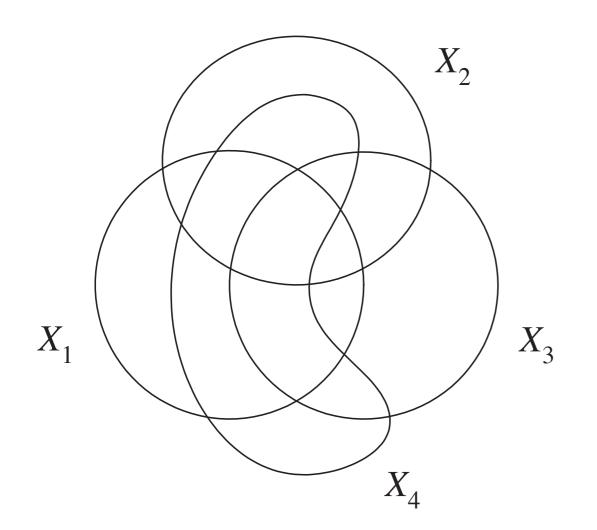




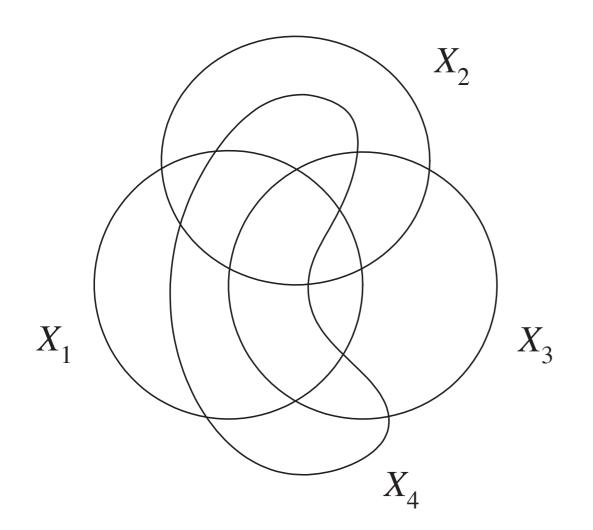




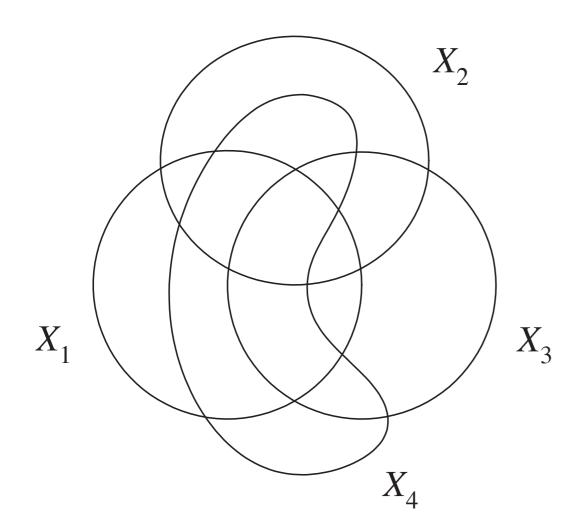
• This is a 2-dimensional representation of an information diagram for 4 r.v.'s.



- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.

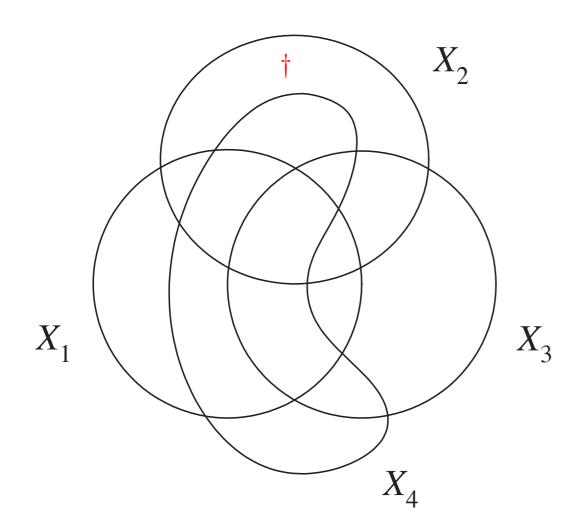


- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.
- This is a correct representation because the "kidney shape" representing X_4 splits each nonempty atom in \mathcal{F}_3 into 2 nonempty atoms in \mathcal{F}_4 .



- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.
- This is a correct representation because the "kidney shape" representing X_4 splits each nonempty atom in \mathcal{F}_3 into 2 nonempty atoms in \mathcal{F}_4 .
- For example, the atom

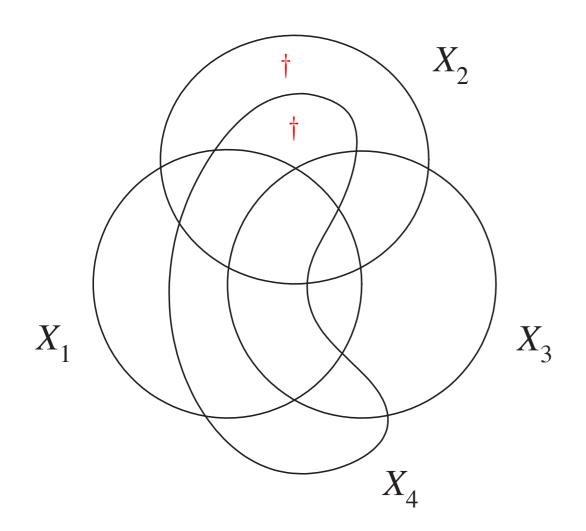
 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c$



- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.
- This is a correct representation because the "kidney shape" representing X_4 splits each nonempty atom in \mathcal{F}_3 into 2 nonempty atoms in \mathcal{F}_4 .
- For example, the atom

 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c$

$$\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4$$



- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.
- This is a correct representation because the "kidney shape" representing X_4 splits each nonempty atom in \mathcal{F}_3 into 2 nonempty atoms in \mathcal{F}_4 .
- For example, the atom

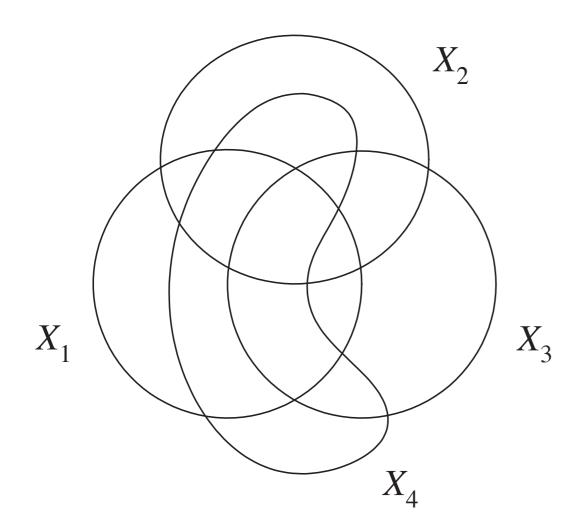
$$\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c$$

$$\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4$$

and

 $\underline{\tilde{X}_1^c} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3^c} \cap \underline{\tilde{X}_4^c}$

in \mathcal{F}_4 .



- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.
- This is a correct representation because the "kidney shape" representing X_4 splits each nonempty atom in \mathcal{F}_3 into 2 nonempty atoms in \mathcal{F}_4 .
- For example, the atom

$$\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c$$

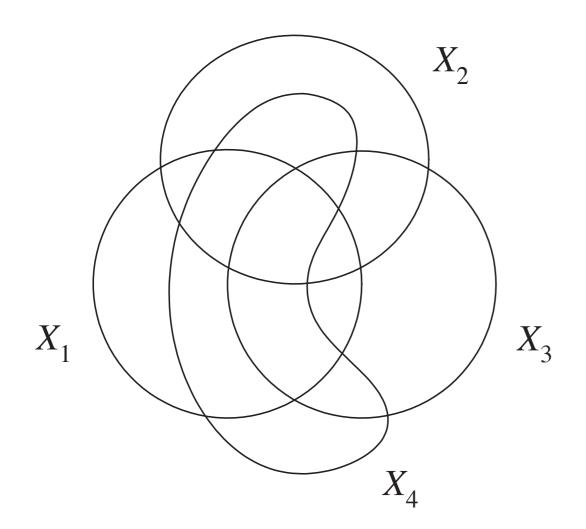
 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4$

and

 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4^c$

in \mathcal{F}_4 .

• Exercise: Check that all the other 6 atoms of \mathcal{F}_3 are split into two atoms in \mathcal{F}_4 .



- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.
- This is a correct representation because the "kidney shape" representing X_4 splits each nonempty atom in \mathcal{F}_3 into 2 nonempty atoms in \mathcal{F}_4 .
- For example, the atom

$$\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c$$

 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4$

and

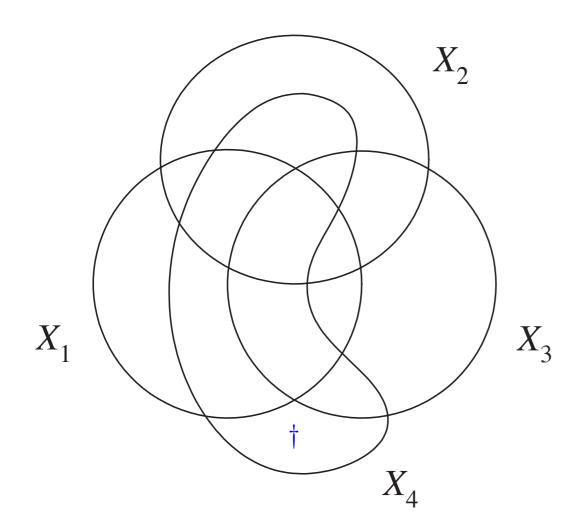
 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4^c$

in \mathcal{F}_4 .

- Exercise: Check that all the other 6 atoms of \mathcal{F}_3 are split into two atoms in \mathcal{F}_4 .
- Also there is an extra nonempty atom

$$\tilde{X}_1^c \cap \tilde{X}_2^c \cap \tilde{X}_3^c \cap \tilde{X}_4$$

which is not in \mathcal{F}_3 .



- This is a 2-dimensional representation of an information diagram for 4 r.v.'s.
- First check that there are $2^4 1 = 15$ nonempty atoms.
- This is a correct representation because the "kidney shape" representing X_4 splits each nonempty atom in \mathcal{F}_3 into 2 nonempty atoms in \mathcal{F}_4 .
- For example, the atom

$$\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c$$

 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4$

and

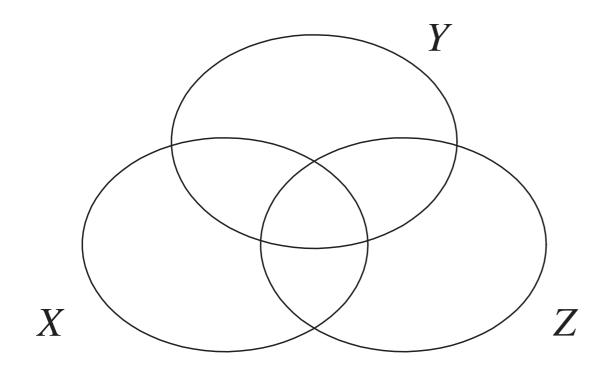
 $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4^c$

in \mathcal{F}_4 .

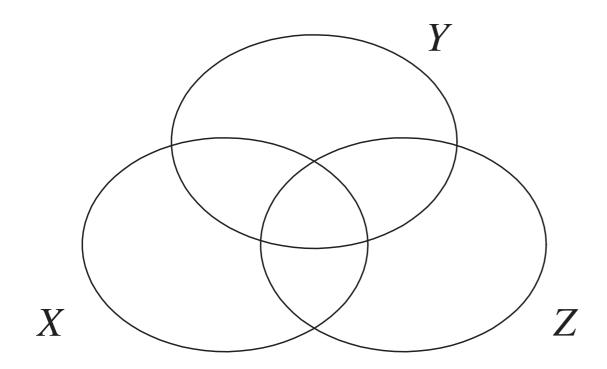
- Exercise: Check that all the other 6 atoms of \mathcal{F}_3 are split into two atoms in \mathcal{F}_4 .
- Also there is an extra nonempty atom

$$\tilde{X}_1^c \cap \tilde{X}_2^c \cap \tilde{X}_3^c \cap \tilde{X}_4$$

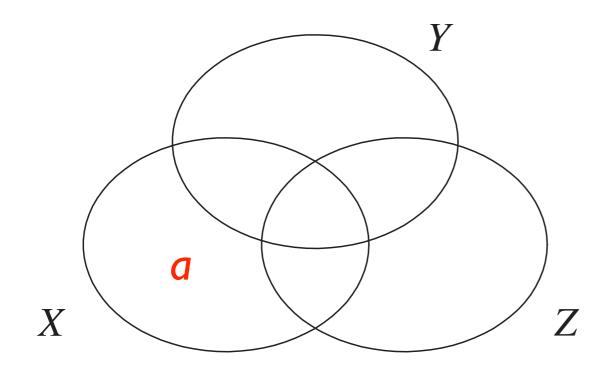
which is not in \mathcal{F}_3 .



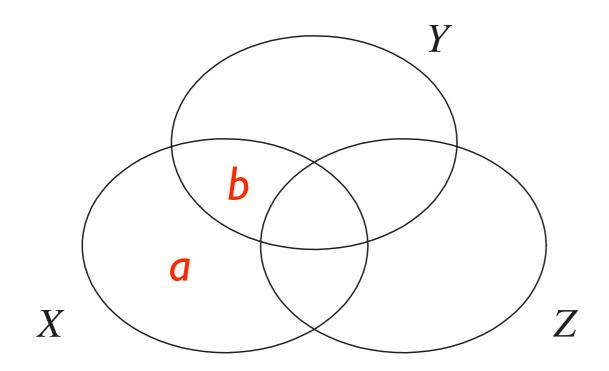
Idea



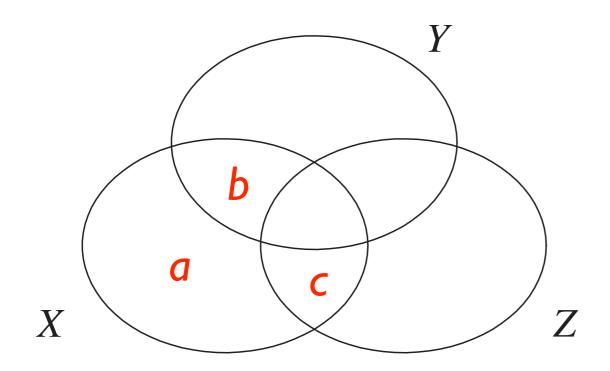
Idea



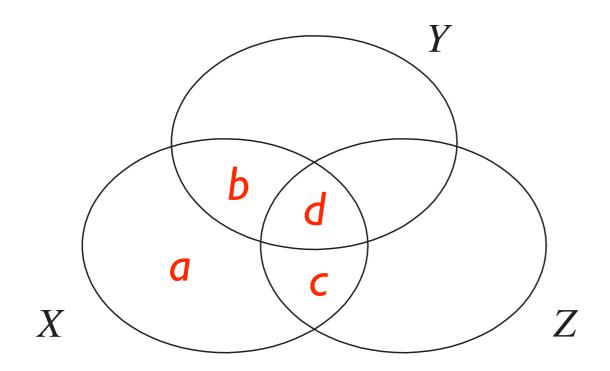
Idea



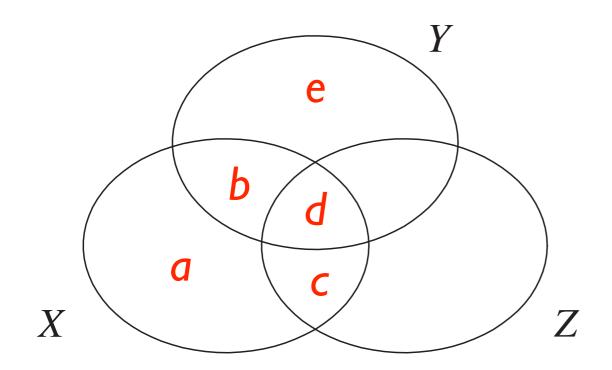
Idea



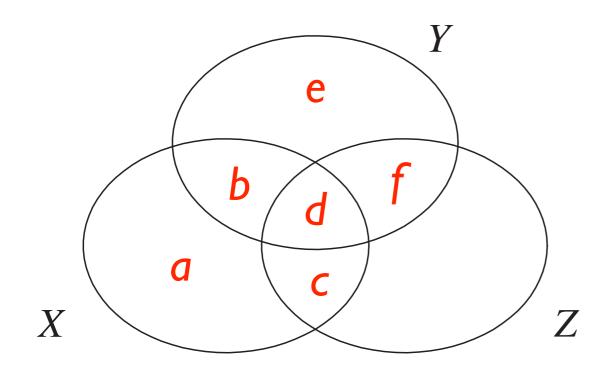
Idea



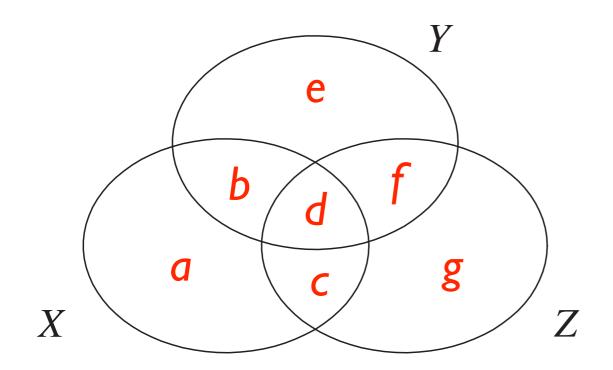
Idea

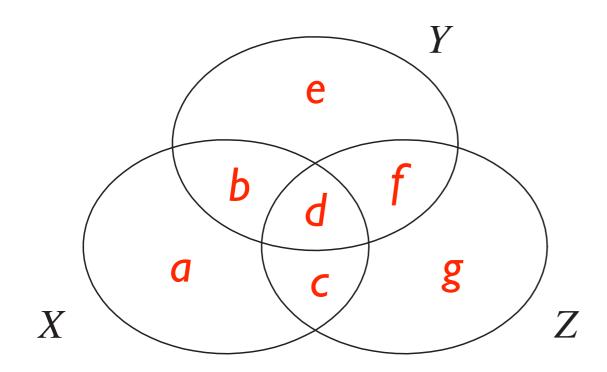


Idea

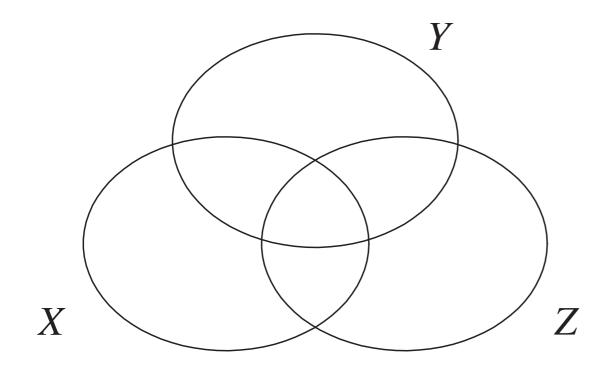


Idea

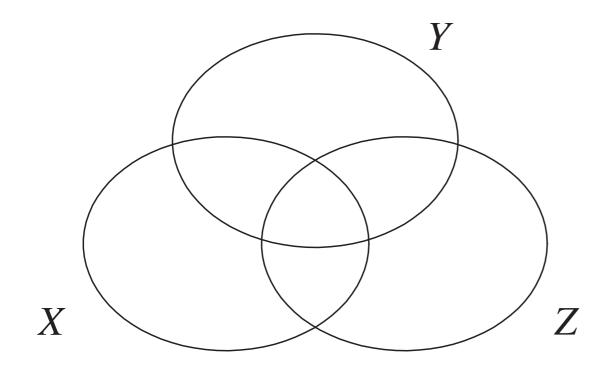




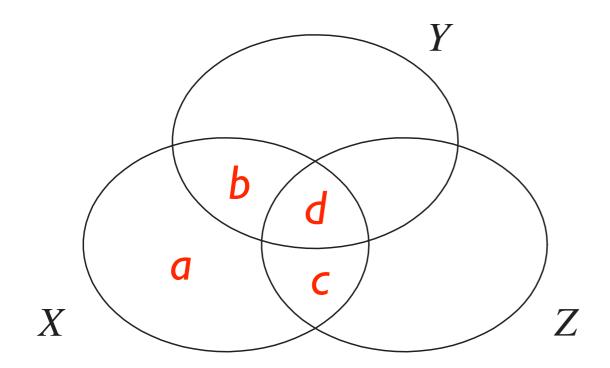
- Fill the nonempty atoms of the information diagram with arbitrary nonnegative numbers a, b, \dots, g .
- Theorem 3.11 says that there exist r.v.'s X, Y, and Z whose I-measure μ^* is as shown.



- Fill the nonempty atoms of the information diagram with arbitrary nonnegative numbers a, b, \dots, g .
- Theorem 3.11 says that there exist r.v.'s X, Y, and Z whose I-measure μ^* is as shown.

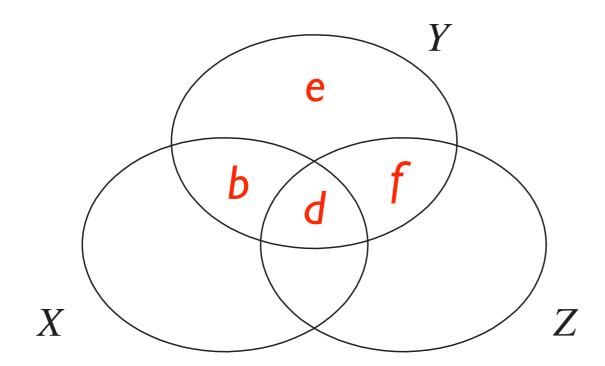


- Fill the nonempty atoms of the information diagram with arbitrary nonnegative numbers a, b, \dots, g .
- Theorem 3.11 says that there exist r.v.'s X, Y, and Z whose I-measure μ^* is as shown.
- This can be seen by considering mutually independent r.v.'s A, B, \dots, G with entropies a, b, \dots, g , respectively, and let



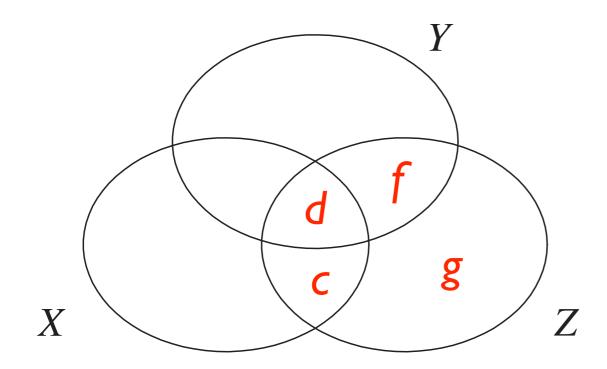
- Fill the nonempty atoms of the information diagram with arbitrary nonnegative numbers a, b, \dots, g .
- Theorem 3.11 says that there exist r.v.'s X, Y, and Z whose I-measure μ^* is as shown.
- This can be seen by considering mutually independent r.v.'s A, B, \dots, G with entropies a, b, \dots, g , respectively, and let

$$X = (A, B, C, D)$$



- Fill the nonempty atoms of the information diagram with arbitrary nonnegative numbers a, b, \dots, g .
- Theorem 3.11 says that there exist r.v.'s X, Y, and Z whose I-measure μ^* is as shown.
- This can be seen by considering mutually independent r.v.'s A, B, \dots, G with entropies a, b, \dots, g , respectively, and let

$$X = (A, B, C, D)$$
$$Y = (B, D, E, F)$$



- Fill the nonempty atoms of the information diagram with arbitrary nonnegative numbers a, b, \dots, g .
- Theorem 3.11 says that there exist r.v.'s X, Y, and Z whose I-measure μ^* is as shown.
- This can be seen by considering mutually independent r.v.'s A, B, \dots, G with entropies a, b, \dots, g , respectively, and let
 - X = (A, B, C, D) Y = (B, D, E, F)Z = (C, D, F, G).

 \mathbf{Proof}

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

 $X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$H(X_G) = H(X_i, i \in G)$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

$$H(X_G) = H(\underline{X_i}, i \in G)$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

 $X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

$$\begin{array}{lll} H(X_G) & = & H(\underline{X_i}, i \in G) \\ & = & H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \end{array}$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

$$\begin{array}{lll} H(X_G) & = & H(X_i, i \in G) \\ & = & H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \end{array}$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

$$\begin{array}{lll} H(X_G) & = & H(X_i, i \in G) \\ & = & H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \end{array}$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the I-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \end{array}$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &=& \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{array} \tag{1}$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &=& \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{array} \tag{1}$$

4. On the other hand, by set-additivity, we have

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &=& \displaystyle{\sum_{A \in \mathcal{A} : A \subset \tilde{X}_G}} H(Y_A). \end{array} \tag{1}$$

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &=& \displaystyle{\sum_{A \in \mathcal{A} : A \subset \tilde{X}_G}} H(Y_A). \end{array} \tag{1}$$

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} H(Y_A) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} H(Y_A) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} H(Y_{A}) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} \mu^{*}(A).$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &=& \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{array} \tag{1}$$

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

Equating the right hand sides of (1) and (2), we have

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} H(Y_{A}) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} \mu^{*}(A)$$

5. Here $\mu^*(A)$ are the unknowns. Evidently, we can make the above equality hold for all nonempty subsets G of \mathcal{N}_n by taking

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

Equating the right hand sides of (1) and (2), we have

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} H(Y_A) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$

5. Here $\mu^*(A)$ are the unknowns. Evidently, we can make the above equality hold for all nonempty subsets G of \mathcal{N}_n by taking

$$\mu^*(A) = H(Y_A)$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &=& \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{array} \tag{1}$$

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

Equating the right hand sides of (1) and (2), we have

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \frac{H(Y_A)}{A \in \mathcal{A}: A \subset \tilde{X}_G} = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \frac{\mu^*(A)}{A \in \mathcal{A}: A \subset \tilde{X}_G}$$

5. Here $\mu^*(A)$ are the unknowns. Evidently, we can make the above equality hold for all nonempty subsets G of \mathcal{N}_n by taking

$$\mu^*(A) = H(Y_A)$$

\mathbf{Proof}

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{array}{lll} H(X_G) &=& H(X_i, i \in G) \\ &=& H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &=& H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &=& \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{array} \tag{1}$$

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

Equating the right hand sides of (1) and (2), we have

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \frac{H(Y_A)}{A \in \mathcal{A}: A \subset \tilde{X}_G} = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \frac{\mu^*(A)}{A \in \mathcal{A}: A \subset \tilde{X}_G}$$

5. Here $\mu^*(A)$ are the unknowns. Evidently, we can make the above equality hold for all nonempty subsets G of \mathcal{N}_n by taking

$$\mu^*(A) = H(Y_A)$$

for all $A \in \mathcal{A}$. By the uniqueness of μ^* (Theorem 3.9), this is also the only possibility for μ^* .

Proof

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

Equating the right hand sides of (1) and (2), we have

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \frac{H(Y_A)}{A \in \mathcal{A}: A \subset \tilde{X}_G} = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \frac{\mu^*(A)}{A}.$$

5. Here $\mu^*(A)$ are the unknowns. Evidently, we can make the above equality hold for all nonempty subsets G of \mathcal{N}_n by taking

$$\mu^*(A) = H(Y_A)$$

for all $A \in \mathcal{A}$. By the uniqueness of μ^* (Theorem 3.9), this is also the only possibility for μ^* .

Theorem 3.9 μ^* is the unique signed measure on \mathcal{F}_n which is consistent with all Shannon's information measures.

Proof

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

Equating the right hand sides of (1) and (2), we have

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} H(Y_{A}) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} \mu^{*}(A)$$

5. Here $\mu^*(A)$ are the unknowns. Evidently, we can make the above equality hold for all nonempty subsets G of \mathcal{N}_n by taking

$$\mu^*(A) = H(Y_A)$$

for all $A \in \mathcal{A}$. By the uniqueness of μ^* (Theorem 3.9), this is also the only possibility for μ^* .

6. Since $H(Y_A)$ can take any nonnegative value by Corollary 2.44, μ^* can take any set of nonnegative values on the nonempty atoms of \mathcal{F}_n . The theorem is proved.

Theorem 3.9 μ^* is the unique signed measure on \mathcal{F}_n which is consistent with all Shannon's information measures.

Proof

1. Let $Y_A, A \in \mathcal{A}$ be mutually independent random variables. Note that these r.v.'s are labeled by the nonempty atoms of \mathcal{F}_n .

2. Define the random variables $X_i, i = 1, 2, \cdots, n$ by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset X_i).$$

We will determine the *I*-Measure μ^* for X_1, X_2, \cdots, X_n so defined.

3. Since Y_A are mutually independent, for any nonempty subsets G of \mathcal{N}_n , we have

$$\begin{split} H(X_G) &= H(X_i, i \in G) \\ &= H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G) \\ &= H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G) \\ &= \sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A). \end{split}$$
(1)

4. On the other hand, by set-additivity, we have

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A).$$
(2)

Equating the right hand sides of (1) and (2), we have

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} H(Y_{A}) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_{G}} \mu^{*}(A)$$

5. Here $\mu^*(A)$ are the unknowns. Evidently, we can make the above equality hold for all nonempty subsets G of \mathcal{N}_n by taking

$$\mu^*(A) = H(Y_A)$$

for all $A \in \mathcal{A}$. By the uniqueness of μ^* (Theorem 3.9), this is also the only possibility for μ^* .

6. Since $H(Y_A)$ can take any nonnegative value by Corollary 2.44, μ^* can take any set of nonnegative values on the nonempty atoms of \mathcal{F}_n . The theorem is proved.

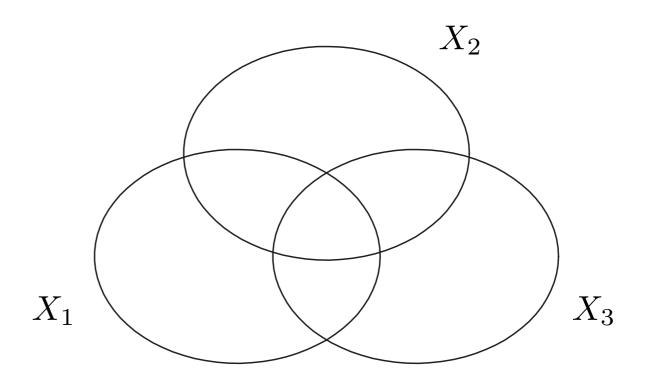
Theorem 3.9 μ^* is the unique signed measure on \mathcal{F}_n which is consistent with all Shannon's information measures.

Corollary 2.44 The entropy of a random variable may take any nonnegative real value.

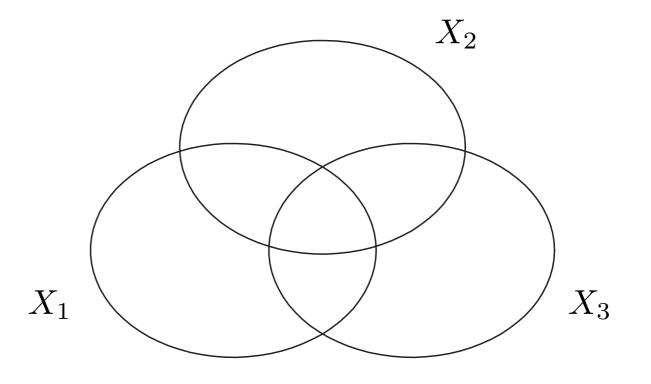
• If $X_1 \to X_2 \to \cdots \to X_n$ form a Markov chain, then the structure of μ^* is much simpler and hence the information diagram can be simplified.

- If $X_1 \to X_2 \to \cdots \to X_n$ form a Markov chain, then the structure of μ^* is much simpler and hence the information diagram can be simplified.
- For $n = 3, X_1 \to X_2 \to X_3$ iff $I(X_1; X_3 | X_2) = 0$, or $\mu^*(\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2) = 0$.

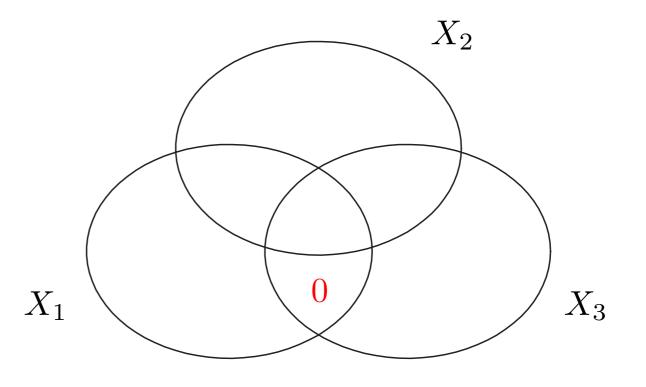
- If $X_1 \to X_2 \to \cdots \to X_n$ form a Markov chain, then the structure of μ^* is much simpler and hence the information diagram can be simplified.
- For $n = 3, X_1 \to X_2 \to X_3$ iff $I(X_1; X_3 | X_2) = 0$, or $\mu^*(\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2) = 0$.
- So the atom $\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2$ can be suppressed in the information diagram.



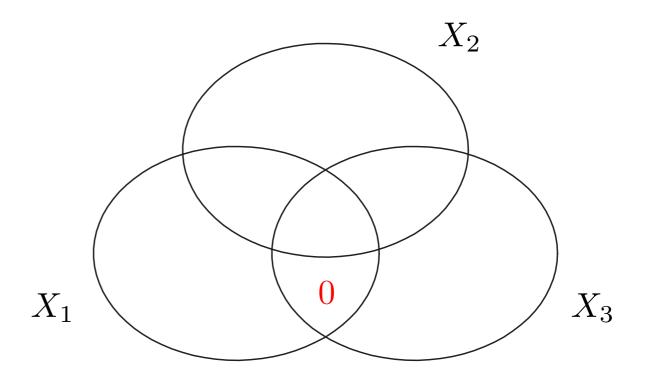
• Suppose $I(X_1; X_3 | X_2) = 0.$



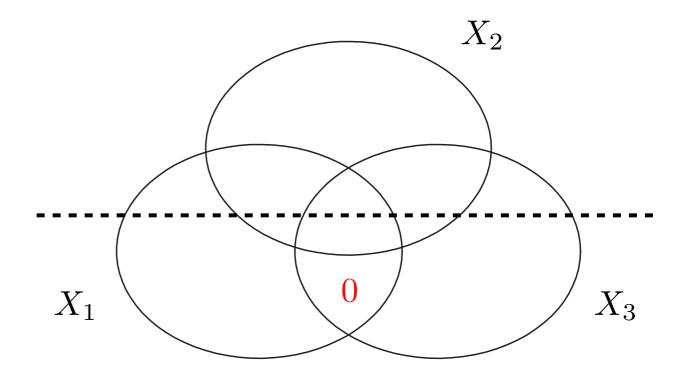
- Suppose $I(X_1; X_3 | X_2) = 0.$
- Then $\mu^*(\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2) = 0.$



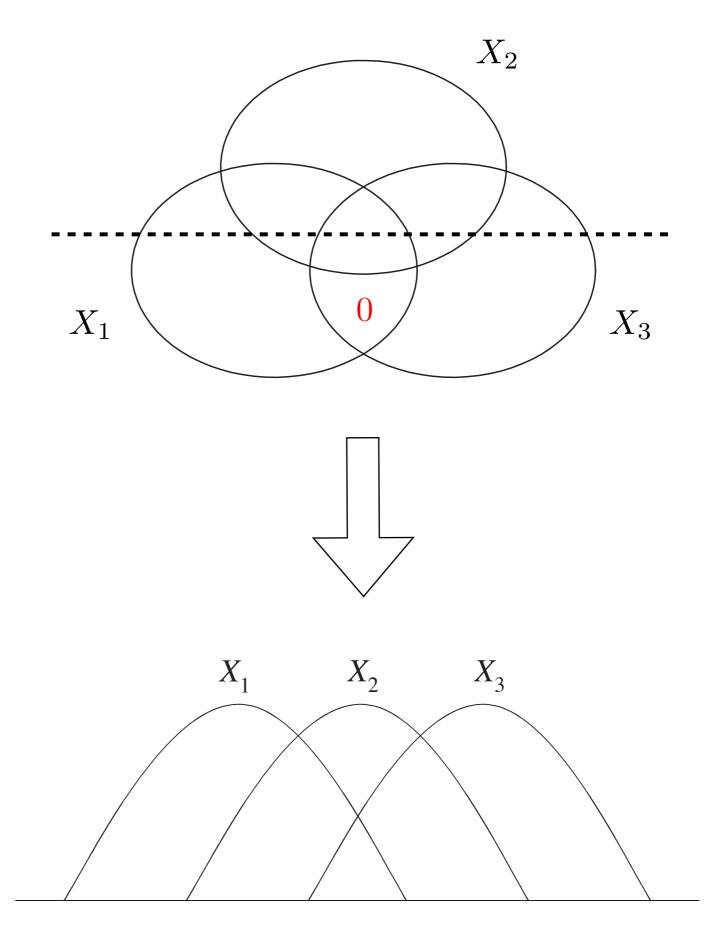
- Suppose $I(X_1; X_3 | X_2) = 0.$
- Then $\mu^*(\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2) = 0.$
- Suppress the atom $\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2$ by setting it to \emptyset .



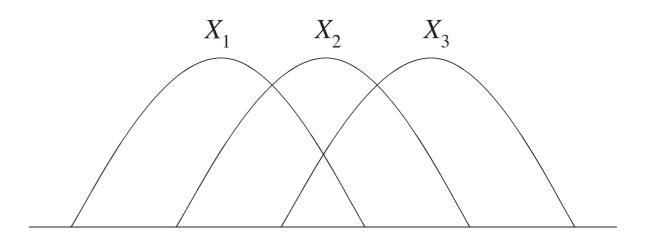
- Suppose $I(X_1; X_3 | X_2) = 0.$
- Then $\mu^*(\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2) = 0.$
- Suppress the atom $\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2$ by setting it to \emptyset .



- Suppose $I(X_1; X_3 | X_2) = 0.$
- Then $\mu^*(\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2) = 0.$
- Suppress the atom $\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2$ by setting it to \emptyset .

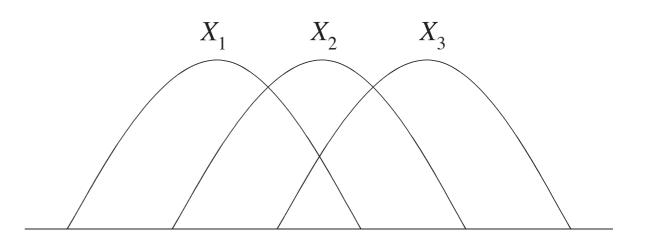


 μ^* for $X_1 \to X_2 \to X_3$



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

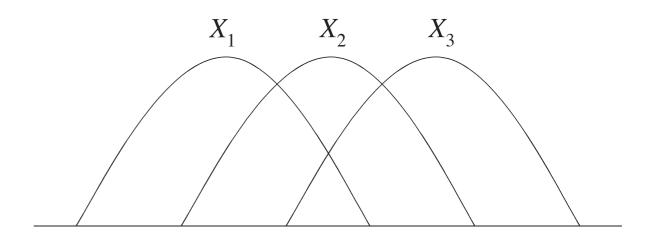
1. In this information diagram,



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

1. In this information diagram,

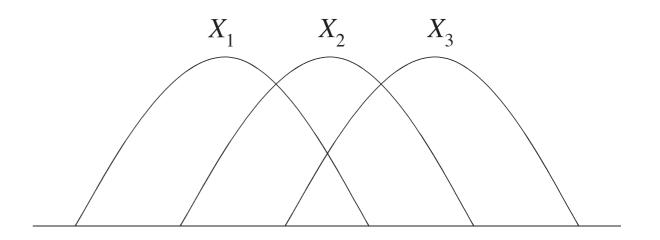
$$I(X_1; X_3 | X_2) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3 - \tilde{X}_2)$$



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

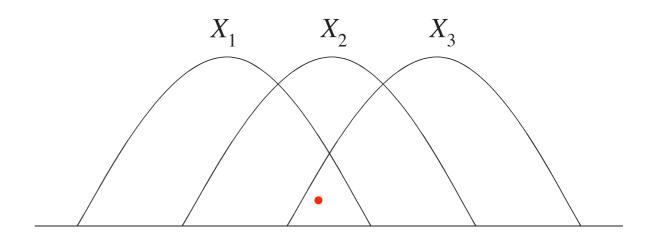
1. In this information diagram,

$$I(X_1; X_3 | X_2) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3 - \tilde{X}_2)$$



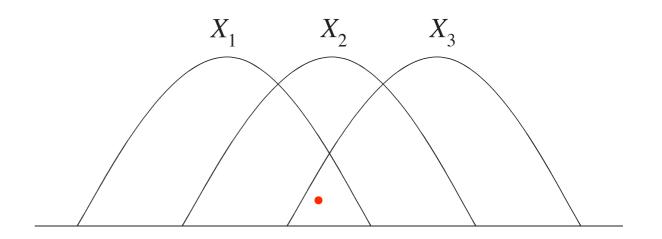
$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_1; X_3 | X_2) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3 - \tilde{X}_2)$$



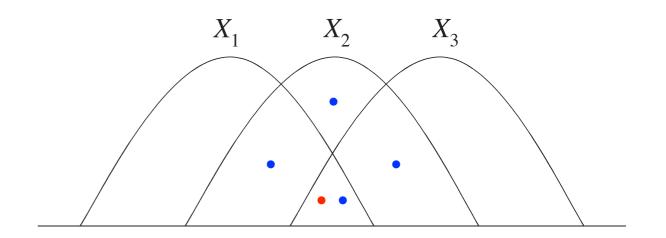
$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_1; X_3 | X_2) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3 - \tilde{X}_2)$$



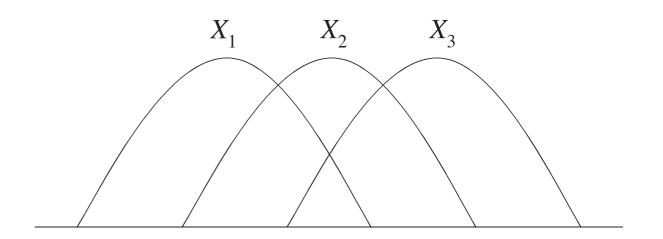
$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_1; X_3 | X_2) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3 - \tilde{X}_2)$$



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

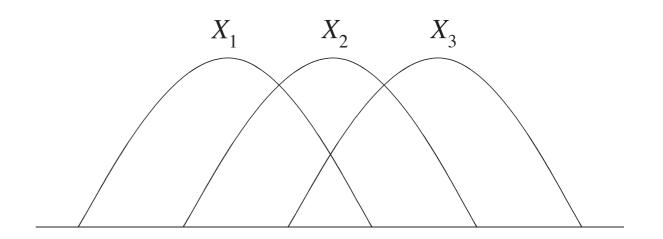
$$I(X_1; X_3 | X_2) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3 - \tilde{X}_2)$$
$$= \mu^* (\emptyset)$$



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

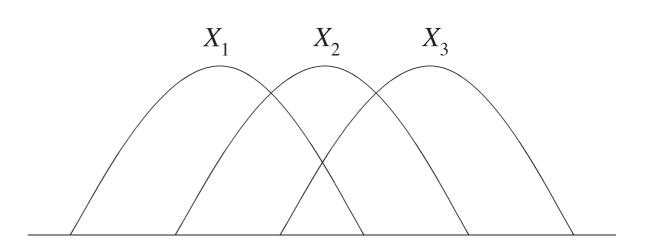
= $\mu^{*} (\emptyset)$
= 0.



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

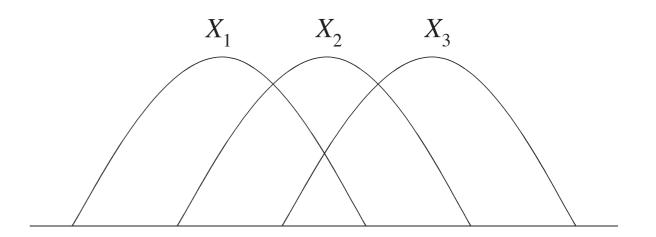
= $\mu^{*} (\emptyset)$
= 0.



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

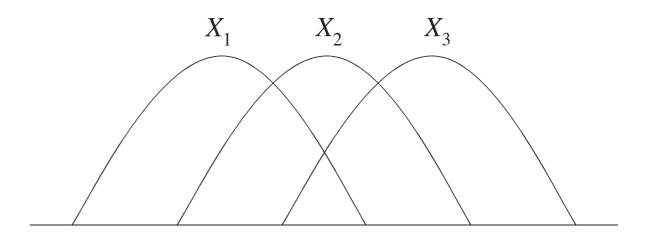


$$\mu^*(\tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3) = \mu^*(\tilde{X}_1 \cap \tilde{X}_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

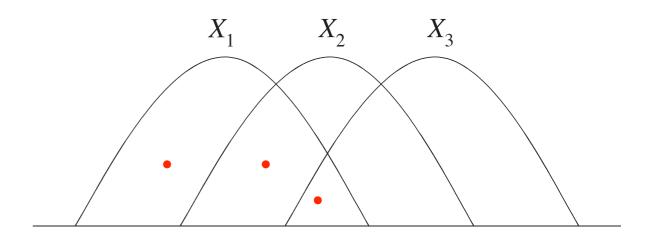


$$\mu^*(\underline{\tilde{X}_1} \cap \tilde{X}_2 \cap \tilde{X}_3) = \mu^*(\tilde{X}_1 \cap \tilde{X}_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

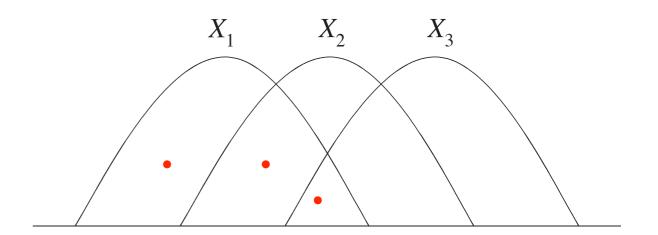


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_3})$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

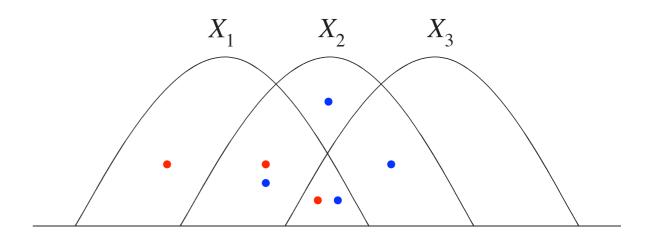


$$\mu^*(\tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3) = \mu^*(\tilde{X}_1 \cap \tilde{X}_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

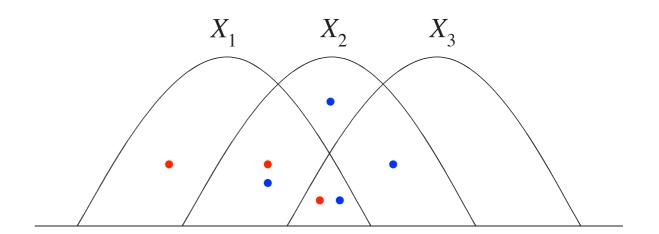


$$\mu^*(\tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3) = \mu^*(\tilde{X}_1 \cap \tilde{X}_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

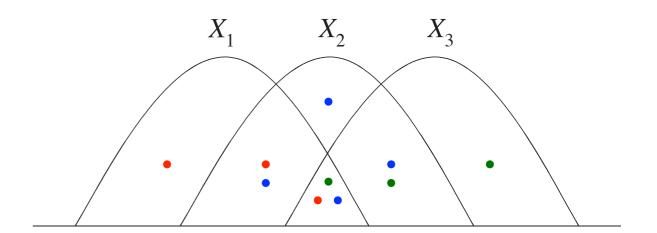


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\tilde{X}_1 \cap \bar{X}_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

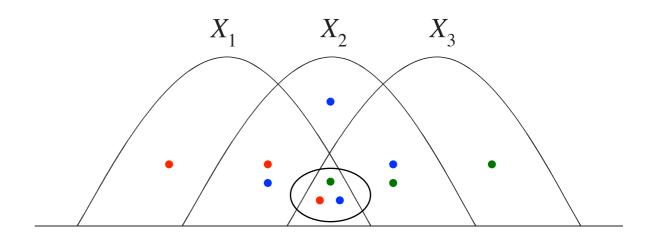


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\tilde{X}_1 \cap \bar{X}_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

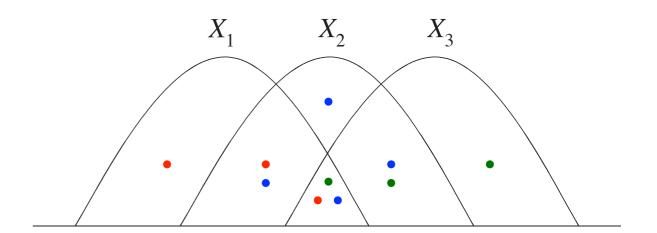


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\tilde{X}_1 \cap \overline{\tilde{X}_3})$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

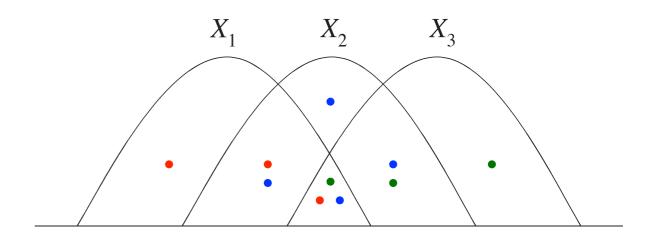


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\tilde{X}_1 \cap \bar{X}_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

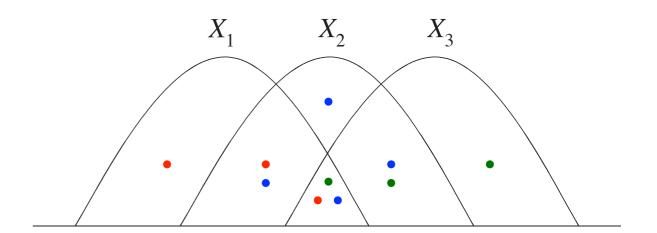


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\underline{\tilde{X}_1} \cap \overline{\tilde{X}_3})$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

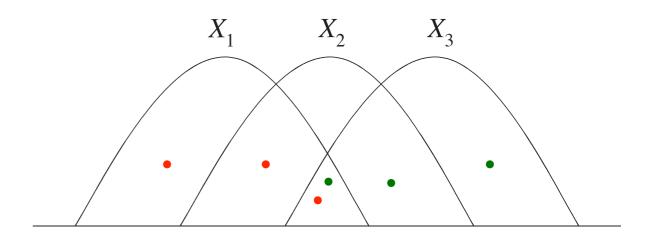


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_3})$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

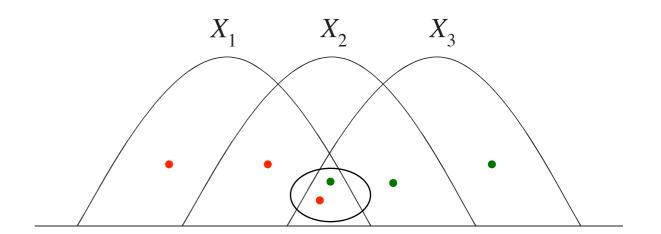


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_3})$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

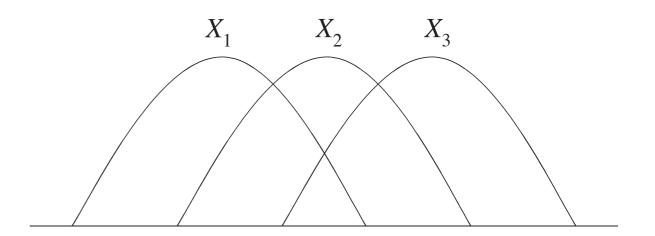


$$\mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_2} \cap \underline{\tilde{X}_3}) = \mu^*(\underline{\tilde{X}_1} \cap \underline{\tilde{X}_3})$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.

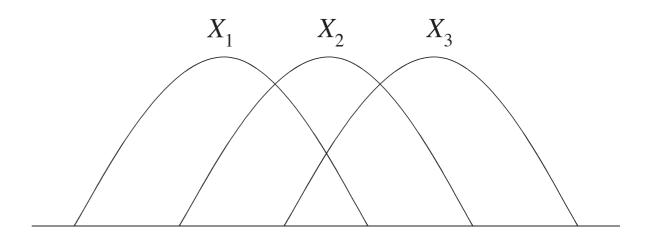


$$\mu^* (\tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3) \\ = I(X_1; X_3)$$

$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

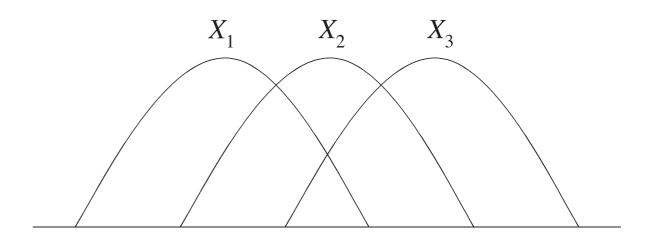
$$I(X_{1}; X_{3} | X_{2}) = \mu^{*} (\tilde{X}_{1} \cap \tilde{X}_{3} - \tilde{X}_{2})$$

= $\mu^{*} (\emptyset)$
= 0.



$$\mu^*$$
 for $X_1 \to X_2 \to X_3$

$$I(X_1; X_3 | X_2) = \mu^* (\tilde{X}_1 \cap \tilde{X}_3 - \tilde{X}_2)$$
$$= \mu^* (\emptyset)$$
$$= 0.$$



2. Also,

$$\mu^{*}(\tilde{X}_{1} \cap \tilde{X}_{2} \cap \tilde{X}_{3}) = \mu^{*}(\tilde{X}_{1} \cap \tilde{X}_{3})$$
$$= I(X_{1}; X_{3})$$
$$\geq 0.$$

3. Since the values of μ^* on all the remaining atoms correspond to Shannon's information measures and hence are nonnegative, we conclude that μ^* is a measure.

• For $X_1 \to X_2 \to X_3 \to X_4$, μ^* vanishes on the following 5 atoms:

$$\begin{split} \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4^c \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \end{split}$$

• For $X_1 \to X_2 \to X_3 \to X_4$, μ^* vanishes on the following 5 atoms:

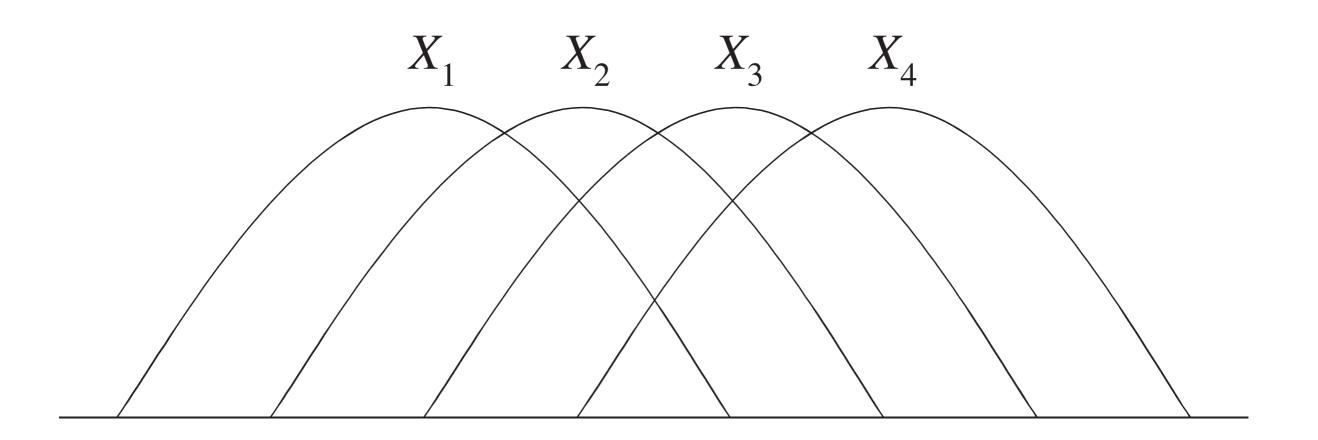
$$\begin{split} \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4^c \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \end{split}$$

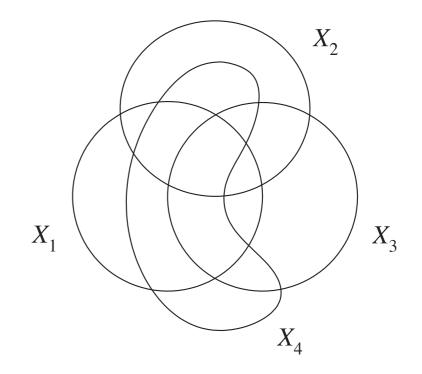
• The information diagram can be displayed in two dimensions.

• For $X_1 \to X_2 \to X_3 \to X_4$, μ^* vanishes on the following 5 atoms:

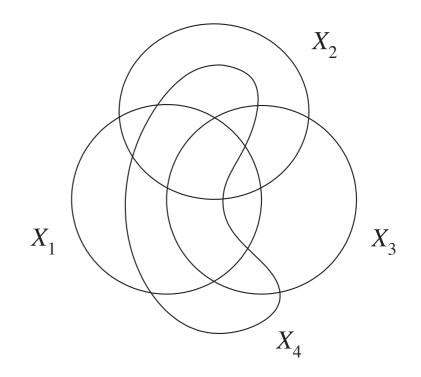
$$\begin{split} \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4^c \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \end{split}$$

- The information diagram can be displayed in two dimensions.
- The values of μ^* on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. Thus, μ^* is a measure.



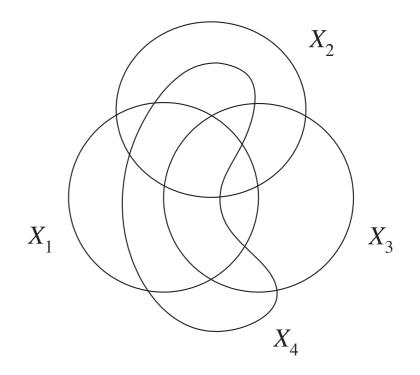


1. The Markov subchain $X_1 \to X_2 \to X_3$ implies



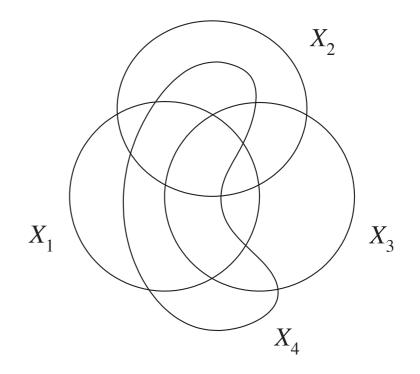
1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$



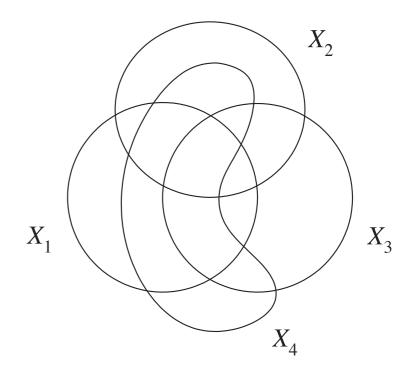
1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(\underline{X_1; X_3} | X_2) = I(\underline{X_1; X_3}; X_4 | X_2) + I(\underline{X_1; X_3} | X_2, X_4).$



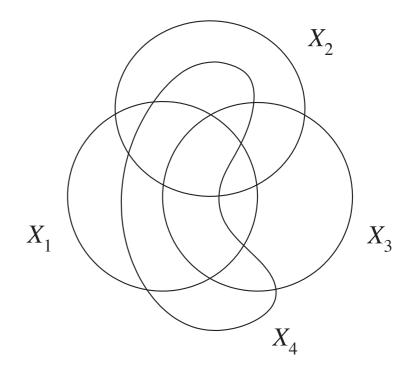
1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(\underline{X_1; X_3} | \underline{X_2}) = I(\underline{X_1; X_3}; X_4 | \underline{X_2}) + I(\underline{X_1; X_3} | \underline{X_2}, X_4).$



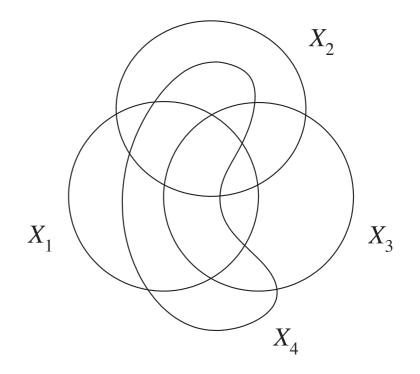
1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(\underline{X_1; X_3} | \underline{X_2}) = I(\underline{X_1; X_3}; \underline{X_4} | \underline{X_2}) + I(\underline{X_1; X_3} | \underline{X_2}, X_4).$



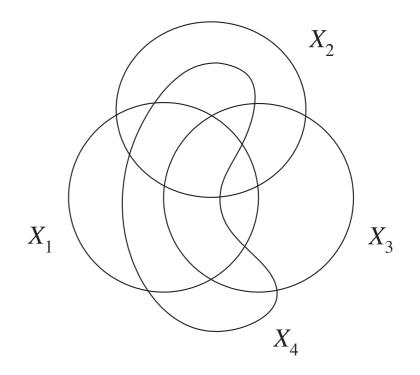
1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(\underline{X_1; X_3} | \underline{X_2}) = I(\underline{X_1; X_3}; \underline{X_4} | \underline{X_2}) + I(\underline{X_1; X_3} | \underline{X_2}, \underline{X_4}).$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

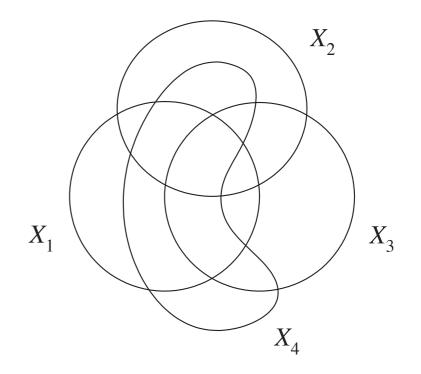
 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

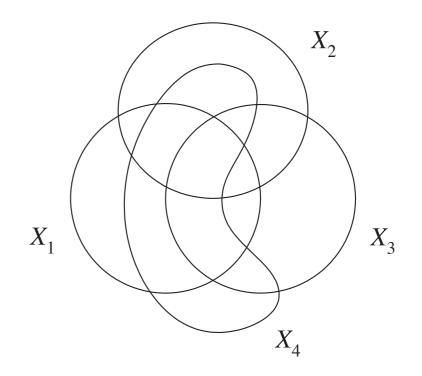


1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

 $\underline{I(X_1;X_3;X_4|X_2) = -a}.$

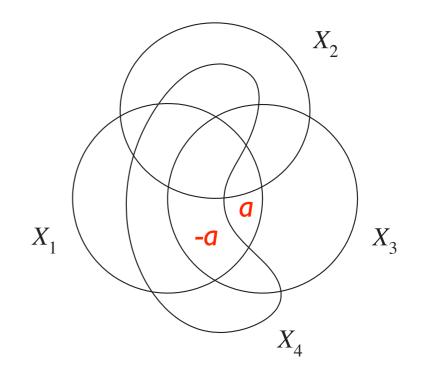


1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

 $\underline{I(X_1;X_3;X_4|X_2) = -a}.$

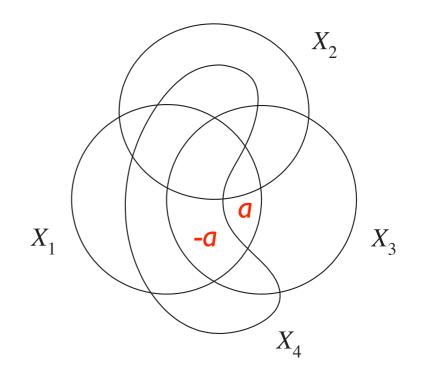


1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

 $I(X_1; X_3; X_4 | X_2) = -a.$

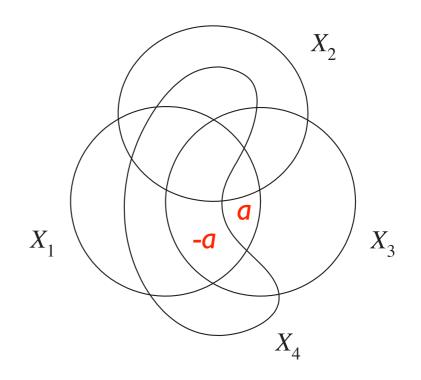


1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

 $I(X_1; X_3; X_4 | X_2) = -a.$



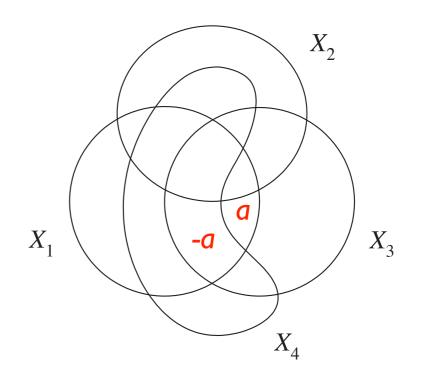
1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

- 2. The Markov subchain $X_1 \to X_2 \to X_4$ implies
- $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

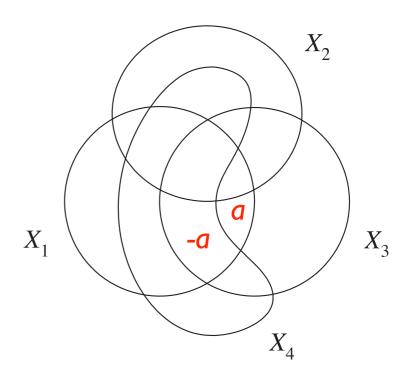
$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

 $I(X_1; X_3; X_4 | X_2) = -a.$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

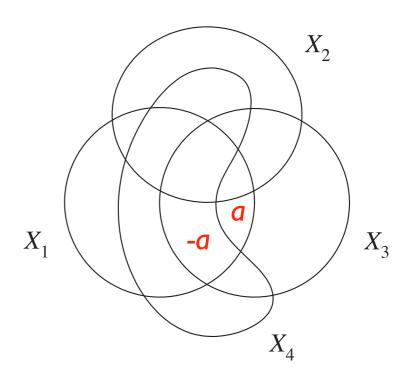
 $I(X_1; X_3; X_4 | X_2) = -a.$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

 $I(X_1; X_4 | X_2, X_3) = a.$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

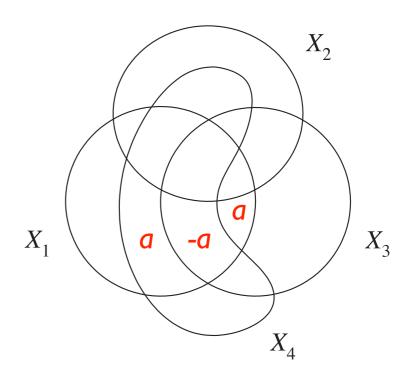
 $I(X_1; X_3; X_4 | X_2) = -a.$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

 $I(X_1; X_4 | X_2, X_3) = a.$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

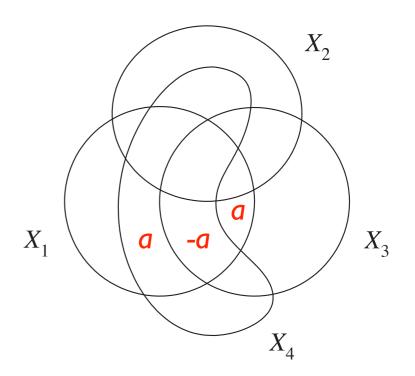
Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

$$I(X_1; X_4 | X_2, X_3) = a.$$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

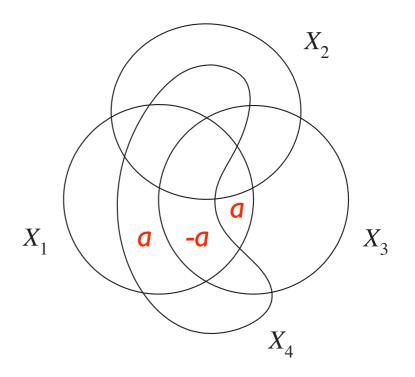
$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

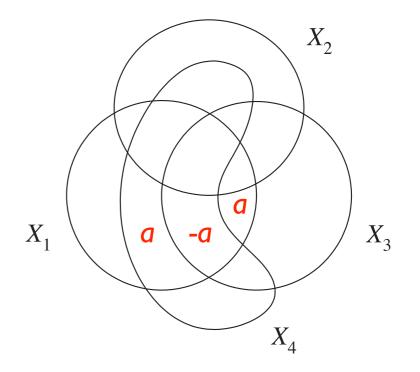
 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

 $0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$



1. The Markov subchain $X_1 \to X_2 \to X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

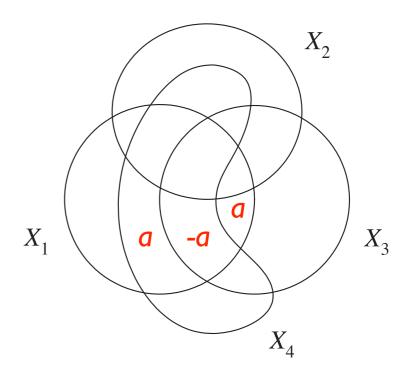
2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

$$\begin{split} 0 &= I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3). \\ \text{Since } I(X_1; X_3; X_4 | X_2) = -a, \end{split}$$

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

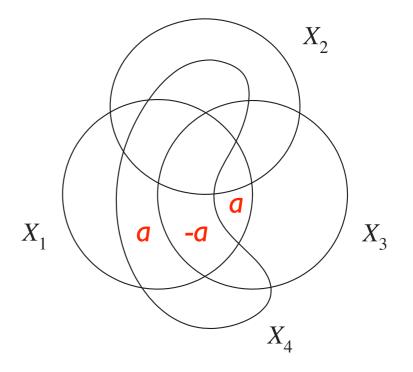
Since $I(X_1; X_3; X_4 | X_2) = -a$,

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

 $0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$

$$I(X_1; X_2; X_4 | X_3) = -a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

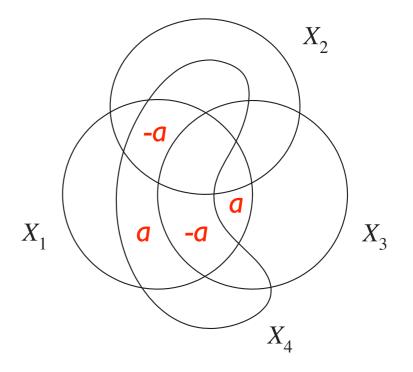
Since $I(X_1; X_3; X_4 | X_2) = -a$,

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

 $0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$

$$I(X_1; X_2; X_4 | X_3) = -a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

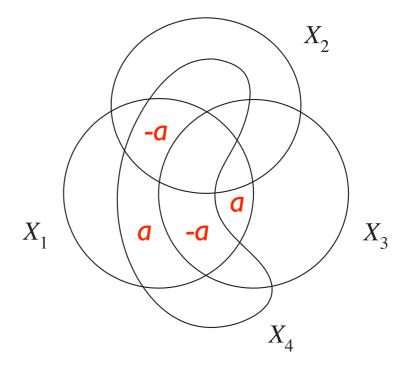
Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

 $0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$

$$I(X_1; X_2; X_4 | X_3) = -a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

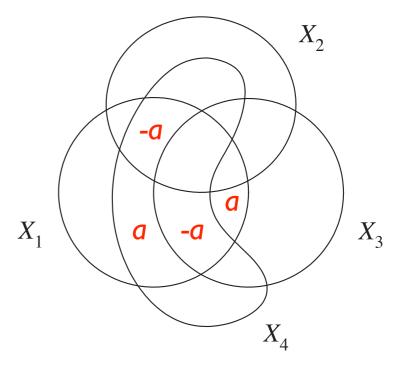
$$\begin{split} 0 &= I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3). \\ \text{Since } I(X_1; X_3; X_4 | X_2) = -a, \end{split}$$

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

$$\begin{split} 0 &= I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3). \\ \text{Since } I(X_1; X_3; X_4 | X_2) = -a, \end{split}$$

$$I(X_1; X_4 | X_2, X_3) = a.$$

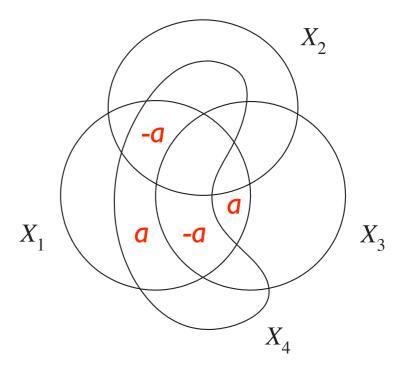
3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

 $0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$ Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

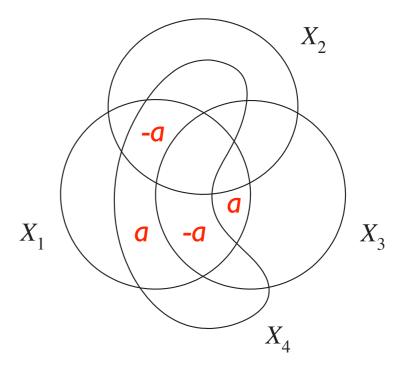
$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

 $I(X_1; X_2; X_4 | X_3) = -a.$

4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

$$\begin{split} 0 &= I(X_2; X_4 | X_3) = \underline{I(X_1; X_2; X_4 | X_3)} + I(X_2; X_4 | X_1, X_3). \\ \\ \text{Since } I(X_1; X_2; X_4 | X_3) = -a, \end{split}$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$ Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

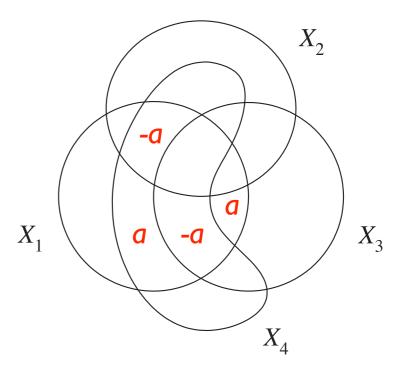
Since $I(X_1; X_4 | X_2, X_3) = a$,

 $I(X_1; X_2; X_4 | X_3) = -a.$

4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

 $0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$

$$I(X_2; X_4 | X_1, X_3) = a$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$ Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

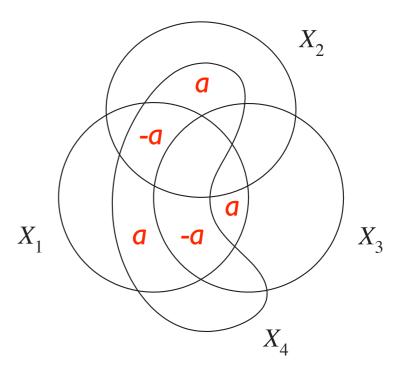
Since $I(X_1; X_4 | X_2, X_3) = a$,

 $I(X_1; X_2; X_4 | X_3) = -a.$

4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

 $0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$

$$I(X_2; X_4 | X_1, X_3) = a$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

 $0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

$$\begin{split} 0 &= I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3). \\ \text{Since } I(X_1; X_3; X_4 | X_2) = -a, \end{split}$$

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

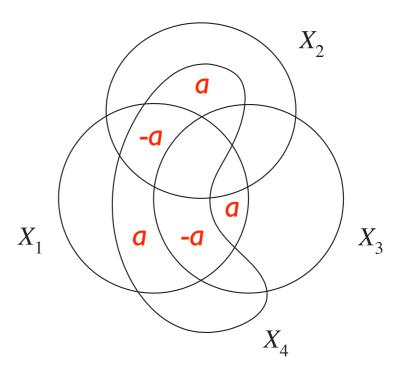
$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

$$I(X_2; X_4 | X_1, X_3) = a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

$$I(X_2; X_4 | X_1, X_3) = a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

5. The Markov subchain $(X_1,X_2) \to X_3 \to X_4$ implies

$$0 = I(X_1, X_2; X_4 | X_3) =$$

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

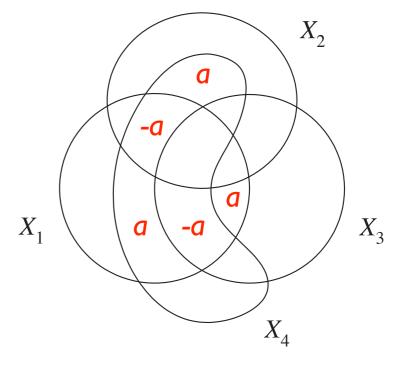
$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

$$I(X_2; X_4 | X_1, X_3) = a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

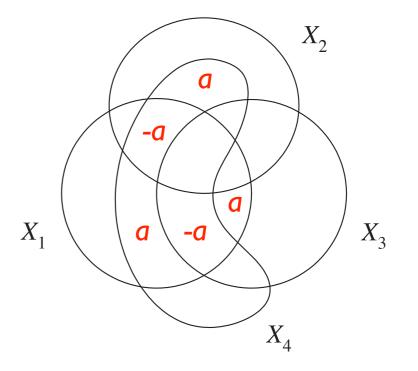
- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

$$I(X_2; X_4 | X_1, X_3) = a.$$

$$\begin{array}{rcl} 0 &=& I(X_1,X_2;X_4|X_3) &= \\ & I(X_1;X_4|X_2,X_3) + I(X_1;X_2;X_4|X_3) + I(X_2;X_4|X_1,X_3) \end{array}$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

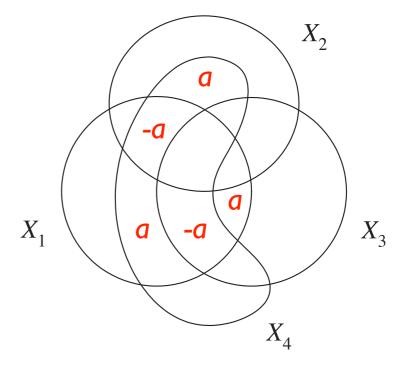
$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

$$I(X_2; X_4 | X_1, X_3) = a.$$

$$0 = I(X_1, X_2; X_4 | X_3) =$$

$$I(X_1; X_4 | X_2, X_3) + I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

$I(X_1; X_2; X_4 | X_3) = -a.$

4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

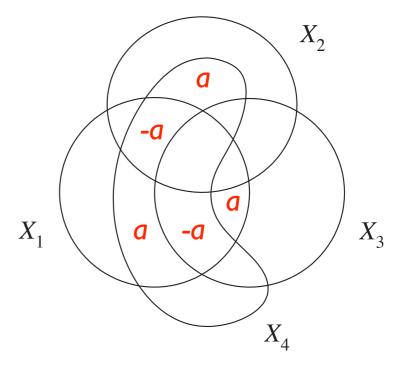
$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

$$I(X_2; X_4 | X_1, X_3) = a$$

$$0 = I(X_1, X_2; X_4 | X_3) =$$

$$I(X_1; X_4 | X_2, X_3) + I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

$I(X_1; X_2; X_4 | X_3) = -a.$

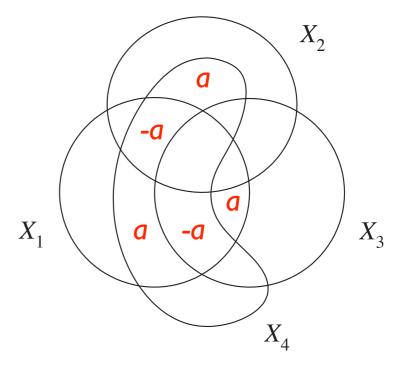
4. The Markov subchain $X_2 \to X_3 \to X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

 $I(X_2; X_4 | X_1, X_3) = a.$

$$0 = I(X_1, X_2; X_4 | X_3) = I(X_1; X_2, X_3) + I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

$I(X_1; X_2; X_4 | X_3) = -a.$

4. The Markov subchain $X_2 \to X_3 \to X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

 $I(X_2; X_4 | X_1, X_3) = a.$

$$0 = I(X_1, X_2; X_4 | X_3) = I(X_1; X_2, X_3) + I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

 $0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$I(X_1; X_4 | X_2, X_3) = a.$

3. The Markov subchain $X_1 \to X_3 \to X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

$I(X_1; X_2; X_4 | X_3) = -a.$

4. The Markov subchain $X_2 \to X_3 \to X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3).$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

 $I(X_2; X_4 | X_1, X_3) = a.$

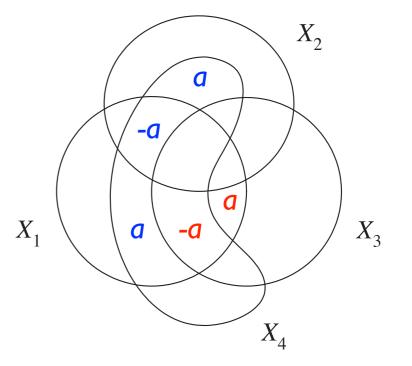
5. The Markov subchain $(X_1,X_2) \to X_3 \to X_4$ implies

$$0 = I(X_1, X_2; X_4 | X_3) =$$

$$I(X_1; X_4 | X_2, X_3) + I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$

Then

$$0 = a - a + a = a.$$



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

$$0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

$$I(X_2; X_4 | X_1, X_3) = a.$$

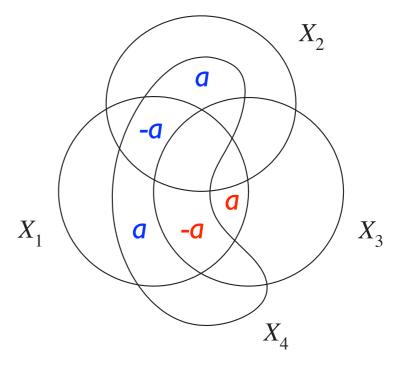
5. The Markov subchain $(X_1,X_2) \to X_3 \to X_4$ implies

$$\begin{array}{rcl} 0 &=& I(X_1,X_2;X_4|X_3) &= \\ \\ I(X_1;X_4|X_2,X_3) + I(X_1;X_2;X_4|X_3) + I(X_2;X_4|X_1,X_3) \end{array}$$

Then

$$0 = a - a + a = a.$$

Therefore a = 0, and so μ^* vanishes on the corresponding 5 atoms as shown in the information diagram.



1. The Markov subchain $X_1 \rightarrow X_2 \rightarrow X_3$ implies

$$0 = I(X_1; X_3 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_3 | X_2, X_4).$$

Let $I(X_1; X_3 | X_2, X_4) = a \ge 0$. Then

$$I(X_1; X_3; X_4 | X_2) = -a.$$

2. The Markov subchain $X_1 \to X_2 \to X_4$ implies

$$0 = I(X_1; X_4 | X_2) = I(X_1; X_3; X_4 | X_2) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_3; X_4 | X_2) = -a$,

$$I(X_1; X_4 | X_2, X_3) = a.$$

3. The Markov subchain $X_1 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_1; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_1; X_4 | X_2, X_3).$$

Since $I(X_1; X_4 | X_2, X_3) = a$,

- $I(X_1; X_2; X_4 | X_3) = -a.$
- 4. The Markov subchain $X_2 \rightarrow X_3 \rightarrow X_4$ implies

$$0 = I(X_2; X_4 | X_3) = I(X_1; X_2; X_4 | X_3) + I(X_2; X_4 | X_1, X_3)$$

Since $I(X_1; X_2; X_4 | X_3) = -a$,

$$I(X_2; X_4 | X_1, X_3) = a.$$

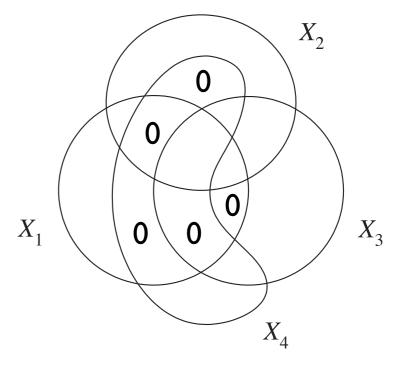
5. The Markov subchain $(X_1,X_2) \to X_3 \to X_4$ implies

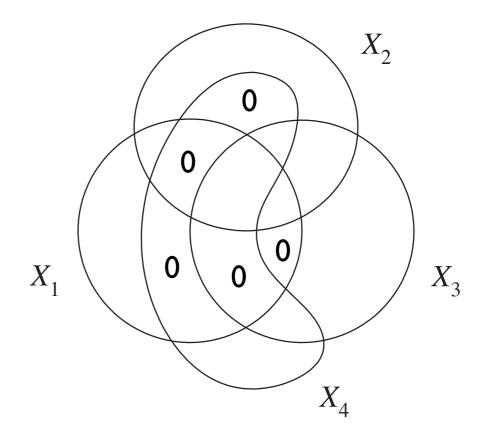
$$\begin{array}{rcl} 0 &=& I(X_1,X_2;X_4|X_3) &= \\ \\ I(X_1;X_4|X_2,X_3) + I(X_1;X_2;X_4|X_3) + I(X_2;X_4|X_1,X_3). \end{array}$$

Then

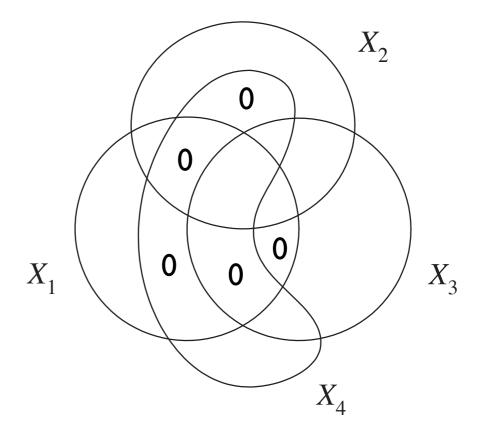
$$0 = a - a + a = a.$$

Therefore a = 0, and so μ^* vanishes on the corresponding 5 atoms as shown in the information diagram.



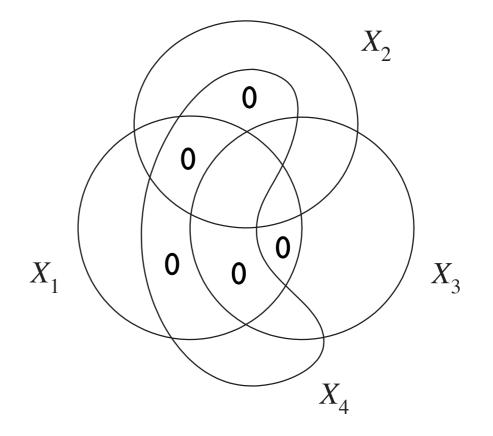


1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.



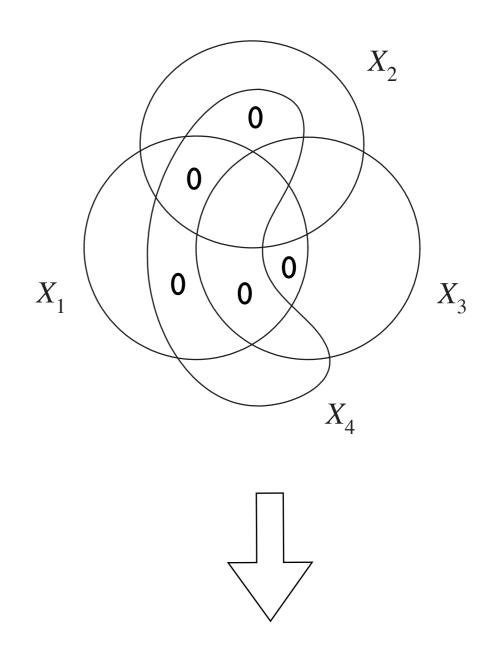
1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.

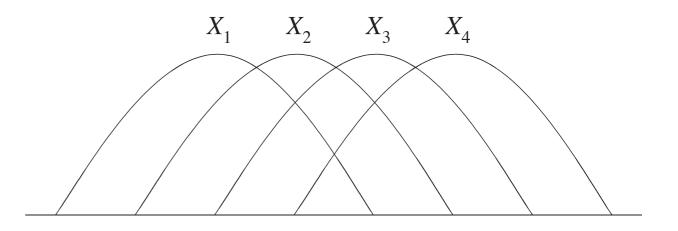
2. Suppress these atoms by setting them to \emptyset to obtain the information diagram below.



1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.

2. Suppress these atoms by setting them to \emptyset to obtain the information diagram below.

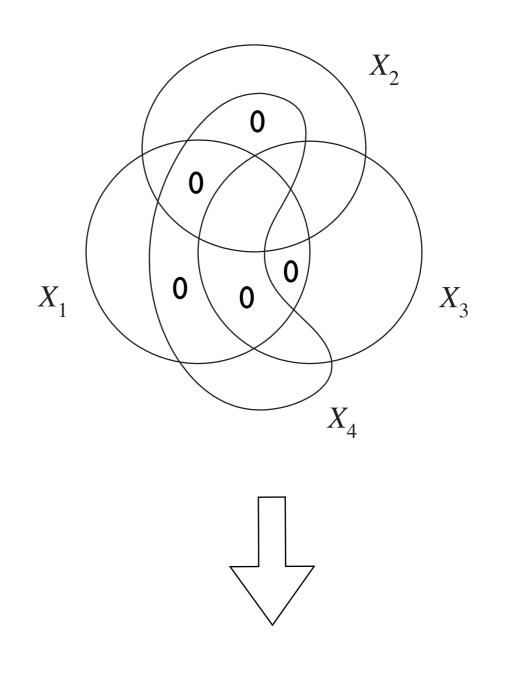


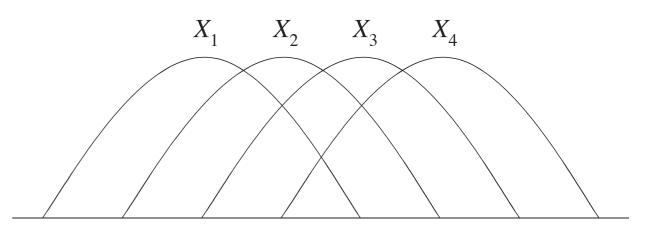


1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.

2. Suppress these atoms by setting them to \emptyset to obtain the information diagram below.

3. From this information diagram, it can readily be checked that the values of μ^* on the remaining





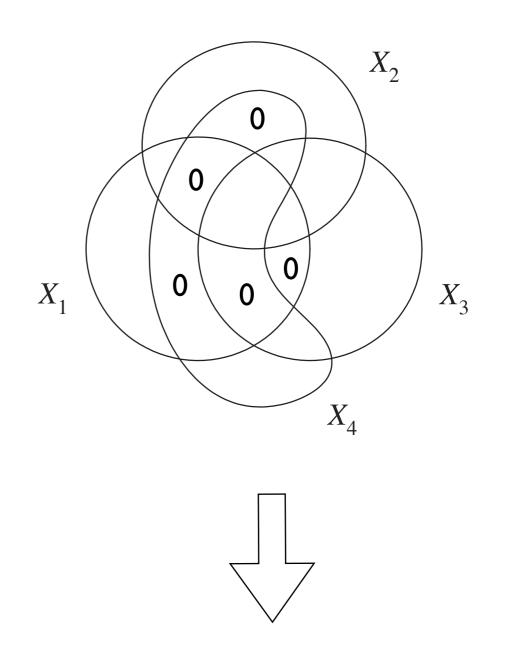
1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.

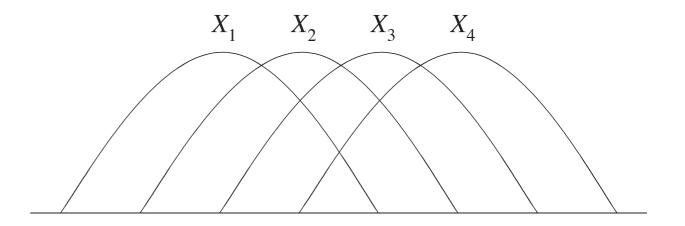
2. Suppress these atoms by setting them to \emptyset to obtain the information diagram below.

3. From this information diagram, it can readily be checked that the values of μ^* on the remaining

$$(2^4 - 1) - 5 = 10$$

nonempty atoms are equal to





1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.

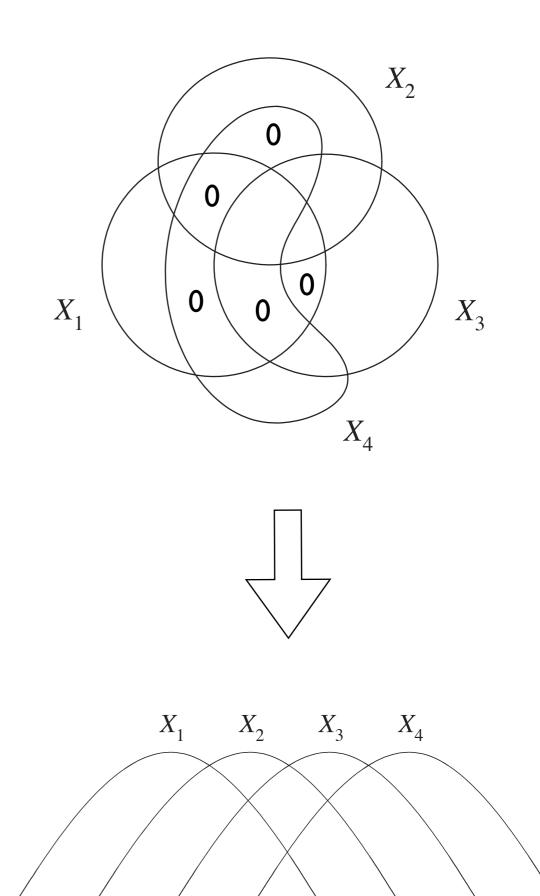
2. Suppress these atoms by setting them to \emptyset to obtain the information diagram below.

3. From this information diagram, it can readily be checked that the values of μ^* on the remaining

$$(2^4 - 1) - 5 = 10$$

nonempty atoms are equal to

$$\begin{split} & H(X_1|X_2,X_3,X_4), \ I(X_1;X_2|X_3,X_4) \\ & I(X_1;X_3|X_4), \ I(X_1;X_4) \\ & H(X_2|X_1,X_3,X_4), \ I(X_2;X_3|X_1;X_4) \\ & I(X_2;X_4|X_1), \ H(X_3|X_1,X_2,X_4) \\ & I(X_3;X_4|X_1,X_2), \ H(X_4|X_1,X_2,X_3). \end{split}$$



1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.

2. Suppress these atoms by setting them to \emptyset to obtain the information diagram below.

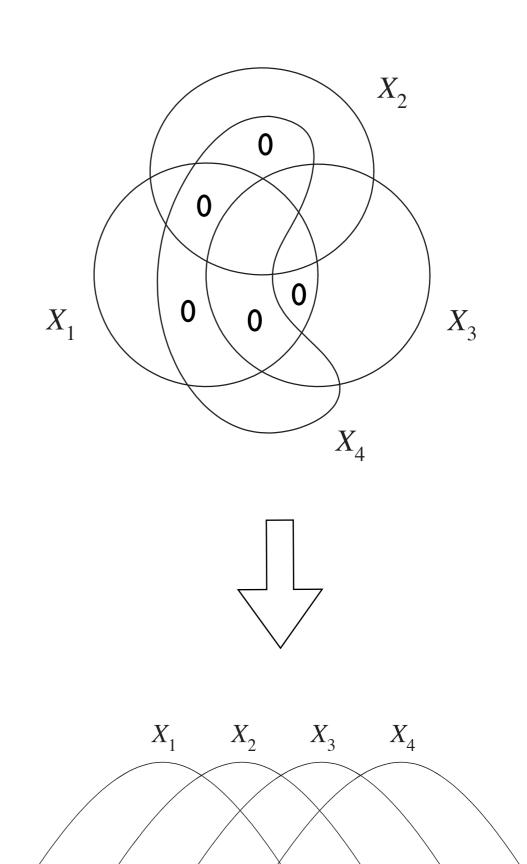
3. From this information diagram, it can readily be checked that the values of μ^* on the remaining

$$(2^4 - 1) - 5 = 10$$

nonempty atoms are equal to

$$\begin{split} & H(X_1|X_2,X_3,X_4), \ I(X_1;X_2|X_3,X_4) \\ & I(X_1;X_3|X_4), \ I(X_1;X_4) \\ & H(X_2|X_1,X_3,X_4), \ I(X_2;X_3|X_1;X_4) \\ & I(X_2;X_4|X_1), \ H(X_3|X_1,X_2,X_4) \\ & I(X_3;X_4|X_1,X_2), \ H(X_4|X_1,X_2,X_3). \end{split}$$

3. There are all Shannon's information measures which are always nonnegative. Therefore, μ^* is a measure.



1. We have proved that μ^* vanishes on the 5 atoms shown in the information diagram.

2. Suppress these atoms by setting them to \emptyset to obtain the information diagram below.

3. From this information diagram, it can readily be checked that the values of μ^* on the remaining

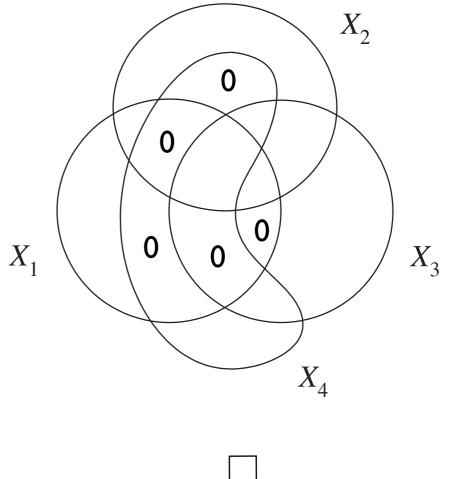
$$(2^4 - 1) - 5 = 10$$

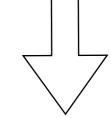
nonempty atoms are equal to

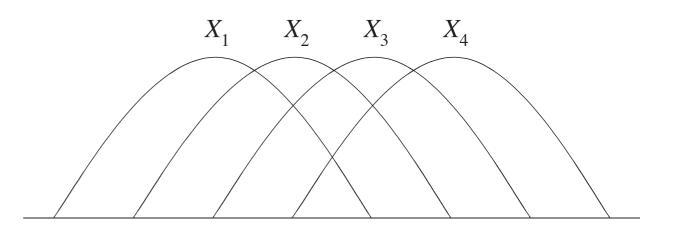
$$\begin{split} & H(X_1|X_2, X_3, X_4), \ I(X_1; X_2|X_3, X_4) \\ & I(X_1; X_3|X_4), \ I(X_1; X_4) \\ & H(X_2|X_1, X_3, X_4), \ I(X_2; X_3|X_1; X_4) \\ & I(X_2; X_4|X_1), \ H(X_3|X_1, X_2, X_4) \\ & I(X_3; X_4|X_1, X_2), \ H(X_4|X_1, X_2, X_3). \end{split}$$

3. There are all Shannon's information measures which are always nonnegative. Therefore, μ^* is a measure.

Exercise: Identify these 10 atoms in the information diagram at the bottom.

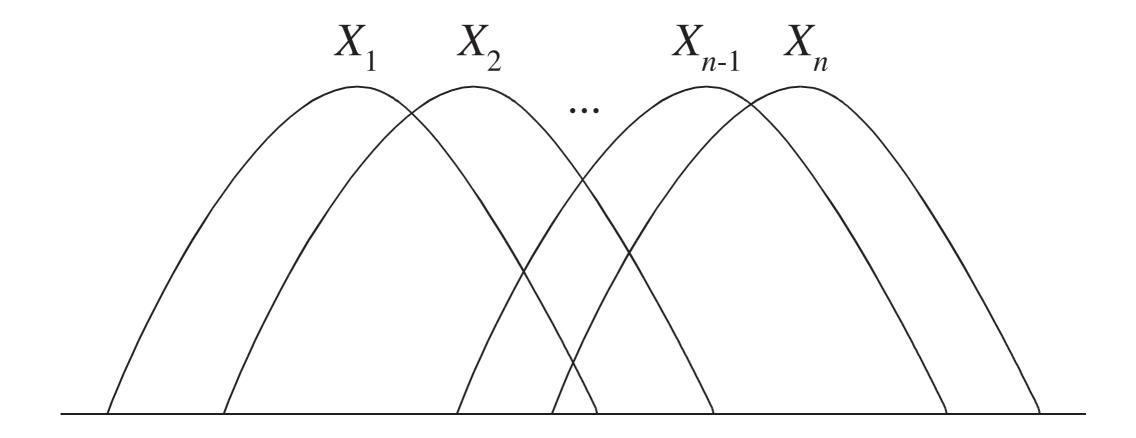




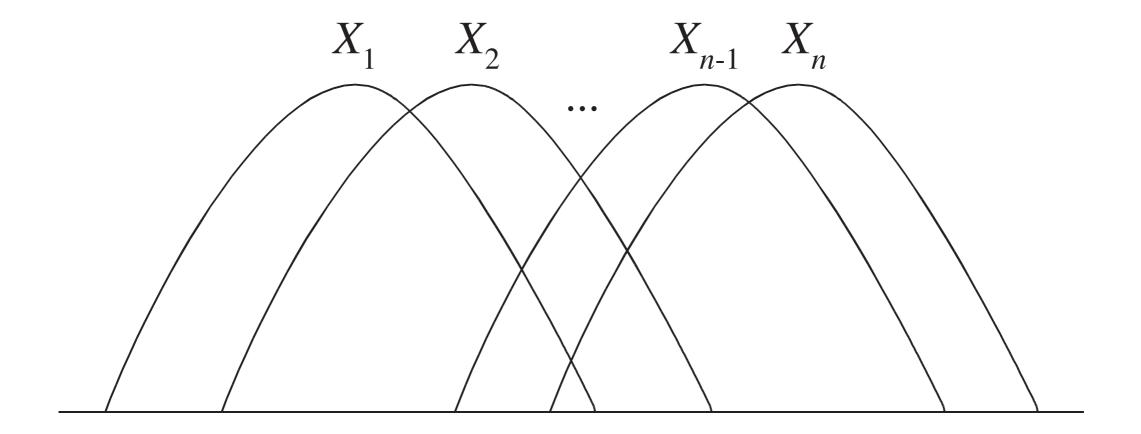


• For a general n, the information diagram can be displayed in two dimensions because certain atoms can be suppressed.

• For a general n, the information diagram can be displayed in two dimensions because certain atoms can be suppressed.



- For a general n, the information diagram can be displayed in two dimensions because certain atoms can be suppressed.
- The values of μ^* on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. Thus, μ^* is a measure.



- For a general n, the information diagram can be displayed in two dimensions because certain atoms can be suppressed.
- The values of μ^* on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. Thus, μ^* is a measure.
- See Ch. 12 for a detailed discussion in the context of Markov random field.

