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2.8 Fano’s Inequality



Theorem 2.43 For any random variable X,
H(X) < log|X|

where |X| denotes the size of the alphabet X'. This upper bound is tight if and
only if X is distributed uniformly on X.
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Remark For a random variable X, if the alphabet is
infinite, then H(X) can be finite (Example 2.45) or
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