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Example 3.10

1. In this example, all entropies are in the base 2.

2. Let X
1

and X
2

be independent binary random vari-

ables with uniform distribution, i.e.,

Pr{Xi = 0} = Pr{Xi = 1} = 0.5,

i = 1, 2. Let

X
3

= (X
1

+ X
2

) mod 2. (1)

3. It is easy to check that X
3

also has a uniform dis-

tribution. Thus,

H(Xi) = 1

for i = 1, 2, 3.

4. It is also easy to check that X
1

, X
2

, and X
3

are

pairwise independent. Therefore,

H(Xi,Xj) = 2

and

I(Xi;Xj) = 0

for 1  i < j  3.

5. We see from (1) that X
3

is a function of X
1

and

X
2

, so that

H(X
3

|X
1

, X
2

) = 0.

Then by the chain rule for entropy, we have

H(X
1

, X
2

, X
3

)

= H(X
1

, X
2

) + H(X
3

|X
1

, X
2

)

= 2 + 0

= 2.

6. Now for distinct 1  i, j, k  3,

I(Xi;Xj |Xk)

= H(Xi,Xk) + H(Xj,Xk)

�H(X
1

, X
2

, X
3

) � H(Xk)

= 2 + 2 � 2 � 1

= 1.

7. It then follows that

µ
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2
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)

= I(X
1

;X
2

) � I(X
1

;X
2

|X
3

)

= 0 � 1

= �1

< 0.
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