
3.3 Construction of the  
I-Measure μ*



• Let

˜X be a set corresponding to a r.v. X.

• Fix n and let Nn = {1, 2, · · · , n}.

• Let the universal set be

⌦ =

[

i2Nn

˜Xi.

• Then the atom

A0 =

\

i2Nn

˜Xc
i =

 
[

i2Nn

˜Xi

!c

= ⌦

c
= ;

is called the empty atom of Fn.

• A is the set of other atoms of Fn, called non-empty atoms.

• |A| = 2

n � 1.

• A signed measure µ on Fn is completely specified by the values of µ on

the atoms of A, because µ(A0) always vanishes.
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Example For n = 2,

• ⌦ =

˜X1 [ ˜X2

• A0 =

˜Xc
1 \ ˜Xc

2 = ;

• A = { ˜X1 \ ˜X2, ˜Xc
1 \ ˜X2, ˜X1 \ ˜Xc

2}

• |A| = 2

2 � 1 = 3

• A signed measure µ on F2 is completely specified by the values of µ on

the atoms of A, i.e.,

µ( ˜X1 \ ˜X2), µ( ˜Xc
1 \ ˜X2), µ( ˜X1 \ ˜Xc
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Notations For nonempty subset G of Nn:

• XG = (Xi, i 2 G)

• ˜XG = [i2G
˜Xi

Theorem 3.6 Let

B =

n

˜XG : G is a nonempty subset of Nn

o

.

Then a signed measure µ on Fn is completely specified by {µ(B), B 2 B}, which
can be any set of real numbers.

Remark We have seen that a signed measure µ on Fn is completely specified

by {µ(A), A 2 A}, the set of values of µ on the nonempty atoms. This theorem

says that µ can instead be specified by {µ(B), B 2 B}, the set of values of µ on

the unions.
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Appendix 3.A 
In this appendix, we show that for any A 2 A, the set of non-empty atoms of

Fn, µ(A) can be expressed as a linear combination of the values of µ on the

unions of

˜Xi’s.



• It is easy to check that for a set-additive function µ,

µ(A1 [A2) = µ(A1) + µ(A2)� µ(A1 \A2) (1)

which implies

µ(A1 \A2) = µ(A1) + µ(A2)� µ(A1 [A2). (2)

• Note that (2) can be obtained from (1) by exchanging ‘[’ by ‘\’.

• Note that (1) is a special case (m = 2) of the Inclusion-Exclusion Formula:

µ

 
m[

k=1

Ak

!
=

X

1im

µ(Ai)�
X

1i<jm

µ(Ai \Aj) + · · ·

+(�1)

m+1µ(A1 \A2 \ · · · \Am).
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The Inclusion-Exclusion Formula
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Now we show that for any nonempty atom A of Fn,
µ(A) can be expressed as a linear combination of the
values of µ on the unions of X̃i’s.

1. For a nonempty atom A 2 A,

A =
n\

i=1
Yi,

where Yi is either X̃i or X̃c
i , and there exists at least

one i such that Yi = X̃i (otherwise A is equal to the
empty atom).

2. Then we can write

A =

0

B@
\

u:Yu=X̃u

X̃u

1

CA \

0

BB@
\

v:Yv=X̃c
v

X̃c
v

1

CCA

=

 
\

u
X̃u

!
\
 
[

v
X̃v

!c

=

 
\

u
X̃u

!
�
 
[

v
X̃v

!
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Theorem 3.6 Let

B =
n

X̃G : G is a nonempty subset of Nn
o

.

Then a signed measure µ on Fn is completely speci-
fied by {µ(B), B 2 B}, which can be any set of real
numbers.

Proof

1. Recall that |A| = 2n�1, and a signed measure µ on
Fn is completely specified by {µ(A), A 2 A}, which
can be any set of real numbers.

2. The set B is indexed by all the nonempty subsets of
Nn, so

|B| = |A| = 2n � 1 := k.

3. Let

u column k-vector of µ(A), A 2 A

h column k-vector of µ(B), B 2 B.

4. For each B 2 B, µ(B) can obviously be expressed as
a linear combination of µ(A), A 2 A by set additivity.
Therefore we can write

h = Cnu, (1)

where Cn is a unique k ⇥ k matrix.

5. On the other hand, we have shown in Appendix 3.A
that for each A 2 A, µ(A) can be expressed as a linear
combination of µ(B), B 2 B. Therefore we can write

u = Dnh, (2)

where Dn is a k ⇥ k matrix.

6. Combining (1) and (2), we have

u = Dnh

= Dn(Cnu)

= (DnCn)u.

Thus DnCn = In, showing that Dn = (Cn)�1.
Moreover, since Cn is unique, Dn is also unique.

7. Therefore, µ(B), B 2 B is related to µ(A), A 2 A
through an invertible linear transformation.

8. Hence, µ(B), B 2 B completely specifies a signed
measure µ on Fn.
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2. The set B is indexed by all the nonempty subsets of
Nn, so

|B| = |A| = 2n � 1 := k.

3. Let

u column k-vector of µ(A), A 2 A

h column k-vector of µ(B), B 2 B.

4. For each B 2 B, µ(B) can obviously be expressed as
a linear combination of µ(A), A 2 A by set additivity.
Therefore we can write

h = Cnu, (1)

where Cn is a unique k ⇥ k matrix.

5. On the other hand, we have shown in Appendix 3.A
that for each A 2 A, µ(A) can be expressed as a linear
combination of µ(B), B 2 B. Therefore we can write

u = Dnh, (2)

where Dn is a k ⇥ k matrix.

6. Combining (1) and (2), we have

u = Dnh

= Dn(Cnu)

= (DnCn)u.

Thus DnCn = In, showing that Dn = (Cn)�1.
Moreover, since Cn is unique, Dn is also unique.

7. Therefore, µ(B), B 2 B is related to µ(A), A 2 A
through an invertible linear transformation.

8. Hence, µ(B), B 2 B completely specifies a signed
measure µ on Fn.
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Two Lemmas

Lemma 3.7

µ(A \B � C) = µ(A [ C) + µ(B [ C)� µ(A [B [ C)� µ(C).

Lemma 3.8

I(X;Y |Z) = H(X,Z) +H(Y, Z)�H(X,Y, Z)�H(Z).

Remark These two lemmas are related to each other through the substitution

of symbols.
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by setting
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Implications
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unique signed measure µ� defined on Fn.

• Can employ set-theoretic tools to manipulate expressions of Shannon’s
information measures.
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