
2.10 Entropy Rate of a Stationary 
Source



Discrete-time Information Source
• In most communication systems, communication takes place continually

instead of over a finite period of time.

• Examples: TV broadcast, Internet, cellular systems.

• The information source can be modeled as a discrete-time random process

{Xk, k � 1}.

• {Xk, k � 1} is an infinite collection of random variables indexed by the

set of positive integers. The index k is referred to as the “time” index.

• Random variables Xk are called letters.

• Assume that H(Xk) < 1 for all k.
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Total Entropy of { Xk }

• For a finite subset A of the index set {k : k � 1}, the joint entropy
H(Xk, k 2 A) is finite because

H(Xk, k 2 A) 
X

k2A

H(Xk) < 1.

• However, the joint entropy of an infinite collection of letters is infinite
except for very special cases.

• For example, Xk are i.i.d. and H(Xk) = h for all k. Then

H(Xk, k � 1) =

1X

k=1

H(Xk) =

1X

k=1

h = 1.

• In general, it is not meaningful to discuss H(Xk, k � 1).
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Entropy Rate



We are motivated to definite the entropy rate of an information source, which

gives the average entropy of a letter of the source.

Definition 2.54 The entropy rate of an information source {Xk} is defined as

HX = lim

n!1

1

n
H(X1, X2, · · · , Xn)

when the limit exists.
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Example 2.55 Let {Xk} be an i.i.d. source with generic random variable X.

Then

lim

n!1

1

n
H(X1, X2, · · · , Xn) = lim

n!1

nH(X)

n
= lim

n!1
H(X)

= H(X),

i.e., the entropy rate of an i.i.d. source is the entropy of any of its single letters.

Entropy Rate May Exist
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Example 2.56 Let {Xk} be a source such that Xk are mutually independent

and H(Xk) = k for k � 1. Then

1

n
H(X1, X2, · · · , Xn) =

1

n

nX

k=1

H(Xk)

=

1

n

nX

k=1

k

=

1

n

n(n+ 1)

2

=

1

2

(n+ 1),

which does not converge as n ! 1 although H(Xk) < 1 for all k. Therefore,

the entropy rate of {Xk} does not exist.

Entropy Rate May Not Exist
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The Limit   H 0
X

• Toward characterizing the asymptotic behavior of {Xk}, it is natural to

consider the limit

H 0
X = lim

n!1
H(Xn|X1, X2, · · · , Xn�1)

if it exists.

• The quantity H(Xn|X1, X2, · · · , Xn�1) is the conditional entropy of the

next letter given that we know all the past history of the source.

• H 0
X is the limit of this quantity after the source has been run for an

indefinite amount of time.

• Is H 0
X = HX?
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Stationary Information Source

mz }| {
X1, X2, · · · , Xm · · ·

mz }| {
X1+l, X2+l, · · · , Xm+l · · ·

l

A stationary information source is one such that any finite block of random vari-

ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source {Xk} is stationary if

X1, X2, · · · , Xm

and

X1+l, X2+l, · · · , Xm+l

have the same joint distribution for any m, l � 1.



Stationary Information Source

mz }| {
X1, X2, · · · , Xm · · ·

mz }| {
X1+l, X2+l, · · · , Xm+l · · ·

l

A stationary information source is one such that any finite block of random vari-

ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source {Xk} is stationary if

X1, X2, · · · , Xm

and

X1+l, X2+l, · · · , Xm+l

have the same joint distribution for any m, l � 1.



Stationary Information Source

mz }| {
X1, X2, · · · , Xm · · ·

mz }| {
X1+l, X2+l, · · · , Xm+l · · ·

l

A stationary information source is one such that any finite block of random vari-

ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source {Xk} is stationary if

X1, X2, · · · , Xm

and

X1+l, X2+l, · · · , Xm+l

have the same joint distribution for any m, l � 1.



Stationary Information Source

mz }| {
X1, X2, · · · , Xm · · ·

mz }| {
X1+l, X2+l, · · · , Xm+l · · ·

l

A stationary information source is one such that any finite block of random vari-

ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source {Xk} is stationary if

X1, X2, · · · , Xm

and

X1+l, X2+l, · · · , Xm+l

have the same joint distribution for any m, l � 1.



Stationary Information Source

mz }| {
X1, X2, · · · , Xm · · ·

mz }| {
X1+l, X2+l, · · · , Xm+l · · ·

l

A stationary information source is one such that any finite block of random vari-

ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source {Xk} is stationary if

X1, X2, · · · , Xm

and

X1+l, X2+l, · · · , Xm+l

have the same joint distribution for any m, l � 1.



Stationary Information Source

mz }| {
X1, X2, · · · , Xm · · ·

mz }| {
X1+l, X2+l, · · · , Xm+l · · ·

l

A stationary information source is one such that any finite block of random vari-

ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source {Xk} is stationary if

X1, X2, · · · , Xm

and

X1+l, X2+l, · · · , Xm+l

have the same joint distribution for any m, l � 1.



Stationary Information Source

mz }| {
X1, X2, · · · , Xm · · ·

mz }| {
X1+l, X2+l, · · · , Xm+l · · ·

l

A stationary information source is one such that any finite block of random vari-

ables and any of its time-shift versions have exactly the same joint distribution.

Definition 2.57 An information source {Xk} is stationary if

X1, X2, · · · , Xm

and

X1+l, X2+l, · · · , Xm+l

have the same joint distribution for any m, l � 1.



Stationarity and H 0
X

Recall that

H 0
X = lim

n!1
H(Xn|X1, X2, · · · , Xn�1).

Lemma 2.58 Let {Xk} be a stationary source. Then H 0
X exists.



Stationarity and H 0
X

Recall that

H 0
X = lim

n!1
H(Xn|X1, X2, · · · , Xn�1).

Lemma 2.58 Let {Xk} be a stationary source. Then H 0
X exists.



Stationarity and H 0
X

Recall that

H 0
X = lim

n!1
H(Xn|X1, X2, · · · , Xn�1).

Lemma 2.58 Let {Xk} be a stationary source. Then H 0
X exists.



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_

____



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_ _

____



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_ _

____ _



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_ _ _

____ _



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_ _ _

____ _ _



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_ _ _ ____

____ _ _



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_ _ _ ____

____ _ _ ____



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

_ _ _ ____

____ _ _ ____



Lemma 2.58 Let {Xk} be a stationary source. Then

H0
X exists.

Proof

1. Since H(Xn|X
1

, X
2

, · · · , Xn�1

) is lower bounded

by zero for all n, it suffices to prove that this quantity

is non-increasing in n to conclude that the limit H0
X

exists.

2. Toward this end, for n � 2, consider

H(Xn|X
1

, X
2

, · · · , Xn�1

)

 H(Xn|X
2

, X
3

, · · · , Xn�1

)

= H(Xn�1

|X
1

, X
2

, · · · , Xn�2

),

where the last step is justified by the stationarity of

{Xk}.

3. Therefore, H(Xn|X
1

, X
2

, · · · , Xn�1

) is non-

increasing in n. The lemma is proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Cesáro Mean



• Consider a sequence {an, n � 1}.

• Construct a sequence {bn, n � 1} where bn =

1
n

Pn
i=1 ai.

• bn is the average of the first n terms in {an}.

• bn, n � 1 are called the Cesáro means of {an}.

• It can be shown that if an ! a, then bn ! a.

Cesáro Mean



• Consider a sequence {an, n � 1}.

• Construct a sequence {bn, n � 1} where bn =

1
n

Pn
i=1 ai.

• bn is the average of the first n terms in {an}.

• bn, n � 1 are called the Cesáro means of {an}.
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Lemma 2.59 (Cesáro Mean) Let ak and bk be real

numbers. If an ! a as n ! 1 and bn = 1
n

Pn
i=1 ai,

then bn ! a as n ! 1.

Proof

1. Since an ! a as n ! 1, for every ✏ > 0, there
exists N(✏) such that |an � a| < ✏ for all n > N(✏).

2. For n > N(✏), consider

|bn � a| =

������

1

n

nX

i=1

ai � a

������

=

������

1

n

nX

i=1

ai �
1

n

nX

i=1

a

������

=

������

1

n

nX

i=1

(ai � a)

������


1

n

nX

i=1

|ai � a|

=
1

n

0

B@
N(✏)X

i=1

|ai � a| +

nX

i=N(✏)+1

|ai � a|

1

CA

<
1

n

N(✏)X

i=1

|ai � a| +
1

n

nX

i=N(✏)+1

✏

=
1

n

N(✏)X

i=1

|ai � a| +
n � N(✏)

n
· ✏

<
1

n

N(✏)X

i=1

|ai � a| + ✏.

3. The first term tends to 0 as n ! 1.

4. Therefore, for any ✏ > 0, by taking n to be suffi-
ciently large, we can make |bn � a| < 2✏.

5. Hence bn ! a as n ! 1, proving the lemma.
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Lemma 2.59 (Cesáro Mean) Let ak and bk be real

numbers. If an ! a as n ! 1 and bn = 1
n

Pn
i=1 ai,

then bn ! a as n ! 1.

Proof

1. Since an ! a as n ! 1, for every ✏ > 0, there
exists N(✏) such that |an � a| < ✏ for all n > N(✏).

2. For n > N(✏), consider

|bn � a| =

������

1

n

nX

i=1

ai � a

������

=

������

1

n

nX

i=1

ai �
1

n

nX

i=1

a

������

=

������

1

n

nX

i=1

(ai � a)

������


1

n

nX

i=1

|ai � a|

=
1

n

0

B@
N(✏)X

i=1

|ai � a| +

nX

i=N(✏)+1

|ai � a|

1

CA

<
1

n

N(✏)X

i=1

|ai � a| +
1

n

nX

i=N(✏)+1

✏

=
1

n

N(✏)X

i=1

|ai � a| +
n � N(✏)

n
· ✏

<
1

n

N(✏)X

i=1

|ai � a| + ✏.

3. The first term tends to 0 as n ! 1.

4. Therefore, for any ✏ > 0, by taking n to be suffi-
ciently large, we can make |bn � a| < 2✏.

5. Hence bn ! a as n ! 1, proving the lemma.

_

_______
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Theorem 2.60 The entropy rate HX of a stationary

source {Xk} exists and is equal to H0
X .

Proof

1. We have proved in Lemma 2.58 that H0
X always ex-

ists for a stationary source {Xk}.

2. In order to prove the theorem, we only have to prove
that HX = H0

X .

3. For n � 1, let

an = H(Xn|X1, X2, · · · , Xn�1)

bn =
1

n
H(X1, X2, · · · , Xn).

4. By the chain rule for entropy,

1

n
H(X1, X2, · · · , Xn)

=
1

n

nX

k=1

H(Xk|X1, X2, · · · , Xk�1),

or

bn =
1

n

nX

k=1

ak.

5. Therefore, bn, n � 1 are the Cesáro means of {an}.

6. From the definition of H0
X , we have an ! H0

X .

7. By Lemma 2.59, bn ! H0
X , and so

HX = lim
n!1

1

n
H(X1, X2, · · · , Xn) = H

0
X.

8. Hence, HX = H0
X , as to be proved.
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6. From the definition of H0
X , we have an ! H0

X .

7. By Lemma 2.59, bn ! H0
X , and so

HX = lim
n!1

1

n
H(X1, X2, · · · , Xn) = H

0
X.

8. Hence, HX = H0
X , as to be proved.

bn

ak



Theorem 2.60 The entropy rate HX of a stationary

source {Xk} exists and is equal to H0
X .

Proof

1. We have proved in Lemma 2.58 that H0
X always ex-

ists for a stationary source {Xk}.

2. In order to prove the theorem, we only have to prove
that HX = H0

X .

3. For n � 1, let

an = H(Xn|X1, X2, · · · , Xn�1)

bn =
1

n
H(X1, X2, · · · , Xn).

4. By the chain rule for entropy,

1

n
H(X1, X2, · · · , Xn)

=
1

n

nX

k=1

H(Xk|X1, X2, · · · , Xk�1),

or

bn =
1

n

nX

k=1

ak.

5. Therefore, bn, n � 1 are the Cesáro means of {an}.
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6. From the definition of H0
X , we have an ! H0

X .

7. By Lemma 2.59, bn ! H0
X , and so

HX = lim
n!1

1

n
H(X1, X2, · · · , Xn) = H

0
X.

8. Hence, HX = H0
X , as to be proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)

an



Theorem 2.60 The entropy rate HX of a stationary

source {Xk} exists and is equal to H0
X .

Proof

1. We have proved in Lemma 2.58 that H0
X always ex-

ists for a stationary source {Xk}.

2. In order to prove the theorem, we only have to prove
that HX = H0

X .

3. For n � 1, let

an = H(Xn|X1, X2, · · · , Xn�1)

bn =
1

n
H(X1, X2, · · · , Xn).

4. By the chain rule for entropy,

1

n
H(X1, X2, · · · , Xn)

=
1

n

nX

k=1

H(Xk|X1, X2, · · · , Xk�1),

or

bn =
1

n

nX

k=1

ak.

5. Therefore, bn, n � 1 are the Cesáro means of {an}.
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6. From the definition of H0
X , we have an ! H0

X .

7. By Lemma 2.59, bn ! H0
X , and so

HX = lim
n!1

1

n
H(X1, X2, · · · , Xn) = H

0
X.

8. Hence, HX = H0
X , as to be proved.

H
0
X = lim

n!1H(Xn|X1, X2, · · · , Xn�1)



Theorem 2.60 The entropy rate HX of a stationary

source {Xk} exists and is equal to H0
X .

Proof

1. We have proved in Lemma 2.58 that H0
X always ex-

ists for a stationary source {Xk}.

2. In order to prove the theorem, we only have to prove
that HX = H0

X .

3. For n � 1, let

an = H(Xn|X1, X2, · · · , Xn�1)

bn =
1

n
H(X1, X2, · · · , Xn).

4. By the chain rule for entropy,

1

n
H(X1, X2, · · · , Xn)

=
1

n

nX

k=1

H(Xk|X1, X2, · · · , Xk�1),

or

bn =
1

n

nX

k=1

ak.

5. Therefore, bn, n � 1 are the Cesáro means of {an}.
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Remarks



• Theorem 2.60 says that

1. the entropy rate of an information source {Xk} exists under the fairly
general assumption that {Xk} is stationary;

2. H 0
X is an alternative definition/interpretation of the entropy rate of

{Xk} when {Xk} is stationary.

• However, the entropy rate of a stationary source {Xk} may not carry any
physical meaning unless {Xk} is also ergodic. See Section 5.4.
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