

2.10 Entropy Rate of a Stationary Source

• In most communication systems, communication takes place continually instead of over a finite period of time.

- *•* In most communication systems, communication takes place continually instead of over a finite period of time.
- *•* Examples: TV broadcast, Internet, cellular systems.

- *•* In most communication systems, communication takes place continually instead of over a finite period of time.
- *•* Examples: TV broadcast, Internet, cellular systems.
- The information source can be modeled as a discrete-time random process $\{X_k, k \geq 1\}.$

- *•* In most communication systems, communication takes place continually instead of over a finite period of time.
- *•* Examples: TV broadcast, Internet, cellular systems.
- The information source can be modeled as a discrete-time random process $\{X_k, k \geq 1\}.$
- $\{X_k, k \geq 1\}$ is an infinite collection of random variables indexed by the set of positive integers. The index k is referred to as the "time" index.

- *•* In most communication systems, communication takes place continually instead of over a finite period of time.
- Examples: TV broadcast, Internet, cellular systems.
- *•* The information source can be modeled as a discrete-time random process $\{X_k, k \geq 1\}.$
- $\{X_k, k \geq 1\}$ is an infinite collection of random variables indexed by the set of positive integers. The index k is referred to as the "time" index.
- *•* Random variables *X^k* are called letters.

- *•* In most communication systems, communication takes place continually instead of over a finite period of time.
- Examples: TV broadcast, Internet, cellular systems.
- *•* The information source can be modeled as a discrete-time random process $\{X_k, k \geq 1\}.$
- $\{X_k, k \geq 1\}$ is an infinite collection of random variables indexed by the set of positive integers. The index k is referred to as the "time" index.
- *•* Random variables *X^k* are called letters.
- Assume that $H(X_k) < \infty$ for all *k*.

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k)
$$

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

• For a finite subset *A* of the index set $\{k : k \geq 1\}$, the joint entropy $H(X_k, k \in A)$ is finite because

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

• However, the joint entropy of an infinite collection of letters is infinite except for very special cases.

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

- *•* However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all *k*. Then

• For a finite subset *A* of the index set $\{k : k \geq 1\}$, the joint entropy $H(X_k, k \in A)$ is finite because

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

- *•* However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all *k*. Then

 $H(X_k, k \ge 1)$

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

- *•* However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all *k*. Then

$$
H(X_k, k \ge 1) = \sum_{k=1}^{\infty} H(X_k)
$$

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

- *•* However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all *k*. Then

$$
H(X_k, k \ge 1) = \sum_{k=1}^{\infty} H(X_k) = \sum_{k=1}^{\infty} h
$$

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

- *•* However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all *k*. Then

$$
H(X_k, k \ge 1) = \sum_{k=1}^{\infty} H(X_k) = \sum_{k=1}^{\infty} h = \infty.
$$

• For a finite subset *A* of the index set $\{k : k \geq 1\}$, the joint entropy $H(X_k, k \in A)$ is finite because

$$
H(X_k, k \in A) \le \sum_{k \in A} H(X_k) < \infty.
$$

- *•* However, the joint entropy of an infinite collection of letters is infinite except for very special cases.
- For example, X_k are i.i.d. and $H(X_k) = h$ for all *k*. Then

$$
H(X_k, k \ge 1) = \sum_{k=1}^{\infty} H(X_k) = \sum_{k=1}^{\infty} h = \infty.
$$

• In general, it is not meaningful to discuss $H(X_k, k \geq 1)$.

Entropy Rate

Entropy Rate

We are motivated to definite the entropy rate of an information source, which gives the average entropy of a letter of the source.

Entropy Rate

We are motivated to definite the entropy rate of an information source, which gives the average entropy of a letter of the source.

Definition 2.54 The entropy rate of an information source $\{X_k\}$ is defined as

$$
H_X = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$

when the limit exists.

$$
\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$

$$
\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{nH(X)}{n}
$$

$$
\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{\mathcal{M}H(X)}{\mathcal{M}}
$$

$$
\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{\mathcal{M}H(X)}{\mathcal{M}}
$$

$$
= \lim_{n \to \infty} H(X)
$$

$$
\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{nH(X)}{n}
$$

$$
= \lim_{n \to \infty} H(X)
$$

$$
= H(X),
$$

Example 2.55 Let $\{X_k\}$ be an i.i.d. source with generic random variable X. Then

$$
\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = \lim_{n \to \infty} \frac{nH(X)}{n}
$$

$$
= \lim_{n \to \infty} H(X)
$$

$$
= H(X),
$$

i.e., the entropy rate of an i.i.d. source is the entropy of any of its single letters.

$$
\frac{1}{n}H(X_1,X_2,\cdots,X_n)
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k)
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k)
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n \frac{H(X_k)}{H(X_k)}
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n \frac{k}{k}
$$
$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n k
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n k
$$
\n
$$
= \frac{1}{n} \frac{n(n+1)}{2}
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n k
$$
\n
$$
= \frac{1}{n} \frac{n(n+1)}{2}
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k)
$$

=
$$
\frac{1}{n} \sum_{k=1}^n k
$$

=
$$
\frac{1}{n} \frac{n(n+1)}{2}
$$

=
$$
\frac{1}{2}(n+1),
$$

Example 2.56 Let $\{X_k\}$ be a source such that X_k are mutually independent and $H(X_k) = k$ for $k \geq 1$. Then

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{k=1}^n H(X_k)
$$

=
$$
\frac{1}{n} \sum_{k=1}^n k
$$

=
$$
\frac{1}{n} \frac{n(n+1)}{2}
$$

=
$$
\frac{1}{2}(n+1),
$$

which does not converge as $n \to \infty$ although $H(X_k) < \infty$ for all *k*. Therefore, the entropy rate of $\{X_k\}$ does not exist.

• Toward characterizing the asymptotic behavior of $\{X_k\}$, it is natural to consider the limit

$$
H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

if it exists.

• Toward characterizing the asymptotic behavior of *{Xk}*, it is natural to consider the limit

$$
H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

if it exists.

• The quantity $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.

• Toward characterizing the asymptotic behavior of *{Xk}*, it is natural to consider the limit

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

if it exists.

• The quantity $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.

• Toward characterizing the asymptotic behavior of *{Xk}*, it is natural to consider the limit

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

if it exists.

- The quantity $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.
- H'_{X} is the limit of this quantity after the source has been run for an indefinite amount of time.

• Toward characterizing the asymptotic behavior of *{Xk}*, it is natural to consider the limit

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

if it exists.

- The quantity $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is the conditional entropy of the next letter given that we know all the past history of the source.
- H'_{X} is the limit of this quantity after the source has been run for an indefinite amount of time.

• Is $H'_X = H_X?$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$
X_{1+l}, X_{2+l}, \cdots, X_{m+l}
$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$
X_{1+l}, X_{2+l}, \cdots, X_{m+l}
$$

$$
X_1, X_2, \cdots, X_m \quad \cdots \quad X_{1+l}, X_{2+l}, \cdots, X_{m+l} \quad \cdots
$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$
X_{1+l}, X_{2+l}, \cdots, X_{m+l}
$$

$$
\overbrace{X_1, X_2, \cdots, X_m}^{m} \cdots X_{1+l}, X_{2+l}, \cdots, X_{m+l} \cdots
$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$
X_{1+l}, X_{2+l}, \cdots, X_{m+l}
$$

$$
\overbrace{X_1, X_2, \cdots, X_m}^{m} \cdots X_{1+l}, X_{2+l}, \cdots, X_{m+l} \cdots
$$

A stationary information source is one such that any finite block of random variables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source $\{X_k\}$ is stationary if

 X_1, X_2, \cdots, X_m

and

$$
X_{1+l}, X_{2+l}, \cdots, X_{m+l}
$$

$$
\overbrace{X_1, X_2, \cdots, X_m}^{m} \cdots \overbrace{X_{1+l}, X_{2+l}, \cdots, X_{m+l}}^{m} \cdots
$$

Stationarity and H' ₂ *X*

Stationarity and H' ₂ *X*

Recall that

$$
H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1}).
$$

Stationarity and H' ₂ *X*

Recall that

$$
H'_X = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1}).
$$

Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_X exists.

Proof

Proof

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|\mathbf{X}_1, X_2, \cdots, X_{n-1})
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n | \mathbf{X}_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_n | X_2, X_3, \cdots, X_{n-1})
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_n|X_2, X_3, \cdots, X_{n-1})
$$

\n
$$
= H(X_{n-1}|X_1, X_2, \cdots, X_{n-2}),
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}}|X_2, X_3, \cdots, X_{n-1})
$$

\n
$$
= H(X_{n-1}|X_1, X_2, \cdots, X_{n-2}),
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}}|X_2, X_3, \cdots, X_{n-1})
$$

\n
$$
= H(X_{\underline{n-1}}|X_1, X_2, \cdots, X_{n-2}),
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}}|X_2, X_3, \cdots, X_{n-1})
$$

\n
$$
= H(X_{\underline{n-1}}|X_1, X_2, \cdots, X_{n-2}),
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}}|X_2, X_3, \cdots, X_{n-1})
$$

\n
$$
= H(X_{\underline{n-1}}|X_1, X_2, \cdots, X_{n-2}),
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}}|X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{n-1})
$$

\n
$$
= H(X_{\underline{n-1}}|X_{\underline{1}}, X_2, \cdots, X_{n-2}),
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}}|X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{n-1})
$$

\n
$$
= H(X_{\underline{n-1}}|X_{\underline{1}}, X_{\underline{2}}, \cdots, X_{n-2}),
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

$$
H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}} | X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{n-1})
$$

\n
$$
= H(X_{\underline{n-1}} | X_{\underline{1}}, X_{\underline{2}}, \cdots, X_{n-2}),
$$
Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_{X} exists.

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

2. Toward this end, for $n \geq 2$, consider

$$
H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_{\underline{n}} | X_{\underline{2}}, X_{\underline{3}}, \cdots, X_{n-1})
$$

\n
$$
= H(X_{\underline{n-1}} | X_{\underline{1}}, X_{\underline{2}}, \cdots, X_{\underline{n-2}}),
$$

Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_{X} exists.

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

2. Toward this end, for $n \geq 2$, consider

$$
H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_1 | X_2, X_3, \cdots, X_{n-1})
$$

\n
$$
= H(X_{n-1} | X_1, X_2, \cdots, X_{n-2}),
$$

where the last step is justified by the stationarity of *{Xk}*.

Lemma 2.58 Let $\{X_k\}$ be a stationary source. Then H'_{X} exists.

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. Since $H(X_n | X_1, X_2, \cdots, X_{n-1})$ is lower bounded by zero for all *n*, it suffices to prove that this quantity is non-increasing in *n* to conclude that the limit H'_{X} exists.

2. Toward this end, for $n \geq 2$, consider

$$
H(X_n|X_1, X_2, \cdots, X_{n-1})
$$

\n
$$
\leq H(X_n|X_2, X_3, \cdots, X_{n-1})
$$

\n
$$
= H(X_{n-1}|X_1, X_2, \cdots, X_{n-2}),
$$

where the last step is justified by the stationarity of *{Xk}*.

3. Therefore, $H(X_n|X_1, X_2, \cdots, X_{n-1})$ is nonincreasing in *n*. The lemma is proved.

• Consider a sequence $\{a_n, n \geq 1\}$.

- Consider a sequence $\{a_n, n \geq 1\}$.
- Construct a sequence $\{b_n, n \geq 1\}$ where $b_n = \frac{1}{n}$ *n* $\sum_{i=1}^n a_i$.

- Consider a sequence $\{a_n, n \geq 1\}$.
- Construct a sequence $\{b_n, n \geq 1\}$ where $b_n = \frac{1}{n}$ *n* $\sum_{i=1}^n a_i$.
- b_n is the average of the first *n* terms in $\{a_n\}$.

- Consider a sequence $\{a_n, n \geq 1\}$.
- Construct a sequence $\{b_n, n \geq 1\}$ where $b_n = \frac{1}{n}$ *n* $\sum_{i=1}^n a_i$.
- b_n is the average of the first *n* terms in $\{a_n\}$.
- $b_n, n \geq 1$ are called the Cesaro means of $\{a_n\}$.

- Consider a sequence $\{a_n, n \geq 1\}$.
- Construct a sequence $\{b_n, n \geq 1\}$ where $b_n = \frac{1}{n}$ *n* $\sum_{i=1}^n a_i$.
- b_n is the average of the first *n* terms in $\{a_n\}$.
- $b_n, n \geq 1$ are called the Cesáro means of $\{a_n\}$.
- It can be shown that if $a_n \to a$, then $b_n \to a$.

Proof

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$|b_n - a|$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$|b_n - a|$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|\underline{b_n} - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - \underline{a} \right|
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

> $\overline{}$ \mid \mathbf{I} $\overline{}$ $\overline{}$ J

$$
\begin{array}{rcl}\n|b_n - a| & = & \left| \frac{1}{n} \sum_{i=1}^n a_i - \underline{a} \right| \\
& = & \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a_i \right|\n\end{array}
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
\begin{array}{rcl}\n|b_n - a| & = & \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\
& = & \left| \frac{1}{n} \sum_{i=1}^n \frac{a_i}{a_i} - \frac{1}{n} \sum_{i=1}^n \frac{a_i}{a_i} \right|\n\end{array}
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n \frac{a_i}{a_i} - \frac{1}{n} \sum_{i=1}^n \frac{a_i}{a_i} \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n \frac{(a_i - a)}{a_i} \right|
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a_i \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|
$$

$$
\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|
$$

$$
\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|
$$

$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right)
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|
$$

$$
\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|
$$

$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right)
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|
$$

$$
= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|
$$

$$
\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|
$$

$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n \frac{|a_i - a|}{n} \right)
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there $\text{exists } N(\epsilon) \text{ such that } |a_n - a| < \epsilon \text{ for all } n > N(\epsilon).$

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} \frac{|a_i - a|}{a_i} \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \frac{\epsilon}{a_i}
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} e
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^{n} a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} a_i - \frac{1}{n} \sum_{i=1}^{n} a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^{n} |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^{n} a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} a_i - \frac{1}{n} \sum_{i=1}^{n} a_i \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^{n} |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \left| \frac{1}{\epsilon} \right|
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^{n} a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} a_i - \frac{1}{n} \sum_{i=1}^{n} a_i \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^{n} |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \left(\frac{n - N(\epsilon)}{n} \right) \epsilon
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon.
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^{n} a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} a_i - \frac{1}{n} \sum_{i=1}^{n} a_i \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^{n} |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon.
$$

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^{n} a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} a_i - \frac{1}{n} \sum_{i=1}^{n} a_i \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^{n} |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon.
$$

3. The first term tends to 0 as $n \to \infty$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^{n} a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} a_i - \frac{1}{n} \sum_{i=1}^{n} a_i \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^{n} |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \epsilon.
$$

- 3. The first term tends to 0 as $n \to \infty$.
- 4. Therefore, for any $\epsilon > 0$, by taking *n* to be sufficiently large, we can make $|b_n - a| < 2\epsilon$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
|b_n - a| = \left| \frac{1}{n} \sum_{i=1}^{n} a_i - a \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} a_i - \frac{1}{n} \sum_{i=1}^{n} a_i \right|
$$

\n
$$
= \left| \frac{1}{n} \sum_{i=1}^{n} (a_i - a) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^{n} |a_i - a|
$$

\n
$$
= \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^{n} |a_i - a| \right)
$$

\n
$$
< \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^{n} \epsilon
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon
$$

\n
$$
< \left(\frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| \right) + \epsilon.
$$

- 3. The first term tends to 0 as $n \to \infty$.
- 4. Therefore, for any $\epsilon > 0$, by taking *n* to be sufficiently large, we can make $|b_n - a| < 2\epsilon$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

$$
\begin{array}{rcl}\n\left|b_{n}-a\right| & = & \left|\frac{1}{n}\sum_{i=1}^{n}a_{i}-a\right| \\
& = & \left|\frac{1}{n}\sum_{i=1}^{n}a_{i}-\frac{1}{n}\sum_{i=1}^{n}a\right| \\
& = & \left|\frac{1}{n}\sum_{i=1}^{n}(a_{i}-a)\right| \\
& \leq & \frac{1}{n}\sum_{i=1}^{n}|a_{i}-a| \\
& = & \frac{1}{n}\left(\sum_{i=1}^{N(\epsilon)}|a_{i}-a|+\sum_{i=N(\epsilon)+1}^{n}|a_{i}-a|\right) \\
& < & \frac{1}{n}\sum_{i=1}^{N(\epsilon)}|a_{i}-a|+\frac{1}{n}\sum_{i=N(\epsilon)+1}^{n}\epsilon \\
& = & \frac{1}{n}\sum_{i=1}^{N(\epsilon)}|a_{i}-a|+\frac{n-N(\epsilon)}{n} \cdot \epsilon \\
& < & \left(\frac{1}{n}\sum_{i=1}^{N(\epsilon)}|a_{i}-a|\right)+\epsilon.\n\end{array}
$$

- 3. The first term tends to 0 as $n \to \infty$.
- 4. Therefore, for any $\epsilon > 0$, by taking *n* to be sufficiently large, we can make $|b_n - a| < 2\epsilon$.

Proof

1. Since $a_n \to a$ as $n \to \infty$, for every $\epsilon > 0$, there exists $N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all $n > N(\epsilon)$.

2. For $n > N(\epsilon)$, consider

$$
\begin{array}{rcl}\n|b_n - a| & = & \left| \frac{1}{n} \sum_{i=1}^n a_i - a \right| \\
& = & \left| \frac{1}{n} \sum_{i=1}^n a_i - \frac{1}{n} \sum_{i=1}^n a \right| \\
& = & \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \\
& \leq & \frac{1}{n} \sum_{i=1}^n |a_i - a| \\
& = & \frac{1}{n} \left(\sum_{i=1}^{N(\epsilon)} |a_i - a| + \sum_{i=N(\epsilon)+1}^n |a_i - a| \right) \\
& < & \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{1}{n} \sum_{i=N(\epsilon)+1}^n \epsilon \\
& = & \frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| + \frac{n - N(\epsilon)}{n} \cdot \epsilon \\
& < & \left(\frac{1}{n} \sum_{i=1}^{N(\epsilon)} |a_i - a| \right) + \epsilon.\n\end{array}
$$

3. The first term tends to 0 as $n \to \infty$.

4. Therefore, for any $\epsilon > 0$, by taking *n* to be sufficiently large, we can make $|b_n - a| < 2\epsilon$.

5. Hence $b_n \to a$ as $n \to \infty$, proving the lemma.

Theorem 2.60 The entropy rate H_X of a stationary source $\{X_k\}$ exists and is equal to H_X' .
Idea of Proof: Use stationarity of $\{X_k\}$ and Cesáro mean.

Proof

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n)
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

$$
\frac{\left(\frac{1}{n}H(X_1, X_2, \cdots, X_n)\right)}{n} \bigg\}^{b_n}
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

$$
\frac{\frac{1}{n}H(X_1, X_2, \cdots, X_n)}{n} = \frac{\frac{1}{n} \sum_{k=1}^n \left(H(X_k | X_1, X_2, \cdots, X_{k-1})\right)} a_k
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

4. By the chain rule for entropy,

$$
\frac{\left(\frac{1}{n} H(X_1, X_2, \cdots, X_n) \right)^{b_n}}{\left(\frac{1}{n} \sum_{k=1}^n \left(H(X_k | X_1, X_2, \cdots, X_{k-1}) \right)^{a_k} \right)^{b_k}}
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

4. By the chain rule for entropy,

$$
\frac{\left(\frac{1}{n} H(X_1, X_2, \cdots, X_n) \right)^{b_n}}{\left(\frac{1}{n} \sum_{k=1}^n \left(H(X_k | X_1, X_2, \cdots, X_{k-1}) \right)^{a_k} \right)^{b_k}}
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

4. By the chain rule for entropy,

$$
\frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

or

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$.

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

- 5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_{X} , we have $a_n \to H'_{X}$.

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

4. By the chain rule for entropy,

$$
\frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

- 5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_{X} , we have $a_n \to H'_{X}$.

$$
H'_{X} = \lim_{n \to \infty} \underbrace{H(X_n | X_1, X_2, \cdots, X_{n-1})}_{\text{max}}
$$

4. By the chain rule for entropy,

$$
\frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$.

6. From the definition of
$$
H'_X
$$
, we have $a_n \to H'_X$.

7. By Lemma 2.59, $b_n \rightarrow H'_X$, and so

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

4. By the chain rule for entropy,

$$
\frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$.

6. From the definition of
$$
H'_X
$$
, we have $a_n \to H'_X$.

7. By Lemma 2.59,
$$
b_n \to H'_X
$$
, and so

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

4. By the chain rule for entropy,

$$
\frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$.

6. From the definition of
$$
H'_X
$$
, we have $a_n \to H'_X$.

7. By Lemma 2.59,
$$
b_n \to H'_X
$$
, and so

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

4. By the chain rule for entropy,

$$
\frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$. 6. From the definition of H'_{X} , we have $a_n \to H'_{X}$.

7. By Lemma 2.59,
$$
b_n \to H'_X
$$
, and so

$$
\lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = H'_X.
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

4. By the chain rule for entropy,

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X$.

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

- 5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$.
- 6. From the definition of H'_{X} , we have $a_n \to H'_{X}$.
- 7. By Lemma 2.59, $b_n \rightarrow H'_X$, and so

$$
H_X = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = H'_X.
$$

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

4. By the chain rule for entropy,

$$
\frac{1}{n} H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

Proof

1. We have proved in Lemma 2.58 that H'_{X} always exists for a stationary source $\{X_k\}$.

2. In order to prove the theorem, we only have to prove that $H_X = H'_X.$

3. For $n \geq 1$, let

$$
a_n = H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

$$
b_n = \frac{1}{n} H(X_1, X_2, \cdots, X_n).
$$

- 5. Therefore, b_n , $n \geq 1$ are the Cesáro means of $\{a_n\}$. 6. From the definition of H'_{X} , we have $a_n \to H'_{X}$.
- 7. By Lemma 2.59, $b_n \rightarrow H'_X$, and so

$$
H_X = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \cdots, X_n) = H'_X.
$$

8. Hence,
$$
H_X = H'_X
$$
, as to be proved.

$$
H'_{X} = \lim_{n \to \infty} H(X_n | X_1, X_2, \cdots, X_{n-1})
$$

4. By the chain rule for entropy,

$$
\frac{1}{n}H(X_1, X_2, \cdots, X_n)
$$
\n
$$
= \frac{1}{n} \sum_{k=1}^n H(X_k | X_1, X_2, \cdots, X_{k-1}),
$$

$$
b_n = \frac{1}{n} \sum_{k=1}^n a_k.
$$

• Theorem 2.60 says that

- *•* Theorem 2.60 says that
	- 1. the entropy rate of an information source $\{X_k\}$ exists under the fairly general assumption that ${X_k}$ is stationary;

- *•* Theorem 2.60 says that
	- 1. the entropy rate of an information source $\{X_k\}$ exists under the fairly general assumption that ${X_k}$ is stationary;
	- 2. H_X' is an alternative definition/interpretation of the entropy rate of ${X_k}$ when ${X_k}$ is stationary.

- Theorem 2.60 says that
	- 1. the entropy rate of an information source $\{X_k\}$ exists under the fairly general assumption that ${X_k}$ is stationary;
	- 2. H_X' is an alternative definition/interpretation of the entropy rate of ${X_k}$ when ${X_k}$ is stationary.
- However, the entropy rate of a stationary source $\{X_k\}$ may not carry any physical meaning unless $\{X_k\}$ is also ergodic. See Section 5.4.