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e Also called relative entropy or the Kullback-Leibler distance.
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Example:
a; + a2

by + by

a1 log eI a9 log > (a1 + a9) log

b1 bg



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof



Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a; Do ay

Zai log—z > Zai log ——— (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.



Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a; Do ay

Zai log—z > Zai log ——— (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have



Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a; Do ay

Zai log—z > Zai log ——— (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b; } are probability distributions.

2. Using the divergence inequality, we have



Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a; Do ay

Zai log—z > Zai log ——— (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a,’L- = ai/Zj a; and bfL = bi/Zj bj. Then
{a,’i} and {b; } are probability distributions.

2. Using the divergence inequality, we have



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a,’L- = ai/Zj a; and bfL = bi/Zj bj. Then
{a,’i} and {b; } are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 bq;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/Zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof
1. Let a;; = ai/zj a; and b; = bi/zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;




Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 br,;




Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a,- z. a/.
Zai log—z > Zai log LI (1)
i b; i 224 bg
Moreover, equality holds if and only if % = constant
7
for all <.
Proof

1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 br,;

1 a; s a
= Zazlog—z—Zazlog J _J
2595 L b4 i 2.5 b
1 a Zjaj




Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a,- z. a/.
Zai log—z > Zai log LI (1)
i b; i 224 bg
Moreover, equality holds if and only if % = constant
7
for all <.
Proof

1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;

1 a; s a
= Zazlog—z—Zazlog J _J
2595 L b4 i 2.5 b
1 a Zjaj




Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a,- z. a/.
Zai log—z > Zai log LI (1)
i b; i 224 bg
Moreover, equality holds if and only if % = constant
7
for all <.
Proof

1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;

1 a; s a
= Zazlog—z—Zazlog J _J
2595 L b4 i 2.5 b
1 a Zjaj




Theorem 2.32 (Log-Sum Inequality) For posi-

tive numbers aj,a9, -+ and nonnegative numbers
b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,
a . z . a .
Zai log—z > Zai log LI (1)
i b; i 224 bg
Moreover, equality holds if and only if % = constant
7
for all <.
Proof

1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;

1 a; s a
= Zazlog—z—Zazlog J _J
Zg a; ) b; 7 Z.? bJ
1 25 4

which implies (1).



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1

for all 2.

Proof
1. Let a;; = ai/Zj a; and b; = bi/Zj bj. Then
{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;

1 a; s a
= Zazlog—z—Zazlog J _J
Zg a; ) b; 7 Z.? bJ

1 [ a; doia

= Zaz log—z — Zaz log J _J

which implies (1).



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.
Proof
/ /
1. Let a; = ai/Zj a; and b; = bi/Zj bj. Then

{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;

1 [ a S as
= E— Zailog—z—ZailogJ—J
2525 L bi 2.5 %5
1 [ a. S oa
= _ Zai log—z — Zai logJ—J
2jaj e by i 2.5 b5

which implies (1).

3. Equality holds if and only if for all <,

The theorem is proved.

= constant.



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.
Proof
/ /
1. Let a; = ai/Zj a; and b; = bi/Zj bj. Then

{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/Z
7 bq;

1 [ a S as
= E— Zailog—z—ZailogJ—J
2525 L bi 2.5 %5
1 [ a. S oa
= _ Zai log—z — Zai logJ—J
2jaj e by i 2.5 b5

which implies (1).

3. Equality holds if and only if for all <,

The theorem is proved.

= constant.



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.
Proof
/ /
1. Let a; = ai/Zj a; and b; = bi/Zj bj. Then

{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/Z
7 bq;

1 [ a S as
= E— Zailog—z—ZailogJ—J
2525 L bi 2.5 %5
1 [ a. S oa
= _ Zai log—z — Zai logJ—J
2jaj e by i 2.5 b5

which implies (1).

3. Equality holds if and only if for all <,

The theorem is proved.

= constant.



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.
Proof
/ /
1. Let a; = ai/Zj a; and b; = bi/Zj bj. Then

{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/Z
7 bq;

1 [ a S as
= E— Zailog—z—ZailogJ—J
2525 L bi 2.5 %5
1 [ a. S oa
= _ Zai log—z — Zai logJ—J
2jaj e by i 2.5 b5

which implies (1).

3. Equality holds if and only if for all <,

The theorem is proved.

= constant.



Theorem 2.32 (Log-Sum Inequality) For posi-
tive numbers aj,a9, -+ and nonnegative numbers

b1, bg, -+ such that } ; a; < co and 0 < > ; b; < oo,

a S a;
Z a; log _ > Z a; | log —rt (1)
i by i 224 b4

Moreover, equality holds if and only if % = constant
1
for all <.
Proof
/ /
1. Let a; = ai/Zj a; and b; = bi/Zj bj. Then

{a,’i} and {b;,} are probability distributions.

2. Using the divergence inequality, we have

/

a’.

0 < Zaz log—/z
7 b7;

1 [ a S as
= E— Zailog—z—ZailogJ—J
2525 L bi 2.5 %5
1 [ a. S oa
= _ Zai log—z — Zai logJ—J
2jaj e by i 2.5 b5

which implies (1).

3. Equality holds if and only if for all <,

The theorem is proved.

= constant.



Divergence Inequality vs
Log-Sum Inequality

e The divergence inequality implies the log-sum inequality.



Divergence Inequality vs
Log-Sum Inequality

e The divergence inequality implies the log-sum inequality.

e The log-sum inequality also implies the divergence inequality. (Exercise)



Divergence Inequality vs
Log-Sum Inequality

e The divergence inequality implies the log-sum inequality.
e The log-sum inequality also implies the divergence inequality. (Exercise)

e The two inequalities are equivalent.
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