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Corollary 2.44 The entropy of a random variable may
take any nonnegative real value.
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o It X1 —- X9 — -+ — X,, form a Markov chain, then the structure of u*
is much simpler and hence the information diagram can be simplified.

e Forn =3, X; — Xy — X3 iff I(X1; X5|X2) =0, or u*(X1NX35—X5) =0.

e So the atom X; N X5 — X, can be suppressed in the information diagram.
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3. Since the values of u* on all the remaining atoms
correspond to Shannon’s information measures and
hence are nonnegative, we conclude that pu™ is a mea-
sure.
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0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(Xq1; Xq[X2, X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0=1I(X71;Xy|X3)=1(X71;X2;Xyg|X3)+I(Xq1;Xy[X2, X3).

Since I(X1; X4|Xo, X3) = a,
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(Xq1; Xq[X2, X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0=1I(X1;Xy|X3)=1I1(X71;Xo;Xyg|X3)+I(Xq1;Xy[X2, X3).

Since I(X1; X4|Xo, X3) = a,

I(X1; X9; Xy4|X3) = —a.
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(Xq1; Xq[X2, X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0=1I(X1;Xy|X3)=1I1(X71;Xo;Xyg|X3)+I(Xq1;Xy[X2, X3).

Since I(X1; X4|Xo, X3) = a,

I(X1; X9; Xy4|X3) = —a.
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(X1; X4|X2,X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a,

I(X1; X2; Xy4[|X3) = —a.
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(X1; X4|X2,X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a,
I(X1; X2; Xy4[|X3) = —a.

4. The Markov subchain X9 — Xg — X4 implies
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies
0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).
Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= I(X1;Xg|X2) = I(X1; X3; Xq|X2)+1(X71; Xg[Xg, X3).
Since I(X1; X3; X4|X9) = —a,
I(X71; X4| X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a, “
I(X1; X2; Xy[X3) = —a. '

4. The Markov subchain X9 — Xg — X4 implies ‘v

[E—

0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).



Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies
0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).
Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= I(X71; Xg|X2) = I(Xy1; X35 Xg|X2)+1(X1; Xg[X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(X71; X4| X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a, ‘
N,
I(Xl;X2;X4|X3) = —a. v“
4. The Markov subchain X9 — Xg — X4 implies ‘v
0 = I(Xg; Xg|X3) = I(Xy1; Xo; Xq|X3)+1(X2; Xg[X1, X3). ‘
Since I(X1; Xo; Xy4|X3) = —a, -

[E—




Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies
0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).
Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= I(X71; Xg|X2) = I(Xy1; X35 Xg|X2)+1(X1; Xg[X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(X71; X4| X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a, ‘
N,
I(Xl;X2;X4|X3) = —a. v“
4. The Markov subchain X9 — Xg — X4 implies ‘v
0 = I(Xg; Xg|X3) = I(Xy1; Xg; Xq|X3)+1(Xo; Xg[X1, X3). ‘
Since I(X1; Xo; Xy4|X3) = —a, -

I(Xg; X4|Xy1,X3) = a.

[E—




Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies
0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).
Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= I(X71; Xg|X2) = I(Xy1; X35 Xg|X2)+1(X1; Xg[X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(X71; X4| X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a, o
N,
I(Xl;X2;X4|X3) = —a. v“
4. The Markov subchain X9 — Xg — X4 implies ‘v
0 = I(Xg; Xg|X3) = I(Xy1; Xg; Xq|X3)+1(Xo; Xg[X1, X3). ‘
Since I(X1; Xo; Xy4|X3) = —a, -

I(Xg; X4|Xy1,X3) = a.

[E—




Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies
0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).
Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= I(X71; Xg|X2) = I(Xy1; X35 Xg|X2)+1(X1; Xg[X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(X71; X4| X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a, o
N,
I(Xl;X2;X4|X3) = —a. v“
4. The Markov subchain X9 — Xg — X4 implies ‘v
0 = I(Xg; Xg|X3) = I(Xy1; Xo; Xq|X3)+1(X2; Xg[X1, X3). ‘
Since I(X1; Xo; Xy4|X3) = —a, -

I(Xg; X4|X1,X3) = a.

[E—



Structure of u* for X1 — X9 — X3 — X4 5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

1. The Markov subchain X1 — Xo — Xg implies
0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).
Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= I(X71;Xgq[X2) = I(X1; X3; Xq|X2)+I(X1; Xyg[X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(X71; X4| X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3). X,

Since I(X1; X4|X9, X3) = a, o
I(X71; X235 Xgq]X3) = —a. m
4. The Markov subchain X9 — Xg — X4 implies v
X3
0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3). ‘
Since I(X1; Xo; Xy4|X3) = —a, -

I(Xg; X4|Xq1,X3) = a.

[E—



Structure of u* for X1 — X9 — X3 — X4 5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

1. The Markov subchain X1 — Xo — Xg implies
0 = I(Xq,Xo9; X4|X3) =
0 = I(Xq1; X3|X2) = I(Xy1; X3; Xq|Xg)+I(Xy1; X3[X2, Xg).
Let I(Xl;X3|X2, X4) = a > 0. Then
I(X1;X3;X4]|X9) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= I(X71; Xg|X2) = I(Xy1; X35 Xg|X2)+1(X1; Xg[X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(X1; X4|X2,X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3). X,

Since I(X1; X4|X9, X3) = a, o
I(X71; X235 Xgq]X3) = —a. m
4. The Markov subchain X9 — Xg — X4 implies v
X3
0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3). ‘
Since I(X1; Xo; Xy4|X3) = —a, -

I(Xg; X4|Xq1,X3) = a.

[E—



Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(X1; X4|X2,X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a,
I(X1; X2; Xy4[|X3) = —a.

4. The Markov subchain X9 — Xg — X4 implies

0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).

Since I(X1; Xo; Xy4|X3) = —a,

I(Xg; X4|Xq1,X3) = a.

5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

0 = I(X71,X9;Xy|X3) =
I(X1;X4|X9,X3)+ I(Xq1;X9; X41X3)+ I(X9; Xy|Xq1, X3).
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(Xq1; Xq[X2, X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a,
I(X1; X2; Xy4[|X3) = —a.

4. The Markov subchain X9 — Xg — X4 implies

0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).

Since I(X1; Xo; Xy4|X3) = —a,

I(Xg; X4|Xq1,X3) = a.

5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

0 = I(X71,X9;Xy|X3) =
I(Xq1; X4 X9, X3) + I(Xq1;Xg; X4|X3)+I(Xg; Xy4|X1,X3).
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Structure of u* for X7 — X9 — X3 — X4 5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

1. The Markov subchain X1 — Xo — Xg implies
0 = I(Xq,X9;Xy|X3) =

X4 X1 X, X3) + EKEREIREN + 1 (%>; Xa1X1, X3).
0 =1I(Xq1;X3[Xg) =1(Xq1;X3;Xg|Xo)+I(X71;X3[X9, Xyg)- (X135 X4q|X2, X3) (X23 Xq|X7, X3)

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= 1I(X71; Xq|Xg) = I(X1; X3; Xgq|X2)+I1(X1; Xyg[|X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(Xq1; Xq[X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies
0 =1TI(Xy1;X4|X3)=1(X71;Xo; Xgq|X3)+1(X1; Xyq[Xg, X3). X,
Since I(X1; X4|Xo, X3) = a, 0
N,
i o
4. The Markov subchain X9 — Xg — X4 implies q

X
1
0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).

Since I(X1; Xo; Xy4|X3) = —a, -

I(Xg; Xy4]X1, X3) = a.



Structure of u* for X7 — X9 — X3 — X4 5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

1. The Markov subchain X1 — Xo — Xg implies
0 = I(Xq,X9;Xy|X3) =

X1 Xal X, X3) + ECKGIRIRE + [FCX3 X AIXTXE)
0 =1I(Xq1;X3[Xg) =1(Xq1;X3;Xg|Xo)+I(X71;X3[X9, Xyg)- (X135 X4q|X2, X3) (X2; X4q]X1, X3)

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= 1I(X71; Xq|Xg) = I(X1; X3; Xgq|X2)+I1(X1; Xyg[|X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(Xq1; Xq[X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies
0 =1TI(Xy1;X4|X3)=1(X71;Xo; Xgq|X3)+1(X1; Xyq[Xg, X3). X,
Since I(X1; X4|Xo, X3) = a, 0
N,
i o
4. The Markov subchain X9 — Xg — X4 implies q

X
1
0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).

Since I(X1; Xo; Xy4|X3) = —a, -

I(X2; Xq]Xq, X3) = a.



Structure of u* for X7 — X9 — X3 — X4 5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

1. The Markov subchain X1 — Xo — Xg implies
0 = I(Xq,X9;Xy|X3) =

X1 Xal X, X3) + ECKGIRIRE + [FCX3 X AIXTXE)
0 =1I(Xq1;X3[Xg) =1(Xq1;X3;Xg|Xo)+I(X71;X3[X9, Xyg)- (X135 X4q|X2, X3) (X2; X4q]X1, X3)

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= 1I(X71; Xq|Xg) = I(X1; X3; Xgq|X2)+I1(X1; Xyg[|X2, X3).
Since I(X1; X3; X4|X9) = —a,
I(Xq1; Xq[X2, X3) = a.
3. The Markov subchain X1 — X3 — X4 implies
0 =1TI(Xy1;X4|X3)=1(X71;Xo; Xgq|X3)+1(X1; Xyq[Xg, X3). X,
Since I(X1; X4|Xo, X3) = a, 0
N,
i o
4. The Markov subchain X9 — Xg — X4 implies q

X
1
0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).

Since I(X1; Xo; Xy4|X3) = —a, -

I(X2; Xq]Xq, X3) = a.



Structure of ™ for X1 — X9 — X3 — X4y

1. The Markov subchain X1 — Xo — Xg implies
0 = I(Xq1; X3|X2) = I(Xy1; X3; Xq|Xg)+I(Xy1; X3[X2, Xg).
Let I(X1; X3|X2,X4) =a > 0. Then

I(X1; X3; X4|X2) = —a.
2. The Markov subchain X1 — Xo — X, implies
0= 1I(X71; Xq|Xg) = I(X1; X3; Xgq|X2)+I1(X1; Xyg[|X2, X3).
Since I(X1; X3; X4|X9) = —a,

I(Xq1; Xq[X2, X3) = a.

3. The Markov subchain X1 — X3 — X4 implies
0 =1TI(Xy1;X4|X3)=1(X71;Xo; Xgq|X3)+1(X1; Xyq[Xg, X3).
Since I(X1; X4|Xo, X3) = a,

I(X1; Xg;5 X4|X3) = —a.
4. The Markov subchain X9 — Xg — X4 implies
0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).
Since I(X1; Xo; Xy4|X3) = —a,

I(X2; Xq]Xq, X3) = a.

5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

0 = I(Xq, Xg; Xy|X3) =

I(X1; X4|Xg, Xg) +[I(X1; Xgi X4|X3) +/I(Xg; X4|X1, X3).

Then
O=a —a+ a = a.
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X2,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(X1; X4|X2,X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a,
I(X1; X2; Xy4[|X3) = —a.

4. The Markov subchain X9 — Xg — X4 implies

0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).

Since I(X1; Xo; Xy4|X3) = —a,

I(Xg; X4|Xq1,X3) = a.

5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

0 = I(X71,X9;Xy|X3) =
I(X1;X4|X9,X3)+ I(Xq1;X9; X41X3)+ I(X9; Xy|Xq1, X3).

Then
O=a —a+ a = a.

Therefore a = 0, and so 1™ vanishes on the correspond-
ing 5 atoms as shown in the information diagram.
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Structure of u™ for X1 — X9 — X3 — X4

1. The Markov subchain X1 — Xo — Xg implies

0=1I(Xq1; X3|X2) = I(Xy1; X3; Xg|X2)+I(X1; X3]|X2, Xg).

Let I(X1; X3|X9,X4) =a > 0. Then
I(X1; X3; X4|X2) = —a.

2. The Markov subchain X1 — X9 — X, implies

0= 1I(X1;Xy|Xg)=1I(Xq1;X3;Xy|Xo)+I(Xq1;XyglXg, X3).

Since I(X1; X3; X4|X9) = —a,
I(X1; X4|X2,X3) = a.

3. The Markov subchain X7 — X3 — X4 implies

0 =1I(X71;Xy|X3)=1I1(X71;X2;Xy|X3)+I(X71;Xy[X2,X3).

Since I(X1; X4|Xo, X3) = a,
I(X1; X2; Xy4[|X3) = —a.

4. The Markov subchain X9 — Xg — X4 implies

0 =1I(Xg;Xy|X3)=1I(X7;Xo; Xyg|X3)+I(Xg; Xy[X1,X3).

Since I(X1; Xo; Xy4|X3) = —a,

I(Xg; X4|Xq1,X3) = a.

5. The Markov subchain (X1, X9) — X3 — X4 im-
plies

0 = I(X71,X9;Xy|X3) =
I(X1;X4|X9,X3)+ I(Xq1;X9; X41X3)+ I(X9; Xy|Xq1, X3).

Then
O=a —a+ a = a.

Therefore a = 0, and so 1™ vanishes on the correspond-
ing 5 atoms as shown in the information diagram.
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Nonnegatvity of u™ for X1 = X9 = X3 — Xy

1. We have proved that u™* vanishes on the 5 atoms

shown in the information diagram. v’
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Nonnegatvity of u™ for X1 = X9 = X3 — Xy

1. We have proved that u™* vanishes on the 5 atoms

shown in the information diagram.

2. Suppress these atoms by setting them to @ to obtain ' ’

the information diagram below. |
: a



Nonnegatvity of u™ for X1 = X9 = X3 — Xy X

1. We have proved that u™* vanishes on the 5 atoms
shown in the information diagram.
2. Suppress these atoms by setting them to @ to obtain ' ’
the information diagram below. |
X, ': X;
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Nonnegatvity of u™ for X1 = X9 = X3 — Xy X

1. We have proved that u™* vanishes on the 5 atoms
shown in the information diagram.
2. Suppress these atoms by setting them to @ to obtain ' '
the information diagram below.
3. From this information diagram, it can readily be ‘
checked that the values of u™ on the remaining v
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Nonnegatvity of u™ for X1 = X9 = X3 — Xy X
1. We have proved that u™* vanishes on the 5 atoms
shown in the information diagram.

2. Suppress these atoms by setting them to @ to obtain ' '

the information diagram below.

3. From this information diagram, it can readily be ‘
checked that the values of u™ on the remaining
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nonempty atoms are equal to




Nonnegatvity of u™ for X1 = X9 = X3 — Xy X

1. We have proved that u™* vanishes on the 5 atoms

shown in the information diagram.

2. Suppress these atoms by setting them to @ to obtain ' '
the information diagram below.

3. From this information diagram, it can readily be ‘

checked that the values of u™ on the remaining v
2%~ 1) - 5=10 X X,
nonempty atoms are equal to .‘

H(X1|Xg,X3,X4), I(X1; X2|X3, X4) X
I(Xq1; X3|Xg), I(X1;Xyg)
H(Xgo| X1, X3, Xy), I(Xg; X3|X1; Xy4)
I(Xg; X4|X1), H(X3[X1, X2, Xyg)
I(X3; Xy4|X1,X2), H(Xy4|X1, X2, X3).
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Nonnegatvity of u™ for X1 = X9 = X3 — Xy X

1. We have proved that u™* vanishes on the 5 atoms

shown in the information diagram.

2. Suppress these atoms by setting them to @ to obtain ' '
the information diagram below.

3. From this information diagram, it can readily be ‘

checked that the values of u™ on the remaining v
2%~ 1) - 5=10 X X,
nonempty atoms are equal to .‘

H(X1|Xg,X3,X4), I(X1; X2|X3, X4) X
I(Xq1; X3|Xg), I(X1;Xyg)
H(Xgo| X1, X3, Xy), I(Xg; X3|X1; Xy4)
I(Xg; X4|X1), H(X3[X1, X2, Xyg)
I(X3; Xy4|X1,X2), H(Xy4|X1, X2, X3).

3. There are all Shannon’s information measures which
are always nonnegative. Therefore, u™* is a measure.
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Nonnegatvity of u™ for X1 = X9 = X3 — Xy X
1. We have proved that u™* vanishes on the 5 atoms

shown in the information diagram.

2. Suppress these atoms by setting them to @ to obtain ' '
the information diagram below.

3. From this information diagram, it can readily be ‘

checked that the values of u™ on the remaining

[Em—

nonempty atoms are equal to

H(X1|Xg,X3,X4), I(X1; X2|X3, X4) X
I(Xq1; X3|Xg), I(X1;Xyg)
H(Xgo| X1, X3, Xy), I(Xg; X3|X1; Xy4)
I(Xg; X4|X1), H(X3[X1, X2, Xyg)
I(X3; Xy4|X1,X2), H(Xy4|X1, X2, X3).

3. There are all Shannon’s information measures which \/
are always nonnegative. Therefore, u™* is a measure.

Exercise: Identify these 10 atoms in the information

diagram at the bottom.




e For a general n, the information diagram can be displayed in two dimen-
sions because certain atoms can be suppressed.



e For a general n, the information diagram can be displayed in two dimen-
sions because certain atoms can be suppressed.




e For a general n, the information diagram can be displayed in two dimen-
sions because certain atoms can be suppressed.

e The values of ©* on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. Thus, ©* is a measure.




e For a general n, the information diagram can be displayed in two dimen-
sions because certain atoms can be suppressed.

e The values of ©* on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. Thus, ©* is a measure.

e See Ch. 12 for a detailed discussion in the context of Markov random field.




