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3.3 Construction of the
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Al =2" — 1.



Let X be a set corresponding to a r.v. X.
Fix n and let NV, ={1,2,--- ,n}.

Let the universal set be

Then the atom

|
=

e - (U ) o

€Ny, €Ny,
is called the empty atom of F,,.
A is the set of other atoms of F,,, called non-empty atoms.
A= 2m —1.

A signed measure p on F,, is completely specified by the values of u on
the atoms of A, because u(Ag) always vanishes.
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Notations For nonempty subset G of N,,:
o X = (Xz,l c G)

o X¢g = UieaX;

Theorem 3.6 Let

B = {XG . (G is a nonempty subset of Nn} .

Then a signed measure u on F,, is completely specified by {u(B), B € B}, which
can be any set of real numbers.

Remark We have seen that a signed measure i1 on F,, is completely specified
by {u(A), A € A}, the set of values of ;1 on the nonempty atoms. This theorem
says that p can instead be specified by {u(B), B € B}, the set of values of u on
the unions.



Appendix 3.A

In this appendix, we show that for any A € A, the set of non-empty atoms of

Fn, (A) can be expressed as a linear combination of the values of p on the
unions of Xj;’s.
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e It is easy to check that for a set-additive function u,
(A1 U Az) = p(Ar) + p(Az) — p(Ar N Az) (1)
which implies
p(A1 M Az) = p(Ar) + p(Az) — p(A1 U As). (2)

e Note that (2) can be obtained from (1) by exchanging ‘U’ by ‘"’.

e Note that (1) is a special case (m = 2) of the Inclusion-Exclusion Formula:
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Theorem 3.19 (Variation of the Inclusion-Exclusion Formula)
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and B is equal to UUX'U.
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A as a linear combination of the values of u on the
unions of X’s.

Theorem 3.19 (Variation of the Inclusion-Exclusion
Formula)

m
jv2 ﬂAk_B ==

k=1
Y. w(A; — B)
1<i<m
- >,  w(A;UA; — B)
1<i<j<m

+H(=D"™ T uay UA U U AR - B). (1)

p(A — B) = p(AU B) — u(B) (2)
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e Can employ set-theoretic tools to manipulate expressions of Shannon’s
information measures.
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