

2.10 Entropy Rate of a Stationary Source

• In most communication systems, communication takes place continually instead of over a finite period of time.

- In most communication systems, communication takes place continually instead of over a finite period of time.
- Examples: TV broadcast, Internet, cellular systems.

- In most communication systems, communication takes place continually instead of over a finite period of time.
- Examples: TV broadcast, Internet, cellular systems.
- The information source can be modeled as a discrete-time random process $\{X_k, k \ge 1\}.$

- In most communication systems, communication takes place continually instead of over a finite period of time.
- Examples: TV broadcast, Internet, cellular systems.
- The information source can be modeled as a discrete-time random process $\{X_k, k \ge 1\}.$
- $\{X_k, k \ge 1\}$ is an infinite collection of random variables indexed by the set of positive integers. The index k is referred to as the "time" index.

- In most communication systems, communication takes place continually instead of over a finite period of time.
- Examples: TV broadcast, Internet, cellular systems.
- The information source can be modeled as a discrete-time random process $\{X_k, k \ge 1\}.$
- $\{X_k, k \ge 1\}$ is an infinite collection of random variables indexed by the set of positive integers. The index k is referred to as the "time" index.
- Random variables X_k are called letters.

- In most communication systems, communication takes place continually instead of over a finite period of time.
- Examples: TV broadcast, Internet, cellular systems.
- The information source can be modeled as a discrete-time random process $\{X_k, k \ge 1\}.$
- $\{X_k, k \ge 1\}$ is an infinite collection of random variables indexed by the set of positive integers. The index k is referred to as the "time" index.
- Random variables X_k are called letters.
- Assume that $H(X_k) < \infty$ for all k.

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k)$$

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

• For a finite subset A of the index set $\{k : k \ge 1\}$, the joint entropy $H(X_k, k \in A)$ is finite because

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

• However, the joint entropy of an infinite collection of letters is infinite except for very special cases.

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

- However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all k. Then

• For a finite subset A of the index set $\{k : k \ge 1\}$, the joint entropy $H(X_k, k \in A)$ is finite because

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

- However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all k. Then

 $H(X_k, k \ge 1)$

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

- However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all k. Then

$$H(X_k, k \ge 1) = \sum_{k=1}^{\infty} H(X_k)$$

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

- However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all k. Then

$$H(X_k, k \ge 1) = \sum_{k=1}^{\infty} \underline{H(X_k)} = \sum_{k=1}^{\infty} \underline{h}$$

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

- However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all k. Then

$$H(X_k, k \ge 1) = \sum_{k=1}^{\infty} H(X_k) = \sum_{k=1}^{\infty} h = \infty.$$

• For a finite subset A of the index set $\{k : k \ge 1\}$, the joint entropy $H(X_k, k \in A)$ is finite because

$$H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.$$

- However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all k. Then

$$H(X_k, k \ge 1) = \sum_{k=1}^{\infty} H(X_k) = \sum_{k=1}^{\infty} h = \infty.$$

• In general, it is not meaningful to discuss $H(X_k, k \ge 1)$.

Entropy Rate

Entropy Rate

We are motivated to definite the entropy rate of an information source, which gives the average entropy of a letter of the source.

Entropy Rate

We are motivated to definite the entropy rate of an information source, which gives the average entropy of a letter of the source.

Definition 2.54 The entropy rate of an information source $\{X_k\}$ is defined as

$$H_X = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n)$$

when the limit exists.

$$\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n)$$

$$\lim_{n \to \infty} \frac{1}{n} \frac{H(X_1, X_2, \cdots, X_n)}{n} = \lim_{n \to \infty} \frac{nH(X)}{n}$$

$$\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{\pi H(X)}{\pi}$$

$$\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{\pi H(X)}{\pi}$$
$$= \lim_{n \to \infty} H(X)$$

$$\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{n H(X)}{n}$$
$$= \lim_{n \to \infty} H(X)$$
$$= H(X),$$

Example 2.55 Let $\{X_k\}$ be an i.i.d. source with generic random variable X. Then

$$\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{n H(X)}{n}$$
$$= \lim_{n \to \infty} H(X)$$
$$= H(X),$$

i.e., the entropy rate of an i.i.d. source is the entropy of any of its single letters.

Example 2.56 Let $\{X_k\}$ be a source such that X_k are mutually independent and $H(X_k) = k$ for $k \ge 1$. Then

 $\frac{1}{n}H(X_1, X_2, \cdots, X_n)$

$$\frac{1}{n} \frac{H(X_1, X_2, \cdots, X_n)}{n} = \frac{1}{n} \sum_{k=1}^n H(X_k)$$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n}\sum_{k=1}^n \frac{H(X_k)}{K_{k-1}}$$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n}\sum_{k=1}^n \underline{H(X_k)}$$
$$= \frac{1}{n}\sum_{k=1}^n \underline{k}$$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n}\sum_{k=1}^n H(X_k)$$
$$= \frac{1}{n}\sum_{k=1}^n k$$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n}\sum_{k=1}^n H(X_k)$$
$$= \frac{1}{n}\sum_{k=1}^n k$$
$$= \frac{1}{n}\frac{n(n+1)}{2}$$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n}\sum_{k=1}^n H(X_k)$$
$$= \frac{1}{n}\sum_{k=1}^n k$$
$$= \frac{1}{n}\frac{n}{k-1}$$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n}\sum_{k=1}^n H(X_k)$$
$$= \frac{1}{n}\sum_{k=1}^n k$$
$$= \frac{1}{n}\frac{n(n+1)}{2}$$
$$= \frac{1}{2}(n+1),$$

Example 2.56 Let $\{X_k\}$ be a source such that X_k are mutually independent and $H(X_k) = k$ for $k \ge 1$. Then

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n}\sum_{k=1}^n H(X_k)$$
$$= \frac{1}{n}\sum_{k=1}^n k$$
$$= \frac{1}{n}\frac{n(n+1)}{2}$$
$$= \frac{1}{2}(n+1),$$

which does not converge as $n \to \infty$ although $H(X_k) < \infty$ for all k. Therefore, the entropy rate of $\{X_k\}$ does not exist.

• Toward characterizing the asymptotic behavior of $\{X_k\}$, it is natural to consider the limit

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

if it exists.

• Toward characterizing the asymptotic behavior of $\{X_k\}$, it is natural to consider the limit

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

if it exists.

• The quantity $H(X_n|X_1, X_2, \dots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.

• Toward characterizing the asymptotic behavior of $\{X_k\}$, it is natural to consider the limit

$$H'_X = \lim_{n \to \infty} \frac{H(X_n | X_1, X_2, \cdots, X_{n-1})}{H(X_n | X_1, X_2, \cdots, X_{n-1})}$$

if it exists.

• The quantity $H(X_n|X_1, X_2, \dots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.

• Toward characterizing the asymptotic behavior of $\{X_k\}$, it is natural to consider the limit

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

if it exists.

- The quantity $H(X_n|X_1, X_2, \dots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.
- H'_X is the limit of this quantity after the source has been run for an indefinite amount of time.

• Toward characterizing the asymptotic behavior of $\{X_k\}$, it is natural to consider the limit

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

if it exists.

- The quantity $H(X_n|X_1, X_2, \dots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.
- H'_X is the limit of this quantity after the source has been run for an indefinite amount of time.

• Is $H'_X = H_X$?

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$X_{1+l}, X_{2+l}, \cdots, X_{m+l}$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$X_{1+l}, X_{2+l}, \cdots, X_{m+l}$$

$$X_1, X_2, \cdots, X_m \quad \cdots \quad X_{1+l}, X_{2+l}, \cdots, X_{m+l} \quad \cdots$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$X_{1+l}, X_{2+l}, \cdots, X_{m+l}$$

$$\overbrace{X_1, X_2, \cdots, X_m}^{m} \cdots X_{1+l}, X_{2+l}, \cdots, X_{m+l} \cdots$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$X_{1+l}, X_{2+l}, \cdots, X_{m+l}$$

$$X_1, X_2, \cdots, X_m \qquad \cdots \qquad X_{1+l}, X_{2+l}, \cdots, X_{m+l} \qquad \cdots$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$X_{1+l}, X_{2+l}, \cdots, X_{m+l}$$

$$X_1, X_2, \cdots, X_m \qquad \cdots \qquad X_{1+l}, X_{2+l}, \cdots, X_{m+l} \qquad \cdots \\ \longleftarrow \qquad l \qquad \longrightarrow$$

Stationarity and H'_X

Stationarity and H_X'

Recall that

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1}).$$

Stationarity and H'_X

Recall that

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1}).$$

Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_X exists.

\mathbf{Proof}

 \mathbf{Proof}

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

\mathbf{Proof}

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

\mathbf{Proof}

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$H(X_n|X_1, X_2, \cdots, X_{n-1})$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$H(X_n|X_1, X_2, \cdots, X_{n-1})$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

\mathbf{Proof}

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$H(X_{n} | X_{1}, X_{2}, \cdots, X_{n-1}) \\ \leq H(X_{n} | X_{2}, X_{3}, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq & H(X_n | X_2, X_3, \cdots, X_{n-1}) \\ & = & H(X_{n-1} | X_1, X_2, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq & H(X_{\underline{n}} | X_2, X_3, \cdots, X_{n-1}) \\ & = & H(X_{n-1} | X_1, X_2, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq \quad H(X_{\underline{n}} | X_2, X_3, \cdots, X_{n-1}) \\ & = \quad H(X_{\underline{n-1}} | X_1, X_2, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq \quad H(X_{\underline{n}} | X_{\underline{2}}, X_3, \cdots, X_{n-1}) \\ & = \quad H(X_{\underline{n-1}} | X_1, X_2, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq \quad H(X_{\underline{n}} | X_{\underline{2}}, X_3, \cdots, X_{n-1}) \\ & = \quad H(X_{\underline{n-1}} | X_{\underline{1}}, X_2, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq \quad H(X_{\underline{n}} | X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{n-1}) \\ & = \quad H(X_{\underline{n-1}} | X_{\underline{1}}, X_2, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq \quad H(X_{\underline{n}} | X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{n-1}) \\ & = \quad H(X_{\underline{n-1}} | X_{\underline{1}}, X_{\underline{2}}, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq \quad H(X_{\underline{n}} | X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{\underline{n-1}}) \\ & = \quad H(X_{\underline{n-1}} | X_{\underline{1}}, X_{\underline{2}}, \cdots, X_{n-2}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_X exists.

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

2. Toward this end, for $n \ge 2$, consider

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq \quad H(X_{\underline{n}} | X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{\underline{n-1}}) \\ & = \quad H(X_{\underline{n-1}} | X_{\underline{1}}, X_{\underline{2}}, \cdots, X_{\underline{n-2}}), \end{split}$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_X exists.

1. Since $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

2. Toward this end, for $n \ge 2$, consider

$$\begin{split} &H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ &\leq & H(X_{\underline{n}} | X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{\underline{n-1}}) \\ &= & H(X_{\underline{n-1}} | X_{\underline{1}}, X_{\underline{2}}, \cdots, X_{\underline{n-2}}), \end{split}$$

where the last step is justified by the stationarity of $\{X_k\}$.

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_X exists.

\mathbf{Proof}

1. Since $H(X_n | X_1, X_2, \dots, X_{n-1})$ is lower bounded by zero for all n, it suffices to prove that this quantity is non-increasing in n to conclude that the limit H'_X exists.

2. Toward this end, for $n \ge 2$, consider

$$\begin{split} & H(X_n | X_1, X_2, \cdots, X_{n-1}) \\ & \leq & H(X_n | X_2, X_3, \cdots, X_{n-1}) \\ & = & H(X_{n-1} | X_1, X_2, \cdots, X_{n-2}), \end{split}$$

where the last step is justified by the stationarity of $\{X_k\}$.

3. Therefore, $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is non-increasing in n. The lemma is proved.

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

• Consider a sequence $\{a_n, n \ge 1\}$.

- Consider a sequence $\{a_n, n \ge 1\}$.
- Construct a sequence $\{b_n, n \ge 1\}$ where $b_n = \frac{1}{n} \sum_{i=1}^n a_i$.

- Consider a sequence $\{a_n, n \ge 1\}$.
- Construct a sequence $\{b_n, n \ge 1\}$ where $b_n = \frac{1}{n} \sum_{i=1}^n a_i$.
- b_n is the average of the first *n* terms in $\{a_n\}$.

- Consider a sequence $\{a_n, n \ge 1\}$.
- Construct a sequence $\{b_n, n \ge 1\}$ where $b_n = \frac{1}{n} \sum_{i=1}^n a_i$.
- b_n is the average of the first *n* terms in $\{a_n\}$.
- $b_n, n \ge 1$ are called the Cesáro means of $\{a_n\}$.

- Consider a sequence $\{a_n, n \ge 1\}$.
- Construct a sequence $\{b_n, n \ge 1\}$ where $b_n = \frac{1}{n} \sum_{i=1}^n a_i$.
- b_n is the average of the first *n* terms in $\{a_n\}$.
- $b_n, n \ge 1$ are called the Cesáro means of $\{a_n\}$.
- It can be shown that if $a_n \to a$, then $b_n \to a$.

 \mathbf{Proof}

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$|b_n - a|$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$|\underline{b_n} - a|$

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|\underline{b_n} - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - \underline{a} \right|$$

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - \underline{a} \right|$$
$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a_i \right|$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$
$$= \left| \frac{1}{n} \sum_{i=1}^n \underline{a_i} - \frac{1}{n} \sum_{i=1}^n \underline{a_i} \right|$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$
$$= \left| \frac{1}{n} \sum_{i=1}^n \underline{a_i} - \frac{1}{n} \sum_{i=1}^n \underline{a} \right|$$
$$= \left| \frac{1}{n} \sum_{i=1}^n (\underline{a_i} - a) \right|$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$
$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$
$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$
$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right)$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right)$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n \frac{|a_i - a|}{|a_i - a|} \right)$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n \frac{|a_i - a|}{2} \right)$$

$$< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \frac{\epsilon}{2}$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right)$$

$$< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right)$$

$$< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon$$

$$= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right)$$

$$< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon$$

$$= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{(n - N(\epsilon))}{n} \cdot \epsilon$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$\begin{aligned} |b_n - a| &= \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \frac{1}{n} \sum_{i=1}^n |a_i - a| \\ &= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right) \\ &< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon \\ &= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{(n - N(\epsilon))}{n} \cdot \epsilon^{-1} \\ &< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon. \end{aligned}$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$\begin{aligned} |b_n - a| &= \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \frac{1}{n} \sum_{i=1}^n |a_i - a| \\ &= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right) \\ &< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon \\ &= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon \\ &< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon. \end{aligned}$$

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$$\begin{aligned} |b_n - a| &= \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n |a_i - a| \right| \\ &= \left| \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right) \right) \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon \right| \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon. \end{aligned}$$

3. The first term tends to 0 as $n \to \infty$.

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$\begin{aligned} |b_n - a| &= \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n |a_i - a| \right| \\ &= \left| \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right) \right) \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon \right| \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon. \end{aligned}$$

- 3. The first term tends to 0 as $n \to \infty$.
- 4. Therefore, for any $\epsilon > 0$, by taking n to be sufficiently large, we can make $|b_n a| < 2\epsilon$.

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$\begin{aligned} |b_n - a| &= \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n |a_i - a| \right| \\ &= \left| \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right) \right) \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon \right| \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon. \end{aligned}$$

- 3. The first term tends to 0 as $n \to \infty$.
- 4. Therefore, for any $\epsilon > 0$, by taking n to be sufficiently large, we can make $|b_n a| < 2\epsilon$.

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$$\begin{aligned} \mathbf{b}_{n} - \mathbf{a} &| &= \left| \frac{1}{n} \sum_{i=1}^{n} a_{i} - \mathbf{a} \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{n} a_{i} - \frac{1}{n} \sum_{i=1}^{n} a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{n} (a_{i} - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^{n} (a_{i} - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^{n} (a_{i} - a) \right| \\ &= \left| \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} (a_{i} - a) + \sum_{i=N(\epsilon)+1}^{n} (a_{i} - a) \right) \right| \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} (a_{i} - a) \right| + \left| \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} (a_{i} - a) \right| + \left| \frac{n - N(\epsilon)}{n} \cdot \epsilon \right| \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} (a_{i} - a) \right| + \epsilon. \end{aligned}$$

3. The first term tends to 0 as $n \to \infty$.

4. Therefore, for any $\epsilon > 0$, by taking *n* to be sufficiently large, we can make $|b_n - a| < 2\epsilon$.

\mathbf{Proof}

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$$\begin{aligned} |b_n - a| &= \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &\leq \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\ &= \left| \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right) \right) \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon \right| \\ &< \left| \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon. \end{aligned}$$

3. The first term tends to 0 as $n \to \infty$.

4. Therefore, for any $\epsilon > 0$, by taking *n* to be sufficiently large, we can make $|b_n - a| < 2\epsilon$.

5. Hence $b_n \to a$ as $n \to \infty$, proving the lemma.

Theorem 2.60 The entropy rate H_X of a stationary source $\{X_k\}$ exists and is equal to H'_X .

Idea of Proof: Use stationarity of $\{X_k\}$ and Cesáro mean.

 \mathbf{Proof}

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

$$\underbrace{\frac{1}{n}H(X_1, X_2, \cdots, X_n)}^{b_n} = \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

$$\underbrace{\frac{1}{n} H(X_1, X_2, \cdots, X_n)}^{b_n} = \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}), \overset{a_k}{\bigwedge}$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

4. By the chain rule for entropy,

$$\underbrace{\frac{1}{n}H(X_1, X_2, \cdots, X_n)}^{b_n} = \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}), a_k$$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

4. By the chain rule for entropy,

$$\underbrace{\frac{1}{n}H(X_1, X_2, \cdots, X_n)}^{b_n} = \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}), a_k$$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),$$

or

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

- 5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_X , we have $a_n \to H'_X$.

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

 $H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

- 5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_X , we have $a_n \to H'_X$.

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

- 5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_X , we have $a_n \to H'_X$.
- 7. By Lemma 2.59, $b_n \rightarrow H'_X$, and so

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.

6. From the definition of
$$H'_X$$
, we have $a_n \to H'_X$

7. By Lemma 2.59, $\underline{b_n} \rightarrow H'_X$, and so

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.

6. From the definition of
$$H'_X$$
, we have $a_n \to H'_X$

7. By Lemma 2.59, $\underline{b_n} \rightarrow H'_X$, and so

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

- 5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_X , we have $a_n \to H'_X$.
- 7. By Lemma 2.59, $\underline{b_n} \rightarrow H'_X$, and so

$$\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = H'_X$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

- 5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_X , we have $a_n \to H'_X$.
- 7. By Lemma 2.59, $b_n \to H'_X$, and so

$$H_X = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = H'_X$$

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

4. By the chain rule for entropy,

$$\frac{1}{n}H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n}\sum_{k=1}^n H(X_k|X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

\mathbf{Proof}

1. We have proved in Lemma 2.58 that H'_X always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \ge 1$, let

$$a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})$$

 $b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).$

- 5. Therefore, b_n , $n \ge 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_X , we have $a_n \to H'_X$.
- 7. By Lemma 2.59, $b_n \rightarrow H'_X$, and so

$$H_X = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = H'_X$$

8. Hence,
$$H_X = H'_X$$
, as to be proved.

$$H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})$$

4. By the chain rule for entropy,

$$\frac{1}{n} H(X_1, X_2, \cdots, X_n)$$

= $\frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),$

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

• Theorem 2.60 says that

- Theorem 2.60 says that
 - 1. the entropy rate of an information source $\{X_k\}$ exists under the fairly general assumption that $\{X_k\}$ is stationary;

- Theorem 2.60 says that
 - 1. the entropy rate of an information source $\{X_k\}$ exists under the fairly general assumption that $\{X_k\}$ is stationary;
 - 2. H'_X is an alternative definition/interpretation of the entropy rate of $\{X_k\}$ when $\{X_k\}$ is stationary.

- Theorem 2.60 says that
 - 1. the entropy rate of an information source $\{X_k\}$ exists under the fairly general assumption that $\{X_k\}$ is stationary;
 - 2. H'_X is an alternative definition/interpretation of the entropy rate of $\{X_k\}$ when $\{X_k\}$ is stationary.
- However, the entropy rate of a stationary source $\{X_k\}$ may not carry any physical meaning unless $\{X_k\}$ is also ergodic. See Section 5.4.