
2.7 Some Useful Information 
Inequalities



Theorem 2.38 (Conditioning Does Not Increase Entropy)

H(Y |X)  H(Y )

with equality if and only if X and Y are independent.

Proof

H(Y |X) = H(Y )� I(X;Y )  H(Y ),

with equality if and only if I(X;Y ) = 0, or X and Y are independent.

Remarks

• Similarly, H(Y |X,Z)  H(Y |Z).

• Warning: I(X;Y |Z)  I(X;Y ) does not hold in general.
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Theorem 2.39 (Independence Bound for Entropy)

H(X1, X2, · · · , Xn) 
nX

i=1

H(Xi)

with equality if and only if Xi, i = 1, 2, · · · , n are mutually independent.
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Theorem 2.40

I(X;Y, Z) � I(X;Y ),

with equality if and only if X ! Y ! Z forms a Markov chain.

Proof

By the chain rule for mutual information, we have

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ) � I(X;Y ).

The above inequality is tight if and only if I(X;Z|Y ) = 0, or X ! Y ! Z
forms a Markov chain.
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Lemma 2.41 If X ! Y ! Z forms a Markov chain, then

I(X;Z)  I(X;Y )

and

I(X;Z)  I(Y ;Z).

Corollary

• If X ! Y ! Z, then H(X|Z) � H(X|Y ).

• Suppose Y is an observation of X. Then further processing of Y can only

increase the uncertainty about X on the average.
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Proof
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I(X;Z)
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= I(X;Y ) + I(X;Z|Y )

= I(X;Y ).

a) Chain rule for mutual information:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)

) I(X;Z) = I(X;Y, Z) � I(X;Y |Z)

b) Chain rule for mutual information

3. Since X ! Y ! Z is equivalent to Z ! Y ! X,

we also have proved (2) by symmetry.

Corollary If X ! Y ! Z, then H(X|Z) � H(X|Y ).

Proof
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= H(X|Y ).

Remark

Suppose Y is an observation of X. Then further pro-

cessing of Y can only increase the uncertainty about

X on the average.
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