
2.3 Continuity of Shannon’s 
Information Measures for Fixed 
Finite Alphabets



Finite Alphabet vs Countable 
Alphabet

• All Shannon’s information measures are continuous when the alphabets
are fixed and finite.

• For countable alphabets, Shannon’s information measures are everywhere
discontinuous.

• To probe further, see Problems 28, 29, 30, 31, and

S. W. Ho and R. W. Yeung, “On the discontinuity of the Shan-
non information measures,” IEEE Transactions of Information

Theory, IT-56, no. 12, pp. 5362-5374, 2009.



Finite Alphabet vs Countable 
Alphabet

• All Shannon’s information measures are continuous when the alphabets
are fixed and finite.

• For countable alphabets, Shannon’s information measures are everywhere
discontinuous.

• To probe further, see Problems 28, 29, 30, 31, and

S. W. Ho and R. W. Yeung, “On the discontinuity of the Shan-
non information measures,” IEEE Transactions of Information

Theory, IT-56, no. 12, pp. 5362-5374, 2009.



Finite Alphabet vs Countable 
Alphabet

• All Shannon’s information measures are continuous when the alphabets
are fixed and finite.

• For countable alphabets, Shannon’s information measures are everywhere
discontinuous.

• To probe further, see Problems 28, 29, 30, 31, and

S. W. Ho and R. W. Yeung, “On the discontinuity of the Shan-
non information measures,” IEEE Transactions of Information

Theory, IT-56, no. 12, pp. 5362-5374, 2009.



Definition 2.23 Let p and q be two probability distributions on a common

alphabet X . The variational distance between p and q is defined as

V (p, q) =
X

x2X
|p(x)� q(x)|.

The entropy function is continuous at p if

lim

p

0!p

H(p0) = H

✓
lim

p

0!p

p0
◆

= H(p),

or equivalently, for any ✏ > 0, there exists � > 0 such that

|H(p)�H(q)| < ✏

for all q 2 PX satisfying

V (p, q) < �.
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An Example



• Let X = {1, 2, · · · , }, a countably infinite alphabet.

• Let PX = {1, 0, 0, · · · }, and let

PXn =

⇢
1� 1p

log n
,

1

n
p
log n

, · · · , 1

n
p
log n

, 0, 0, · · ·
�
.

• As n ! 1,

V (PX , PXn) =
X

i

|PX(i)� PXn(i)| =
2p
log n

! 0.

• However,

H
⇣
lim

n!1
PXn

⌘
= H(PX) = 0

but
lim
n!1

H(PXn) = 1.
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