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2.7 Some Useful Information
Inequalities
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H(Y|X) < H(Y)
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Proof
H(Y|X) = H(Y) — I(X;Y) < H(Y),
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Remarks
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e Warning: I(X;Y|Z) < I(X;Y) does not hold in general.
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N—

1Xi2) = XY, 2) - I(X:Y|2)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)

= X 2) = I(X;Y, 2) = I(X; Y12)



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

1(X;2) 2 I(X;Y,2)—I(X;Y|Z)

N—’

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

IS

I(X; Z) I(X;Y,2)— I(X;Y|2)

I(X;Y, Z2)

IN

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; 2) @) I(X;Y,2) — I(X;Y|2)
< I(X;Y, Z)
b)

I(X;Y)+ I(X;Z]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X;Y,2)
b)

I(X;Y) + I(X; Z]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; 2) @) I(X;Y,2) — I(X;Y|2)
< I(X;Y, Z)
b)

I(X;Y)+ I(X;Z]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; 2) @) I(X;Y,2) — I(X;Y|2)
< I(X;Y, Z)
b)

I(X;Y) + I(X; 2]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X;Y,2)
b)

I(X;Y) + I(X; 2]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain,
then
I(X;2) < I(X;Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X5Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X5Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X5Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X5Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X -+ Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X5Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X5Y) (1)

and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then
I(X;2) < I(X;Y) (1)
Proof
and
I(X;2) < I(Y; Z). (2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then
I(X;2) < I(X;Y) (1)
Proof
and
I(X;2) < I(Y; Z). (2)
H(X|zZ) = H(X)-I(X;2)

Proof
1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then
I(X;2) < I(X;Y) (1)
Proof
and
I(X;2) < I(Y; Z). (2)
H(X|z)

H(X)—I1(X;2)
>  H(X) - I(X;Y)
Proof

1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then
I(X;2) < I(X;Y) (1)
Proof
and
I(X;2) < I(Y; Z). (2)
H(X|z)

H(X)—I1(X;2)
>  H(X) - I(X;Y)
Proof

1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X;Y) (1)
Proof
and
I(X;2) < I(Y; Z). (2)
H(X|Z) = H(X)—-I1(X;2)
>  H(X) - I(X;Y)
Proof

1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then

I(X;Z2) < I(X;Y) (1)
Proof
and
I(X;2) < I(Y; Z). (2)
H(X|Z) = H(X)—-I1(X;2)
> H(X)—-I(X;Y)
Proof

1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y) + I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
then
I(X;2) < I(X;Y) (1)
Proof
and
I(X;2) < I(Y; Z). (2)
H(X|z)

H(X)—I1(X;2)
>  H(X) - I(X;Y)
Proof

1. Assume X — Y — Z,i.e., X L Z|Y. Then

I(X;Z|Y) = 0.

2. To prove (1), consider

I(X; Z) 2) I(X;Y,2)— I(X;Y|2)
< I(X3Y,2Z)
b)

I(X;Y)+ I(X; Z]Y)
I(X;Y).

a) Chain rule for mutual information:

I(X;Y,2Z2) =1(X;Z2)+ I(X;Y|Z)
= I(X;2)=I1(X;Y,2) - I(X;Y|Z2)

b) Chain rule for mutual information

3. Since X — Y — Z is equivalent to Z — Y — X,
we also have proved (2) by symmetry.



Lemma 2.41 If X — Y — Z forms a Markov chain, Corollary If X - Y — Z, then H(X|Z) > H(X|Y).
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Corollary If X — Y — Z, then H(X|Z) > H(X|Y).

Proof
H(X|Z) = H(X)—I1(X;2)
>  H(X) - I(X;Y)
= H(X|Y).
Remark

Suppose Y is an observation of X. Then further pro-
cessing of Y can only increase the uncertainty about
X on the average.
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