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Worst Additive Noise

e We will show that in terms of the capacity of the system, the zero-mean
(Gaussian noise is the worst additive noise given that the noise vector has
a fixed correlation matrix.

e The diagonal elements of the correlation matrix specify the power of the
individual noise variables.

e The other elements in the matrix give a characterization of the correlation
between the noise variables.
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Theorem 11.32 For a fixed zero-mean Gaussian random vector X™, let
Y = X"+ 7Z,

where the joint pdf of Z exists and Z is independent of X*. Under the constraint
that the correlation matrix of Z is equal to K, where K is any symmetric positive
definite matrix, I(X*;Y) is minimized if and only if Z = Z* ~ N (0, K).
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Y =X+7Z
where Z is independent of X. Then

KY :KX—I-Kz.
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where Z is independent of X. Then
Ky = Kx + K.

Remark The scalar case has been proved in the proof of Theorem 11.21.
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Remark A similar technique has been used in proving Theorems 2.50 and
10.41 (maximum entropy distributions).
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°f

Then f* maximizes h(f) over all pdf f defined on S,
subject to the constraints in (2).



Theorem 2.50 Let

p*(ac) — e—Ao—Zgnzl >\,L’I“,L(£B)

for all £ € S, where Ag, A1, - -
that

, Am are chosen such

Z p(x)r;(x) = a; for 1l < i< m. (1)
rESp

Then p* maximizes H(p) over all probability distribu-
tion p on S subject to (1).

Sketch of Proof

H(p") — H(p)
= — Z p () Inp™(x) + Z p(x) In p(x)

r€ES rESp

= — Z p(x)Inp™ (z) + Z p(z) In p(x)
ZBESP CEGSp
CUGSp p*(fE)

= D(pllp™)

1V

0.

Remark The key step is to establish that

. p (@)npT(z) = > pz)Inp™(x).
reS rE€ESp

Theorem 10.41 Let
f*(x) — e—Ao—Z:?q'zl >\Z"T‘,I: (X)

, A\, are chosen such

for all x € &, where Ag, A1, - -
that

/ r;,(x)f(x)dx = a; forl < i< m. (2)
°f

Then f* maximizes h(f) over all pdf f defined on S,
subject to the constraints in (2).

Remark The key step is to establish that

/Sf (x)1n f (x)d":/sf F(x)In f* (x)dx.  (3)



Theorem 2.50 Let

p*(ac) — e—Ao—Zgnzl >\,L’I“,L(£B)

for all £ € S, where Ag, A1, - -
that

, Am are chosen such

Z p(x)r;(x) = a; for 1l < i< m. (1)
rESp

Then p* maximizes H(p) over all probability distribu-
tion p on S subject to (1).

Sketch of Proof

H(p") — H(p)
= — Z p () Inp™(x) + Z p(x) In p(x)

r€ES rESp

= — Z p(x)Inp™ (z) + Z p(z) In p(x)
ZBESP CEGSp
.’.CGSp p*(fE)

= D(pllp™)

1V

0.

Remark The key step is to establish that

ST p (@) mp (@) = 3 ple)lnp*(a).
r€ES rE€ESp

Theorem 10.41 Let
f*(x) — e—Ao—ZZ{n'Zl >\Z"T‘,I: (X)

, A\, are chosen such

for all x € &, where Ag, A1, - -
that

/ r;,(x)f(x)dx = a; forl < i< m. (2)
°f

Then f* maximizes h(f) over all pdf f defined on S,
subject to the constraints in (2).

Remark The key step is to establish that

/Sf (x)1n f (x)d":/sf F(x)In f* (x)dx.  (3)

Theorem 10.45 Let X be a vector of n~continuous
random variables with correlation matrix K. Then

1 -
h(X) < = log [(2me) | K|]
2

with equality if and only if X ~ N (0, K).



Theorem 2.50 Let

p*(ac) — e—Ao—Zgnzl >\,L’I“,L(£B)

for all £ € S, where Ag, A1, - -
that

, Am are chosen such

Z p(x)r;(x) = a; for 1l < i< m. (1)
rESp

Then p* maximizes H(p) over all probability distribu-
tion p on S subject to (1).

Sketch of Proof

H(p") — H(p)
= — Z p () Inp™(x) + Z p(x) In p(x)

r€ES rESp

= — Z p(x)Inp™ (z) + Z p(z) In p(x)
ZBESP CEGSp
.’.CGSp p*(fE)

= D(pllp™)

1V

0.

Remark The key step is to establish that

ST p (@) mp (@) = 3 ple)lnp*(a).
r€ES rE€ESp

Theorem 10.41 Let
f*(x) — e—Ao—ZZ{n'Zl >\Z"T‘,I: (X)

, A\, are chosen such

for all x € &, where Ag, A1, - -
that

/ r;,(x)f(x)dx = a; forl < i< m. (2)
°f

Then f* maximizes h(f) over all pdf f defined on S,
subject to the constraints in (2).

Remark The key step is to establish that

/Sf (x)1n f (x)d":/sf F(x)In f* (x)dx.  (3)

Theorem 10.45 Let X be a vector of n~continuous
random variables with correlation matrix K. Then

1 -
h(X) < = log [(2me) | K|]
2

with equality if and only if X ~ N (0, K).

Then (3) and Theorem 10.45 together imply



Theorem 2.50 Let

p*(ac) — e—Ao—Zgnzl >\,L’I“,L(£B)

for all £ € S, where Ag, A1, - -
that

, Am are chosen such

Z p(x)r;(x) = a; for 1l < i< m. (1)
rESp

Then p* maximizes H(p) over all probability distribu-
tion p on S subject to (1).

Sketch of Proof

H(p") — H(p)
= — Z p () Inp™(x) + Z p(x) In p(x)

r€ES rESp

= — Z p(x)Inp™ (z) + Z p(z) In p(x)
ZBESP CEGSp
CUGSp p*(fE)

= D(pllp™)

1V

0.

Remark The key step is to establish that

. p (@)npT(z) = > pz)Inp™(x).
reS rE€ESp

Theorem 10.41 Let
f*(x) — e—Ao—Z:?q'zl >\Z"T‘,I: (X)

, A\, are chosen such

for all x € &, where Ag, A1, - -
that

/ r;,(x)f(x)dx = a; forl < i< m. (2)
°f

Then f* maximizes h(f) over all pdf f defined on S,
subject to the constraints in (2).

Remark The key step is to establish that

/Sf (x)1n f (x)d":/sf F(x)In f* (x)dx.  (3)

Theorem 10.45 Let X be a vector of n~continuous
random variables with correlation matrix K. Then

1 -
h(X) < = log [(2me) | K|]
2

with equality if and only if X ~ N (0, K).
Then (3) and Theorem 10.45 together imply

Lemma 11.34 Let Y* ~ N (0, K) and Y be any ran-
dom vector with correlation matrix K. Then

fy (¥) log fyrx (¥y)dy-

[ Fxs () 108 fyyx () dy = /SY



Data Processing Inequality for
Informational Divergence

Theorem Let X, X’ )Y, and Y’ be real random variables such that fxy and
Jxryr exist, and fy\x = fy/x/. Then

D(fx||fx) = D(fy|fy’)-



Data Processing Inequality for
Informational Divergence

Theorem Let X, X’ )Y, and Y’ be real random variables such that fxy and
Jxryr exist, and fy\x = fy/x/. Then

D(fx||fx) = D(fy|fy’)-

Proof Exercise.



Data Processing Inequality for
Informational Divergence

Theorem Let X, X’ )Y, and Y’ be real random variables such that fxy and
Jxryr exist, and fy\x = fy/x/. Then

D(fx||fx) = D(fy|fy’)-

Proof Exercise.

X » Jy|x > Y




Data Processing Inequality for
Informational Divergence

Theorem Let X, X’ )Y, and Y’ be real random variables such that fxy and
Jxryr exist, and fy\x = fy/x/. Then

D(fx||fx) = D(fy|fy’)-

Proof Exercise.

X > Jy|x > Y

X’ | fyix > Y’




Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Z" ~ N(0,K)

X" Y™

Proof



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Z" ~ N(0,K)

X" Y™

X Y

Proof



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Z" ~ N(0,K)

X" Y™

X Y

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Z" ~ N(0,K)

X" Y™

X Y

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Z* ~ N(0, K)

X" Y™

X Y

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

Lemma 11.33 Let X be a zero-mean random vector
and

Y =X+ Z
where Z is independent of X. Then

K~y = Kx + K.




Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering

I(X*Y™*) — 1(X™;Y)



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering

I(X*Y™*) — 1(X™;Y)
=  h(Y") = h(Z") — h(Y) + h(2Z)



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering

I(X*;Y*) — (X*;Y)
=  h(Y") = h(Z") — h(Y) + h(Z)



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
=  h(Y") - h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
=  h(Y") = h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
=  h(Y") = h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
=  h(Y") - h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
=  h(Y") - h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz




Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
=  h(Y") = h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
=  h(Y") = h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz




Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
= h(Y") = h(Z") — h(Y) + h(Z)

=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

Lemma 11.34 Let Y* ~ N (0, K) and Y be any ran-
dom vector with correlation matrix K. Then

/fy* (v) log fyx (¥)dy = /S v (¥) 1og fyx (y)dy.
Y




Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

Proof

1. Since EZ™ = 0, KZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering
I(X*Y™*) — 1(X™;Y)
= h(Y") = h(Z") — h(Y) + h(Z)

=~ [y g fyx (9)dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

Lemma 11.34 Let Y* ~ N (0, K) and Y be any ran-
dom vector with correlation matrix K. Then

/fy* (v) log fyx (¥)dy = /S v (¥) 1og fyx (y)dy.
Y




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx (9)dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
— Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

Lemma 11.34 Let Y* ~ N (0, K) and Y be any ran-
dom vector with correlation matrix K. Then

/fy* (v) log fyx (¥)dy = /S v (¥) 1og fyx (y)dy.
Y




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y log Fyx ()dy + [ Sz (2) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

Lemma 11.34 Let Y* ~ N (0, K) and Y be any ran-
dom vector with correlation matrix K. Then

/fy* (v) log fyx (¥)dy = /S v (¥) 1og fyx (y)dy.
Y




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y log Fyx ()dy + [ Sz (2) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fz+ (z)dz
R ASEA

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

Lemma 11.34 Let Y* ~ N (0, K) and Y be any ran-
dom vector with correlation matrix K. Then

/fy* (v) log fyx (¥)dy = /S v (¥) 1og fyx (y)dy.
Y




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz



Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ : fz*(2) “




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ : fz*(2) “



Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ : fz*(2) “




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y™) — h(Z*) — h(Y) + h(Z)
= —/fy*(Y) log fy*(Y)dy+/fz*(Z) log fz* (z)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ ) fzx* (2) “




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ : fz*(2) “




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

Fv () fz(2)
— lo — | fyv (y)dy — lo ——— | fz(z)d=
/ y Fyv* (¥) Y /SZ : fz*(2) “
— D(fyllfy*) — D(fzllfz*)




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ ) fzx* (2) “

= Dy llify*x) — D(fzllfz*)



Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+ / fv (¥) log fv (v)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ ) fzx* (2) “

= Dy llify*x) — D(fzllfz*)




Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+/fy(y) log fy (y)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

+ / fv (¥) log fvy (v)dy — /SZ fz (2) log f (2)dz

Fv () fz(2)
— lo — | fyv (y)dy — lo ——— | fz(z)d=
/ y Fyv* (¥) Y /SZ : fz*(2) “
— D(fyllfy*) — D(fzllfz*)



Theorem 11.32 For a fixed zero-mean Proof

. sk _
Gaussian random vector X7, let 1. Since EZ™ = 0, KZ* = KZ* = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)

and only if Z = Z* ~ N (0, K). _ h(Y*) — h(Z*) — h(Y) + h(Z)
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+/fy(y) log fy (y)dy — /SZ foz (2) log fo (2)dz

= —/fY(y) log fy*(y)dy+/5 fz(z)log fzx (z)dz
Z

X*

+ / Fyv () log fv (v)dy — / fz (2) log fz (z)dz
Sz
Y/ Y

fv (¥) fz (z)
— log | =277 | fv (y)dy — log | =27 | f, (2)dz
/ y Fyv* (¥) Y /SZ : fz*(2) “

= Dy llify*x) — D(fzllfz*)



Theorem 11.32 For a fixed zero-mean Proof

. >k _
(Gaussian random vector X7, let 1. Since EZ* = 0, Kyx = Kys = K. Therefore, Z*
and Z have the same correlation matrix.

>k
Y =X +Z 2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same

where the joint pdf of Z exists and Z is correlation matrix.

independent of X*. Under the constraint 3. The theorem is proved by considering
that the correlation matrix of Z is equal

to K, where K is any symmetric positive « « "
definite matrix, I(X™;Y) is minimized if I(X7;Y") — I(X7;Y)
. _ sk ~
=~ [y g fyx ()dy + [ Fzx (@) log Fzx (2)dz

+/fy(y) log fy (y)dy — /8 foz (2) log fo (2)dz

X* Z
= —/fy(y) log fy*(y)dy+/ fz(z)log fzx (z)dz
Sz
+ [y log fy Dy — [ fz(2) log fz(2)dz
v/ Y o
fv (¥) fz (z)
= lo — | fv(y)dy — lo —— | f7z(z)d=z
/ y Fyv* (¥) Y /SZ : fz*(2) “
= D(fyllfy*) — D(fzllfzx)
X*

Z" Y™



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

X*

X*

Z" Y™

Proof

1. Since EZ™ = 0, RZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering

I(X*Y™*) — 1(X™;Y)

IN

h(Y™) — h(Z™) — h(Y) + h(Z)

—/fy*(y) log fy*(y)dy+/fz*(2) log fox (z)dz

+/fy(y) log fy (y)dy — /SZ foz (2) log fo (2)dz

. / v (¥) 1og fyx (y)dy + /5 f7(2) log foux (z)dz
Z

+ / fv (¥) log fvy (v)dy — /S fz (2) log f (2)dz

Z
fv (¥) fz(z)
lo — | fv(y)dy — lo —— | f7z(z)d=z
/ y Fyv* (¥) Y /SZ : fz*(2) “
D(fy llfy*) — D(fzllfz*)

0.



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

X*

X*

Z" Y™

Proof

1. Since EZ™ = 0, RZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering

I(X™ ;Y™ — 1(X™;Y)

IN

h(Y™) — h(Z™) — h(Y) + h(Z)

—/fy*(y) log fy*(y)dy+/fz*(2) log fox (z)dz

+/fy(y) log fy (y)dy — /SZ foz (2) log fo (2)dz

. / v (¥) 1og fyx (y)dy + /5 f7(2) log foux (z)dz
Z

+ / fv (¥) log fvy (v)dy — /S fz (2) log f (2)dz

Z
fv (¥) fz(z)
lo — | fv(y)dy — lo —— | f7z(z)d=z
/ y Fyv* (¥) Y /SZ : fz*(2) “
D(fy llfy*) — D(fzllfz*)

0.



Theorem 11.32 For a fixed zero-mean
Gaussian random vector X*, let

Y =X 4+ Z,

where the joint pdf of Z exists and Z is
independent of X™. Under the constraint
that the correlation matrix of Z is equal
to K, where K is any symmetric positive
definite matrix, I(X™*;Y) is minimized if
and only if Z = Z* ~ N (0, K).

X*

X*

Z" Y™

Proof

1. Since EZ™ = 0, RZ* = Kgzx = K. Therefore, Z*
and Z have the same correlation matrix.

2. By noting that X™ has zero mean, we apply
Lemma 11.33 to see that Y* and Y have the same
correlation matrix.

3. The theorem is proved by considering

I(X*; Y™ - I(X*;Y)

IN

h(Y™) — h(Z™) — h(Y) + h(Z)

—/fy*(y) log fy*(y)dy+/fz*(2) log fox (z)dz

+/fy(y) log fy (y)dy — /SZ foz (2) log fo (2)dz

. / v (¥) 1og fyx (y)dy + /5 f7(2) log foux (z)dz
Z

+ / fv (¥) log fvy (v)dy — /S fz (2) log f (2)dz

Z
fv (¥) fz(z)
lo — | fv(y)dy — lo —— | f7z(z)d=z
/ y Fyv* (¥) Y /SZ : fz*(2) “
D(fy llfy*) — D(fzllfz*)

0.



