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• Convention:

1. Summation is over S
p
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P
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2. c log

c

0 = 1 for c > 0

3. If D(pkq) < 1, then p(x) > 0 ) q(x) > 0, or S
p

⇢ S
q

.

• D(pkq) measures the “distance” between p and q.

• D(pkq) is not symmetrical in p and q, so D(·k·) is not a true metric.

• D(·k·) does not satisfy the triangular inequality.

• Also called relative entropy or the Kullback-Leibler distance.

Definition 2.28 The informational divergence between two probability distri-
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denotes expectation with respect to p.
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Lemma 2.29 (Fundamental Inequality) For any a > 0,

ln a  a� 1

with equality if and only if a = 1.
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a
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Equality holds if and only if
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Theorem 2.31 (Divergence Inequality) For any two probability distribu-
tions p and q on a common alphabet X ,

D(p⇥q) � 0

with equality if and only if p = q.
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This proves the theorem.
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with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

__



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

__

__



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

__

______



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

______



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

______



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

______

________



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

__



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.

__

__



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
p

p(x) log

p(x)

q(x)

= (log e)

X

x2S
p

p(x) ln

p(x)

q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
p

q(x)

3

75

= (log e)

2

64
X

x2S
p

p(x) �
X

x2S
q

q(x)

3

75

= (log e)[1 � 1]

= 0.

This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.



Theorem 2.31 (Divergence Inequality)

D(pkq) � 0 (1)

with equality if and only if p = q.

Proof

1. For simplicity, assume S
p

= S
q

. For a proof with-

out this assumption, see the textbook.

2. Consider

D(pkq) =

X

x2S
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p(x) log
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= (log e)
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p(x) ln
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q(x)

� (log e)

X

x2S
p

p(x)

 
1 �

q(x)

p(x)

!
(2)

= (log e)
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This proves (1).

3. For equality to hold in (2), we see from Corol-

lary 2.30 that this is the case if and only if

p(x)

q(x)

= 1 or p(x) = q(x) for all x 2 S
p

.

This proves the theorem.

Corollary 2.30 For any a > 0,

ln a � 1 �
1

a

with equality if and only if a = 1.
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Theorem 2.32 (Log-Sum Inequality) For positive numbers a1, a2, · · · and

nonnegative numbers b1, b2, · · · such that

P
i ai < 1 and 0 <

P
i bi < 1,

X

i

ai log
ai
bi

�
 
X

i

ai

!
log

P
i aiP
i bi

with the convention that log

ai
0 = 1. Moreover, equality holds if and only if

ai
bi

= constant for all i.

Example:

a1 log
a1
b1

+ a2 log
a2
b2

� (a1 + a2) log
a1 + a2
b1 + b2
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Moreover, equality holds if and only if
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= constant

for all i.

Proof
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i} and {b0i} are probability distributions.

2. Using the divergence inequality, we have
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which implies (1).

3. Equality holds if and only if for all i,

a0
i = b0i or

ai

bi

= constant.

The theorem is proved.
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