i
4

< The Chinese Univ

&% P X X 8§
iversity

y of Hong Kong

2.10 Entropy Rate of a Stationary
Source



Discrete-time Information Source



Discrete-time Information Source

e In most communication systems, communication takes place continually
instead of over a finite period of time.



Discrete-time Information Source

e In most communication systems, communication takes place continually
instead of over a finite period of time.

e Iixamples: TV broadcast, Internet, cellular systems.



Discrete-time Information Source

e In most communication systems, communication takes place continually
instead of over a finite period of time.

e Iixamples: TV broadcast, Internet, cellular systems.

e The information source can be modeled as a discrete-time random process
{ Xk, k> 1}



Discrete-time Information Source

In most communication systems, communication takes place continually
instead of over a finite period of time.

Examples: TV broadcast, Internet, cellular systems.

The information source can be modeled as a discrete-time random process
{ Xk, k> 1}

{Xk,k > 1} is an infinite collection of random variables indexed by the
set of positive integers. The index k is referred to as the “time” index.



Discrete-time Information Source

In most communication systems, communication takes place continually
instead of over a finite period of time.

Examples: TV broadcast, Internet, cellular systems.

The information source can be modeled as a discrete-time random process
{ Xk, k> 1}

{Xk,k > 1} is an infinite collection of random variables indexed by the
set of positive integers. The index k is referred to as the “time” index.

Random variables X are called letters.



Discrete-time Information Source

In most communication systems, communication takes place continually
instead of over a finite period of time.

Examples: TV broadcast, Internet, cellular systems.

The information source can be modeled as a discrete-time random process
{ Xk, k> 1}

{Xk,k > 1} is an infinite collection of random variables indexed by the
set of positive integers. The index k is referred to as the “time” index.

Random variables X are called letters.

Assume that H(X}) < oo for all k.
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Total Entropy of { Xk }

For a finite subset A of the index set {k : k > 1}, the joint entropy
H(Xg,k € A) is finite because

H(Xp k€ A) <) H(Xp) < oo
keA

However, the joint entropy of an infinite collection of letters is infinite
except for very special cases.

For example, X}, are i.i.d. and H(Xj) = h for all k. Then

H(Xp, k>1) = ZHXk :ih 0.
— k=1

In general, it is not meaningful to discuss H (X, k > 1).
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We are motivated to definite the entropy rate of an information source, which
gives the average entropy of a letter of the source.

Definition 2.54 The entropy rate of an information source { Xy} is defined as

1
HX — lim —H(Xl,XQ,“' ,Xn)

n—oo 1

when the limit exists.
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Entropy Rate May Exist

Example 2.55 Let { X} be an i.i.d. source with generic random variable X.

Then
1 H(X
lim —H(Xl,XQ,“' ,Xn) — lim e ( )
n—oo M n— 00 n
= lim H(X)
n— 00
— H(X)v

i.e., the entropy rate of an i.i.d. source is the entropy of any of its single letters.
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Example 2.56 Let { X} be a source such that X} are mutually independent
and H(Xy) =k for kK > 1. Then
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Example 2.56 Let { X} be a source such that X} are mutually independent
and H(Xy) =k for kK > 1. Then

1 ] —
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Example 2.56 Let { X} be a source such that X} are mutually independent
and H(Xy) =k for kK > 1. Then

1 1 —
e o o n e—
H (1‘(171-(27 74< ) ng:l]i (Jik)

n
1 n
- IS
n
k=1
1 n(n+1)
n 2

1
— = 1
2(”"‘ )7

which does not converge as n — oo although H(X}) < oo for all k. Therefore,
the entropy rate of { X} does not exist.



The Limit HY,



The Limit HY,

e Toward characterizing the asymptotic behavior of { Xy}, it is natural to
consider the limit

H‘/X = lim H(Xn|X1,X2,°°' ,Xn_l)

n—oo

if it exists.



The Limit HY,

e Toward characterizing the asymptotic behavior of { Xy}, it is natural to
consider the limit

H‘/X = lim H(Xn|X1,X2,°°' ,Xn_l)

n—oo
if 1t exists.

e The quantity H(X,|X1, Xs,---,X,,_1) is the conditional entropy of the
next letter given that we know all the past history of the source.



The Limit HY,

e Toward characterizing the asymptotic behavior of { Xy}, it is natural to
consider the limit

H‘/X = lim H(Xn|X1,X2,"° 7Xn—1)

n—oo
if 1t exists.

e The quantity H(X,|X1, Xs,---,X,,_1) is the conditional entropy of the
next letter given that we know all the past history of the source.



The Limit HY,

e Toward characterizing the asymptotic behavior of { Xy}, it is natural to
consider the limit

H‘/X = lim H(Xn|X1,X2,°°' ,Xn_l)

n—oo

if it exists.

e The quantity H(X,|X1, Xs,---,X,,_1) is the conditional entropy of the
next letter given that we know all the past history of the source.

e H' is the limit of this quantity after the source has been run for an
indefinite amount of time.



The Limit HY,

Toward characterizing the asymptotic behavior of { Xy}, it is natural to
consider the limit

H‘/X = lim H(Xn|X1,X2,°°' ,Xn_l)

n—oo

if it exists.

The quantity H(X,|X1, Xs,---,X,_1) is the conditional entropy of the
next letter given that we know all the past history of the source.

H', is the limit of this quantity after the source has been run for an
indefinite amount of time.

Is Hy, = Hx?
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A stationary information source is one such that any finite block of random vari-
ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source { Xy} is stationary if
X17X27'” 7Xm

and
X141, Xoggy oy X

have the same joint distribution for any m, [ > 1.
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Proof
1. Since H(Xn|X1, X9, -+ ,X,,_1) is lower bounded

by zero for all n, it suffices to prove that this quantity
is non-increasing in n to conclude that the limit HfX
exists.

2. Toward this end, for n > 2, consider

H(Xnp|Xq1, X9, ,Xp_1)
= H(X,_11X1,X9, -+ ,X,_2),

where the last step is justified by the stationarity of
{ Xk}

3. Therefore, H(Xnp|X1,Xo, -+ ,X,_1) is non-
increasing in n. The lemma is proved.
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Consider a sequence {a,,n > 1}.
Construct a sequence {b,,n > 1} where b, =+ >""_| a;.
by, is the average of the first n terms in {a, }.

bn,n > 1 are called the Cesaro means of {a,,}.

It can be shown that if a,, — a, then b,, — a.
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Remarks

e Theorem 2.60 says that
1. the entropy rate of an information source { X} exists under the fairly
general assumption that { X} is stationary;
2. H', is an alternative definition/interpretation of the entropy rate of

{ X} when {Xj} is stationary.

e However, the entropy rate of a stationary source { Xy} may not carry any
physical meaning unless { Xy} is also ergodic. See Section 5.4.



