5
{

< The Chinese Univ

&% b X X ¥
iversity

y of Hong Kong

2.2 Shannon’s Information Measures



Shannon’s Information Measures



Shannon’s Information Measures

e Intropy



Shannon’s Information Measures

e Intropy

e Conditional entropy



Shannon’s Information Measures

e Intropy
e Conditional entropy

e Mutual information



Shannon’s Information Measures

e Intropy
e Conditional entropy
e Mutual information

e (Conditional mutual information



Definition 2.13 The entropy H(X) of a random variable X is defined as

Zp ) log p(a



Definition 2.13 The entropy H(X) of a random variable X is defined as

Zp ) log p(a

e Convention: summation is taken over Sx.



Definition 2.13 The entropy H(X) of a random variable X is defined as

Zp ) log p(a

e Convention: summation is taken over Sx.

e When the base of the logarithm is «, write H(X) as H,(X).



Definition 2.13 The entropy H(X) of a random variable X is defined as

Zp ) log p(a

e Convention: summation is taken over Sx.

e When the base of the logarithm is «, write H(X) as H,(X).



Definition 2.13 The entropy H(X) of a random variable X is defined as

Zp ) log p(a

e Convention: summation is taken over Sx.

e When the base of the logarithm is «, write H(X) as H,(X).



Definition 2.13 The entropy H(X) of a random variable X is defined as

Zp ) log p(a

e Convention: summation is taken over Sx.
e When the base of the logarithm is a, write H(X) as Hy(X).

e Entropy measures the uncertainty of a discrete random variable.



Definition 2.13 The entropy H(X) of a random variable X is defined as
Zp ) log p(a

e Convention: summation is taken over Sx.
e When the base of the logarithm is «, write H(X) as H,(X).
e Entropy measures the uncertainty of a discrete random variable.

e The unit for entropy is

bit if o = 2
nat ifa=c¢e
D-it fa=D



Definition 2.13 The entropy H(X) of a random variable X is defined as
Zp ) log p(a

e Convention: summation is taken over Sx.
e When the base of the logarithm is «, write H(X) as H,(X).
e Entropy measures the uncertainty of a discrete random variable.

e The unit for entropy is

bit if o = 2
nat ifa=c¢e
D-it fa=D

e A bit in information theory is different from a bit in computer science.
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Entropy as Expectation

Convention

=) p(x)g(x)

where summation is over Sx.

Linearity
Elf(X)+9(X)] = Ef(X) + Eg(X)

See Problem 5 for details.

Can write
H(X)=—FElogp(X Zp ) log p(

In probability theory, when FEg(X) is considered, usually g(x) depends
only on the value of z but not on p(x).
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e For 0 < v <1, define the binary entropy function
he(v) = —vlogy — (1 — ) log(1 — )
with the convention 0log 0 = 0, as by L’Hopital’s rule,
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o For X ~ {7,1—7},

[ =

o hy(7y) achieves the maximum value 1 when v = 3.
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Interpretation

Consider tossing a coin with

p(H) =~ and p(T)=1-1.
Then hy(y) measures the amount of uncertainty in the outcome of the toss.

e When v = 0 or 1, the coin is deterministic and hy(vy) = 0. This is con-
sistent with our intuition because for such cases we need 0 bits to convey
the outcome.

e When ~ = 0.5, the coin is fair and hy(y) = 1. This is consistent with our
intuition because we need 1 bit to convey the outcome.

e When v ¢ {0,0.5,1}, 0 < hp(y) < 1, i.e., the uncertainty about the
outcome 1s somewhere between 0 and 1 bit.

e This interpretation will be justified in terms of the source coding theorem.
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Proposition 2.18 The mutual information between a random variable X and
itself is equal to the entropy of X, i.e., I(X; X) = H(X).

Proof
I(X;Y) = Flog X, Y)
I(X:X) = EIl ’
(&%) %8 H(X)p(X)
p(X)
= F1
"% p(X)p(X)
= —FElogp(X)
—  H(X)

Remark The entropy of X is sometimes called the self-information of X.
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where p is a set-additive function and A and B are sets.

is analogous to



Information Diagram

H(X,Y)

H(X1Y) H(YIX)

H(Y
H(X) 1(X:T) (Y)



Information Diagram

H(X,Y)

H(X1Y) H(YIX)

H(Y
H(X) 1(X:T) (Y)



Information Diagram

H(X,Y)

H(X1Y) H(YIX)

H(Y
H(X) 1(X:T) (Y)



Information Diagram

H(X.Y)

H(X1Y) H(YIX)

H(Y
H(X) 1(X:T) (Y)



Information Diagram

H(X,Y)

H(X|Y) H(YIX)

H(Y
H(X) 1(X:T) (Y)



Information Diagram

H(X,Y)

H(X1Y) H(YIX )

H(Y
H(X) 1(X:T) (Y)



Information Diagram

H(X,Y)

H(X1Y) H(YIX)

H(Y
H(X) 1X:T) (Y)



Information Diagram

H(X,Y)

H(X1Y) H(YIX)

H(Y
H(X) 1(X:T) (Y)



Definition 2.20 For random variables X, Y and Z, the mutual information
between X and Y conditioning on Z is defined as
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Remark [I(X;Y|Z) is symmetrical in X and Y.
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