

Chapter 3 The *I*-Measure

© Raymond W. Yeung 2014 The Chinese University of Hong Kong

• Set-theoretic structure of Shannon's information measures

- Set-theoretic structure of Shannon's information measures
- Why Shannon's information measures can be represented by a form of Venn diagram information diagram?

- Set-theoretic structure of Shannon's information measures
- Why Shannon's information measures can be represented by a form of Venn diagram information diagram?
- How to use information diagrams to obtain information identities and inequalities

- Set-theoretic structure of Shannon's information measures
- Why Shannon's information measures can be represented by a form of Venn diagram information diagram?
- How to use information diagrams to obtain information identities and inequalities
- Problem-solving examples

$$\begin{array}{cccc} H/I & \leftrightarrow & \mu^* \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

$$H/I \quad \leftrightarrow \quad \mu^*$$

$$, \quad \leftrightarrow \quad \cup$$

$$; \quad \leftrightarrow \quad \cap$$

$$| \quad \leftrightarrow \quad - \quad (A - B = A \cap B^c)$$

$$H/I \quad \leftrightarrow \quad \mu^*$$

$$, \quad \leftrightarrow \quad \cup$$

$$; \quad \leftrightarrow \quad \cap$$

$$| \quad \leftrightarrow \quad - \quad (A - B = A \cap B^c)$$

$$\begin{array}{cccc} H/I & \leftrightarrow & \mu^* \\ , & \leftrightarrow & \cup \\ ; & \leftrightarrow & \cap \\ | & \leftrightarrow & - & (A - B = A \cap B^c) \end{array} \end{array}$$

- μ^* is some signed measure (set-additive function).
- Examples:

$$H(X_1|X_2) = \mu^*(\tilde{X}_1 - \tilde{X}_2) H(X_2|X_1) = \mu^*(\tilde{X}_2 - \tilde{X}_1) I(X_1; X_2) = \mu^*(\tilde{X}_1 \cap \tilde{X}_2).$$

$$H/I \quad \leftrightarrow \quad \mu^*$$

$$, \quad \leftrightarrow \quad \cup$$

$$; \quad \leftrightarrow \quad \cap$$

$$| \quad \leftrightarrow \quad - \quad (A - B = A \cap B^c)$$

- μ^* is some signed measure (set-additive function).
- Examples:

$$\begin{array}{cccc} H/I & \leftrightarrow & \mu^* \\ , & \leftrightarrow & \cup \\ ; & \leftrightarrow & \cap \\ | & \leftrightarrow & - & (A - B = A \cap B^c) \end{array} \end{array}$$

- μ^* is some signed measure (set-additive function).
- Examples:

$$H(X_1|X_2) = \mu^*(\tilde{X}_1 - \tilde{X}_2)$$

$$H(X_2|X_1) = \mu^*(\tilde{X}_2 - \tilde{X}_1)$$

$$I(X_1; X_2) = \mu^*(\tilde{X}_1 \cap \tilde{X}_2).$$

$$H/I \quad \leftrightarrow \quad \mu^*$$

$$, \quad \leftrightarrow \quad \cup$$

$$; \quad \leftrightarrow \quad \cap$$

$$| \quad \leftrightarrow \quad - \quad (A - B = A \cap B^c)$$

- μ^* is some signed measure (set-additive function).
- Examples:

$$H(X_{1}|X_{2}) = \mu^{*}(\tilde{X}_{1} - \tilde{X}_{2})$$
$$H(X_{2}|X_{1}) = \mu^{*}(\tilde{X}_{2} - \tilde{X}_{1})$$
$$I(X_{1}; X_{2}) = \mu^{*}(\tilde{X}_{1} \cap \tilde{X}_{2}).$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

$$\underline{\mu^*}(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$\underline{H}(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\underline{\tilde{X}_1} \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(\underline{X_1}, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \underline{\tilde{X}_2}) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, \underline{X_2}) = H(X_1) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = \underline{H}(X_1) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(\underline{X_1}) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + \underline{H(X_2)} - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(\underline{X_2}) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(X_2) - I(\underline{X_1}; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

3.1 Preliminaries

Definition 3.1 The field \mathcal{F}_n generated by sets $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$ is the collection of sets which can be obtained by any sequence of usual set operations (union, intersection, complement, and difference) on $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$.

Definition 3.1 The field \mathcal{F}_n generated by sets $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$ is the collection of sets which can be obtained by any sequence of usual set operations (union, intersection, complement, and difference) on $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$.

Definition 3.2 The atoms of \mathcal{F}_n are sets of the form $\bigcap_{i=1}^n Y_i$, where Y_i is either \tilde{X}_i or \tilde{X}_i^c , the complement of \tilde{X}_i .

• The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 :

 $\tilde{X}_1 \cap \tilde{X}_2, \ \tilde{X}_1^c \cap \tilde{X}_2, \ \tilde{X}_1 \cap \tilde{X}_2^c, \ \tilde{X}_1^c \cap \tilde{X}_2^c$

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 :

$$\tilde{X}_1 \cap \tilde{X}_2, \ \tilde{X}_1^c \cap \tilde{X}_2, \ \tilde{X}_1 \cap \tilde{X}_2^c, \ \tilde{X}_1^c \cap \tilde{X}_2^c$$

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 :

$$\tilde{X}_1 \cap \tilde{X}_2, \ \tilde{X}_1^c \cap \tilde{X}_2, \ \tilde{X}_1 \cap \tilde{X}_2^c, \ \tilde{X}_1^c \cap \tilde{X}_2^c$$

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 :

$$\tilde{X}_1 \cap \tilde{X}_2, \ \tilde{X}_1^c \cap \tilde{X}_2, \ \tilde{X}_1 \cap \tilde{X}_2^c, \ \tilde{X}_1^c \cap \tilde{X}_2^c$$

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 :

$$\tilde{X}_1 \cap \tilde{X}_2, \ \tilde{X}_1^c \cap \tilde{X}_2, \ \tilde{X}_1 \cap \tilde{X}_2^c, \ \tilde{X}_1^c \cap \tilde{X}_2^c$$

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 :

$$\tilde{X}_1 \cap \tilde{X}_2, \ \tilde{X}_1^c \cap \tilde{X}_2, \ \tilde{X}_1 \cap \tilde{X}_2^c, \ \tilde{X}_1^c \cap \tilde{X}_2^c$$

• There are a total of $2^4 = 16$ sets in \mathcal{F}_2 , formed by the unions of the above 4 atoms.

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 :

$$\tilde{X}_1 \cap \tilde{X}_2, \ \tilde{X}_1^c \cap \tilde{X}_2, \ \tilde{X}_1 \cap \tilde{X}_2^c, \ \tilde{X}_1^c \cap \tilde{X}_2^c$$

• There are a total of $2^4 = 16$ sets in \mathcal{F}_2 , formed by the unions of the above 4 atoms.

 $\mu(A \cup B) = \mu(A) + \mu(B).$

 $\mu(\underline{A} \cup B) = \mu(\underline{A}) + \mu(B).$

 $\mu(A \cup \underline{B}) = \mu(A) + \mu(\underline{B}).$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

$$\mu(\emptyset) = 0$$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

 $\mu(\emptyset) = 0$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

$$\mu(\emptyset) = 0$$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

$$\mu(\emptyset) = 0$$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \underline{\mu(A)} + \mu(\emptyset)$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

$$\mu(\emptyset) = 0$$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \underline{\mu(A)} + \underline{\mu(\emptyset)}$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

$$\mu(\emptyset) = 0$$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

 $\mu(\emptyset) = 0$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

 $\mu(\emptyset) = 0$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

Remark For any set-additive function μ ,

$$\mu(\emptyset) = 0$$

because for any set A,

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

implies $\mu(\emptyset) = 0$.

Remark A signed measure can take positive or negative values. If a signed measure takes only positive values, it is simply called a measure.

• A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms

 $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c))$

• A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms

 $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c))$

- A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$
- The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity. For example,

$$\mu(\tilde{X}_1) = \mu((\tilde{X}_1 \cap \tilde{X}_2) \cup (\tilde{X}_1 \cap \tilde{X}_2^c))$$
$$= \mu(\tilde{X}_1 \cap \tilde{X}_2) + \mu(\tilde{X}_1 \cap \tilde{X}_2^c)$$

- A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$
- The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity. For example,

$$\mu(\underline{\tilde{X}_1}) = \mu((\tilde{X}_1 \cap \tilde{X}_2) \cup (\tilde{X}_1 \cap \tilde{X}_2^c)) \\ = \mu(\tilde{X}_1 \cap \tilde{X}_2) + \mu(\tilde{X}_1 \cap \tilde{X}_2^c)$$

- A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$
- The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity. For example,

$$\mu(\underline{\tilde{X}_1}) = \mu((\underline{\tilde{X}_1 \cap \tilde{X}_2}) \cup (\underline{\tilde{X}_1 \cap \tilde{X}_2})) \\ = \mu(\underline{\tilde{X}_1 \cap \tilde{X}_2}) + \mu(\underline{\tilde{X}_1 \cap \tilde{X}_2})$$

- A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$
- The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity. For example,

$$\mu(\underline{\tilde{X}_1}) = \mu((\underline{\tilde{X}_1 \cap \tilde{X}_2}) \cup (\underline{\tilde{X}_1 \cap \tilde{X}_2})) \\ = \mu(\underline{\tilde{X}_1 \cap \tilde{X}_2}) + \mu(\underline{\tilde{X}_1 \cap \tilde{X}_2})$$

- A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$
- The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity. For example,

$$\mu(\tilde{X}_1) = \mu((\tilde{X}_1 \cap \tilde{X}_2) \cup (\tilde{X}_1 \cap \tilde{X}_2^c))$$
$$= \mu(\tilde{X}_1 \cap \tilde{X}_2) + \mu(\tilde{X}_1 \cap \tilde{X}_2^c)$$

- A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$
- The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity. For example,

$$\mu(\tilde{X}_1) = \mu((\tilde{X}_1 \cap \tilde{X}_2) \cup (\tilde{X}_1 \cap \tilde{X}_2^c))$$
$$= \underline{\mu(\tilde{X}_1 \cap \tilde{X}_2)} + \mu(\tilde{X}_1 \cap \tilde{X}_2^c)$$

- A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$
- The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity. For example,

$$\mu(\tilde{X}_1) = \mu((\tilde{X}_1 \cap \tilde{X}_2) \cup (\tilde{X}_1 \cap \tilde{X}_2^c))$$
$$= \underline{\mu(\tilde{X}_1 \cap \tilde{X}_2)} + \underline{\mu(\tilde{X}_1 \cap \tilde{X}_2^c)}$$

