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Definition 2.13 The entropy H(X) of a random variable X is defined as

H(X) = �
X

x

p(x) log p(x).

• Convention: summation is taken over S
X

.

• When the base of the logarithm is ↵, write H(X) as H
↵

(X).

• Entropy measures the uncertainty of a discrete random variable.

• The unit for entropy is

bit if ↵ = 2

nat if ↵ = e
D-it if ↵ = D

• A bit in information theory is di↵erent from a bit in computer science.
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Remark H(X) depends only on the distribution of X but not on the actual

values taken by X, hence also write H(pX).

Example Let X and Y be random variables with X = Y = {0, 1}, and let

pX(0) = 0.3, pX(1) = 0.7

and

pY (0) = 0.7, pY (1) = 0.3.

Although pX 6= pY , H(X) = H(Y ).
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Entropy as Expectation

• Convention

Eg(X) =

X

x

p(x)g(x)

where summation is over S
X

.

• Linearity

E[f(X) + g(X)] = Ef(X) + Eg(X)

See Problem 5 for details.

• Can write

H(X) = �E log p(X) = �
X

x

p(x) log p(x)

• In probability theory, when Eg(X) is considered, usually g(x) depends

only on the value of x but not on p(x).
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Binary Entropy Function

• For 0  �  1, define the binary entropy function

hb(�) = �� log � � (1� �) log(1� �)

with the convention 0 log 0 = 0, as by L’Hopital’s rule,

lim
a!0

a log a = 0.

• For X ⇠ {�, 1� �},
H(X) = hb(�).

• hb(�) achieves the maximum value 1 when � = 1
2 .
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Consider tossing a coin with

p(H) = � and p(T ) = 1� �.

Then hb(�) measures the amount of uncertainty in the outcome of the toss.

• When � = 0 or 1, the coin is deterministic and hb(�) = 0. This is con-

sistent with our intuition because for such cases we need 0 bits to convey

the outcome.

• When � = 0.5, the coin is fair and hb(�) = 1. This is consistent with our

intuition because we need 1 bit to convey the outcome.

• When � 62 {0, 0.5, 1}, 0 < hb(�) < 1, i.e., the uncertainty about the

outcome is somewhere between 0 and 1 bit.

• This interpretation will be justified in terms of the source coding theorem.
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Definition 2.14 The joint entropy H(X, Y ) of a pair of random variables X
and Y is defined as

H(X, Y ) = �
�

x,y

p(x, y) log p(x, y) = �E log p(X, Y ).

Definition 2.15 For random variables X and Y , the conditional entropy of
Y given X is defined as

H(Y |X) = �
�

x,y

p(x, y) log p(y|x) = �E log p(Y |X).
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• Write

H(Y |X) = �
X
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p(x, y) log p(y|x)
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X
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x

p(x)

"
�
X

y

p(y|x) log p(y|x)
#

• The inner sum is the entropy of Y conditioning on a fixed x 2 S
X

.

• Denoting the inner sum by H(Y |X = x), we have

H(Y |X) =

X

x

p(x)H(Y |X = x),
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Proposition 2.16

H(X,Y ) = H(X) +H(Y |X)

and

H(X,Y ) = H(Y ) +H(X|Y ).

Proof

Consider

H(X,Y ) = �E log p(X,Y )

= �E log[p(X)p(Y |X)]

= �E log p(X)� E log p(Y |X)

= H(X) +H(Y |X).
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Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .

______________



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .

______________



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .

______________ ________________



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )

p(X)p(Y )
.

Remark I(X;Y ) is symmetrical in X and Y .

Remark Alternatively, we can write

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

X

x,y

p(x, y) log
p(x|y)
p(x)

= E log
p(X|Y )

p(X)
.

However, it is not apparent from this form that I(X;Y ) is symmetrical in X

and Y .

________________



Proposition 2.18 The mutual information between a random variable X and

itself is equal to the entropy of X, i.e., I(X;X) = H(X).

Proof

I(X;X) = E log

p(X,X)

p(X)p(X)

= E log

p(X)

p(X)p(X)

= �E log p(X)

= H(X).

Remark The entropy of X is sometimes called the self-information of X.
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Proposition 2.19

I(X;Y ) = H(X)�H(X|Y ),

I(X;Y ) = H(Y )�H(Y |X),

and

I(X;Y ) = H(X) + H(Y )�H(X,Y ),

provided that all the entropies and conditional entropies are finite. (Exercise)

Remark

I(X;Y ) = H(X) + H(Y )�H(X,Y )

is analogous to

µ(A \B) = µ(A) + µ(B)� µ(A [B),

where µ is a set-additive function and A and B are sets.
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Definition 2.20 For random variables X, Y and Z, the mutual information
between X and Y conditioning on Z is defined as

I(X;Y |Z) =
�

x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
= E log

p(X, Y |Z)
p(X|Z)p(Y |Z)

.

Remark I(X;Y |Z) is symmetrical in X and Y .

Similar to entropy, we have

I(X;Y |Z) =
�

z

p(z)I(X;Y |Z = z),

where
I(X;Y |Z = z) =

�

x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
.
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Proposition 2.21 The mutual information between a random variable X and

itself conditioning on a random variable Z is equal to the conditional entropy

of X given Z, i.e., I(X;X|Z) = H(X|Z).

Proposition 2.22

I(X;Y |Z) = H(X|Z)�H(X|Y, Z),

I(X;Y |Z) = H(Y |Z)�H(Y |X,Z),

and

I(X;Y |Z) = H(X|Z) +H(Y |Z)�H(X,Y |Z),

provided that all the conditional entropies are finite.

(Proposition 2.19)
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Remark All Shannon’s information measures are special cases of conditional

mutual information. Let � denote a random variable that takes a constant

value. Then

H(X) = I(X;X|�)
H(X|Z) = I(X;X|Z)

I(X;Y ) = I(X;Y |�).



Remark All Shannon’s information measures are special cases of conditional

mutual information. Let � denote a random variable that takes a constant

value. Then

H(X) = I(X;X|�)
H(X|Z) = I(X;X|Z)

I(X;Y ) = I(X;Y |�).



Remark All Shannon’s information measures are special cases of conditional

mutual information. Let � denote a random variable that takes a constant

value. Then

H(X) = I(X;X|�)
H(X|Z) = I(X;X|Z)

I(X;Y ) = I(X;Y |�).



Remark All Shannon’s information measures are special cases of conditional

mutual information. Let � denote a random variable that takes a constant

value. Then

H(X) = I(X;X|�)
H(X|Z) = I(X;X|Z)

I(X;Y ) = I(X;Y |�).


