
2.8 Fano’s Inequality



Theorem 2.43 For any random variable X,

H(X)  log |X |,

where |X | denotes the size of the alphabet X . This upper bound is tight if and

only if X is distributed uniformly on X .



Theorem 2.43 For any random variable X,

H(X)  log |X|, (1)

with equality if and only if X is distributed uniformly

on X .

Proof

1. Let u be the uniform distribution on X , i.e.,

u(x) =

1

|X|
for all x 2 X .

2. Then

log |X| � H(X)

= �
X

x2SX

p(x) log

1

|X|
+

X

x2SX

p(x) log p(x)

= �
X

x2SX

p(x) log u(x) +

X

x2SX

p(x) log p(x)

=

X

x2SX

p(x) log

p(x)

u(x)

= D(pku)

� 0,

proving (1).
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Remark Theorem 2.43 has the following implications.
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infinite, then H(X) can be finite (Example 2.45) or

infinite (Example 2.46).
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Example 2.45

Let X be a random variable such that
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Theorem 2.47 (Fano’s Inequality) LetX and

ˆX be random variables taking

values in the same alphabet X . Then

H(X| ˆX)  hb(Pe) + Pe log(|X |� 1),

where Pe = {X 6= ˆX} and hb is the binary entropy function.

Intuition

• Suppose

ˆX is an estimate on X.

• If the error probability Pe is small, then H(X| ˆX) should also be small.

• This is captured by Fano’s inequality.
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Theorem 2.47 (Fano’s Inequality)

H(X|X̂)  hb(Pe) + Pe log(|X| � 1),

where Pe = Pr{X 6= X̂}.

Proof

1. Define a random variable

Y =
⇢

0 if X = X̂

1 if X 6= X̂.

Y is an indicator of the error event {X 6= X̂}. Then

Pr{Y = 1} = Pe and H(Y ) = hb(Pe).

2. Since Y is a function X and X̂,

H(Y |X, X̂) = 0.

3. Then

H(X|X̂)

= H(X|X̂) + H(Y |X, X̂)

= H(X, Y |X̂)

= H(Y |X̂) + H(X|X̂, Y )

 H(Y ) + H(X|X̂, Y )

= H(Y ) +
X

x̂2X
h
Pr{X̂ = x̂, Y = 0}H(X|X̂ = x̂, Y = 0)

+Pr{X̂ = x̂, Y = 1}H(X|X̂ = x̂, Y = 1)
i

.

4. For the first case, i.e., X̂ = x̂ and Y = 0, X must
take the value x̂. In other words, X is conditionally
deterministic given X̂ = x̂ and Y = 0. Therefore,

H(X|X̂ = x̂, Y = 0) = 0.

5. For the second case, i.e., X̂ = x̂ and Y = 1, X must
take a value in the set {x 2 X : x 6= x̂} which contains
|X| � 1 elements. By Theorem 2.43, we have

H(X|X̂ = x̂, Y = 1)  log(|X| � 1),

where this upper bound does not depend on x̂.

6. Hence,

H(X|X̂)

 hb(Pe) +

0

@
X

x̂2X
Pr{X̂ = x̂, Y = 1}

1

A log(|X| � 1)

= hb(Pe) + Pr{Y = 1} log(|X| � 1)

= hb(Pe) + Pe log(|X| � 1),

completing the proof.
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Theorem 2.47 (Fano’s Inequality) LetX and X̂ be random variables taking
values in the same alphabet X . Then

H(X|X̂)  hb(Pe) + Pe log(|X |� 1),

where Pe = {X 6= X̂} and hb is the binary entropy function.

Corollary 2.48 H(X|X̂) < 1 + Pe log |X |.

Remarks

• For finite alphabet, if Pe ! 0, then H(X|X̂) ! 0.

• This may NOT hold for countably infinite alphabet (see Example 2.49).
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