

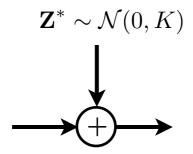
I I.9 Zero-Mean Gaussian Noise is the Worst Additive Noise

• We will show that in terms of the capacity of the system, the zero-mean Gaussian noise is the worst additive noise given that the noise vector has a fixed correlation matrix.

- We will show that in terms of the capacity of the system, the zero-mean Gaussian noise is the worst additive noise given that the noise vector has a fixed correlation matrix.
- The diagonal elements of the correlation matrix specify the power of the individual noise variables.

- We will show that in terms of the capacity of the system, the zero-mean Gaussian noise is the worst additive noise given that the noise vector has a fixed correlation matrix.
- The diagonal elements of the correlation matrix specify the power of the individual noise variables.
- The other elements in the matrix give a characterization of the correlation between the noise variables.

Zero-Mean Gaussian System



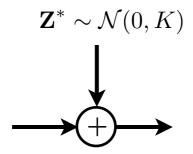
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System



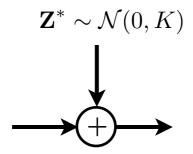
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System



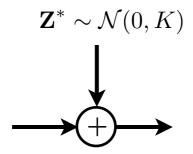
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System



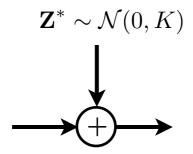
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System



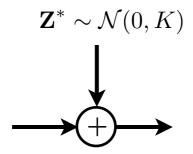
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System



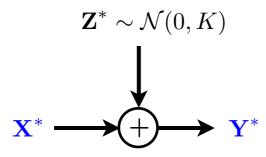
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System



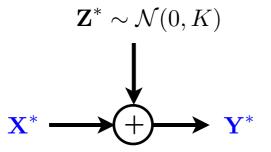
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

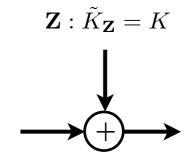
3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System



Alternative System



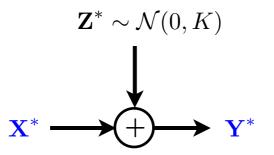
1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Zero-Mean Gaussian System

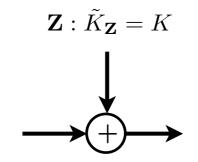


1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

2. Let C^* be the capacity of the system.

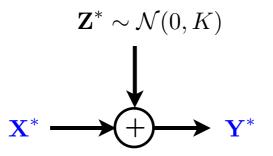
3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

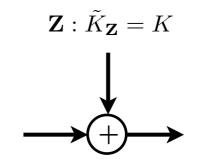
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

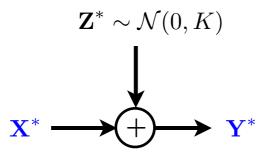
Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

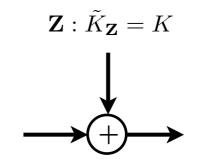
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Alternative System

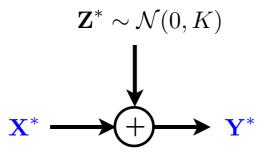


1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of **Z** exists.

3. Let C be the capacity of the system.

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

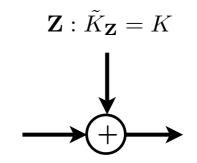
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*.$$

Alternative System



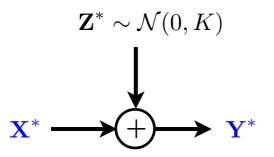
1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

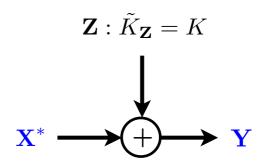
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



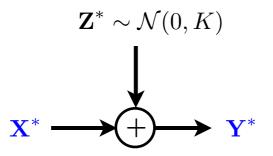
1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

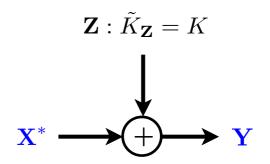
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

3. Let C be the capacity of the system.

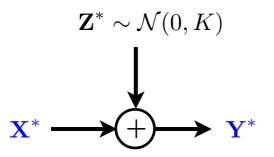
4. Let ${\bf Y}$ be the output of the system with ${\bf X}^*$ as input, i.e.,

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

• For the Zero-Mean Gaussian System, $C^* = I(\mathbf{X}^*; \mathbf{Y}^*)$.

.

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

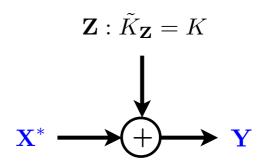
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

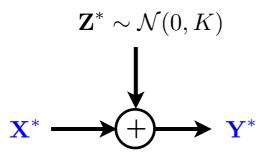
2. Assume that the joint pdf of Z exists.

3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

- For the Zero-Mean Gaussian System, $C^* = I(\mathbf{X}^*; \mathbf{Y}^*)$.
- For the alternative system, $I(\mathbf{X}^*; \mathbf{Y}) \leq C$.

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

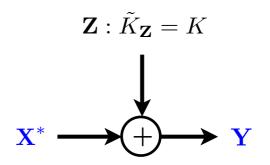
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

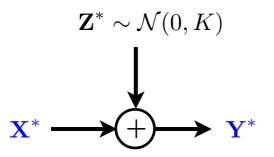
2. Assume that the joint pdf of **Z** exists.

3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

- For the Zero-Mean Gaussian System, $C^* = I(\mathbf{X}^*; \mathbf{Y}^*)$.
- For the alternative system, $I(\mathbf{X}^*; \mathbf{Y}) \leq C$.
- We will show that $I(\mathbf{X}^*; \mathbf{Y}^*) \leq I(\mathbf{X}^*; \mathbf{Y})$.

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

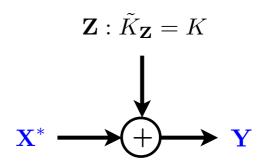
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

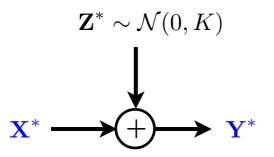
3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

- For the Zero-Mean Gaussian System, $C^* = I(\mathbf{X}^*; \mathbf{Y}^*)$.
- For the alternative system, $I(\mathbf{X}^*; \mathbf{Y}) \leq C$.
- We will show that $I(\mathbf{X}^*; \mathbf{Y}^*) \leq I(\mathbf{X}^*; \mathbf{Y})$.
- Hence,

$$C^* = I(\mathbf{X}^*; \mathbf{Y}^*) \le I(\mathbf{X}^*; \mathbf{Y}) \le C.$$

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

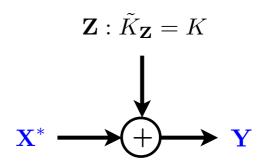
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

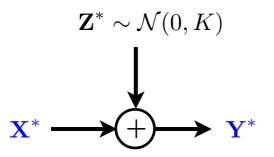
3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

- For the Zero-Mean Gaussian System, $\underline{C^* = I(\mathbf{X}^*; \mathbf{Y}^*)}$.
- For the alternative system, $I(\mathbf{X}^*; \mathbf{Y}) \leq C$.
- We will show that $I(\mathbf{X}^*; \mathbf{Y}^*) \leq I(\mathbf{X}^*; \mathbf{Y})$.
- Hence,

$$\underline{C^*} = I(\mathbf{X}^*; \mathbf{Y}^*) \le I(\mathbf{X}^*; \mathbf{Y}) \le C.$$

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

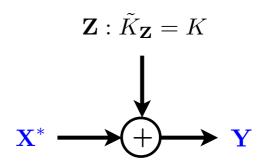
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

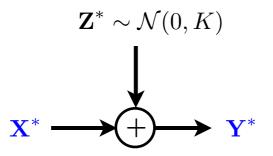
3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

- For the Zero-Mean Gaussian System, $C^* = I(\mathbf{X}^*; \mathbf{Y}^*)$.
- For the alternative system, $I(\mathbf{X}^*; \mathbf{Y}) \leq C$.
- We will show that $I(\mathbf{X}^*; \mathbf{Y}^*) \leq I(\mathbf{X}^*; \mathbf{Y})$.
- Hence,

$$C^* = \underline{I(\mathbf{X}^*; \mathbf{Y}^*)} \le I(\mathbf{X}^*; \mathbf{Y}) \le C.$$

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

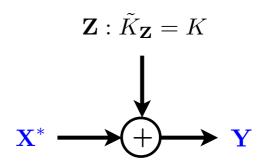
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of Z exists.

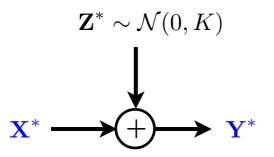
3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

- For the Zero-Mean Gaussian System, $C^* = I(\mathbf{X}^*; \mathbf{Y}^*)$.
- For the alternative system, $I(\mathbf{X}^*; \mathbf{Y}) \leq C$.
- We will show that $I(\mathbf{X}^*; \mathbf{Y}^*) \leq I(\mathbf{X}^*; \mathbf{Y})$.
- Hence,

$$C^* = I(\mathbf{X}^*; \mathbf{Y}^*) \le \underline{I(\mathbf{X}^*; \mathbf{Y})} \le C.$$

Zero-Mean Gaussian System



1. Consider a system of correlated Gaussian channels with noise vector $\mathbf{Z}^* \sim \mathcal{N}(0, K)$, and so $\tilde{K}_{\mathbf{Z}^*} = K$.

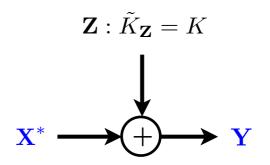
2. Let C^* be the capacity of the system.

3. Let \mathbf{X}^* be the zero-mean Gaussian input vector that achieves the capacity.

4. Let \mathbf{Y}^* be the output of the system with \mathbf{X}^* as input, i.e.,

$$\mathbf{Y}^* = \mathbf{X}^* + \mathbf{Z}^*$$

Alternative System



1. Consider a system exactly the same as the Zero-Mean Gaussian System except that the noise vector \mathbf{Z} , which has the same correlation matrix as \mathbf{Z}^* , may neither be zero-mean nor Gaussian.

2. Assume that the joint pdf of **Z** exists.

3. Let C be the capacity of the system.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z}.$$

- For the Zero-Mean Gaussian System, $C^* = I(\mathbf{X}^*; \mathbf{Y}^*)$.
- For the alternative system, $I(\mathbf{X}^*; \mathbf{Y}) \leq C$.
- We will show that $I(\mathbf{X}^*; \mathbf{Y}^*) \leq I(\mathbf{X}^*; \mathbf{Y})$.
- Hence,

$$C^* = I(\mathbf{X}^*; \mathbf{Y}^*) \le I(\mathbf{X}^*; \mathbf{Y}) \le C$$

Theorem 11.32 For a fixed zero-mean Gaussian random vector \mathbf{X}^* , let

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

 $Lemma \ 11.33$ Let X be a zero-mean random vector and

$$\mathbf{Y} = \mathbf{X} + \mathbf{Z}$$

where \mathbf{Z} is independent of \mathbf{X} . Then

$$\tilde{K}_{\mathbf{Y}} = \tilde{K}_{\mathbf{X}} + \tilde{K}_{\mathbf{Z}}.$$

Lemma 11.33 Let \mathbf{X} be a zero-mean random vector and

$$\mathbf{Y} = \mathbf{X} + \mathbf{Z}$$

where \mathbf{Z} is independent of \mathbf{X} . Then

$$\tilde{K}_{\mathbf{Y}} = \tilde{K}_{\mathbf{X}} + \tilde{K}_{\mathbf{Z}}.$$

Remark The scalar case has been proved in the proof of Theorem 11.21.

Lemma 11.33 Let X be a zero-mean random vector and

$$\mathbf{Y} = \mathbf{X} + \mathbf{Z}$$

where \mathbf{Z} is independent of \mathbf{X} . Then

$$\tilde{K}_{\mathbf{Y}} = \tilde{K}_{\mathbf{X}} + \tilde{K}_{\mathbf{Z}}.$$

Remark The scalar case has been proved in the proof of Theorem 11.21.

Lemma 11.34 Let $\mathbf{Y}^* \sim \mathcal{N}(0, K)$ and \mathbf{Y} be any random vector with correlation matrix K. Then

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

Lemma 11.33 Let X be a zero-mean random vector and

$$\mathbf{Y} = \mathbf{X} + \mathbf{Z}$$

where \mathbf{Z} is independent of \mathbf{X} . Then

$$\tilde{K}_{\mathbf{Y}} = \tilde{K}_{\mathbf{X}} + \tilde{K}_{\mathbf{Z}}.$$

Remark The scalar case has been proved in the proof of Theorem 11.21.

Lemma 11.34 Let $\mathbf{Y}^* \sim \mathcal{N}(0, K)$ and \mathbf{Y} be any random vector with correlation matrix K. Then

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

Remark A similar technique has been used in proving Theorems 2.50 and 10.41 (maximum entropy distributions).

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x) r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

 $H(p^*) - H(p)$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

$$H(p^{*}) - H(p) = -\sum_{x \in S} p^{*}(x) \ln p^{*}(x) + \sum_{x \in S_{p}} p(x) \ln p(x)$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

$$H(p^*) - H(p)$$

$$= -\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= -\sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

$$H(p^*) - H(p)$$

$$= -\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= -\sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= \sum_{x \in \mathcal{S}_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in S} p^*(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= -\sum_{x \in S_p} p(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= \sum_{x \in S_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= -\sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= \sum_{x \in \mathcal{S}_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in S} p^*(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= -\sum_{x \in S_p} p(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= \sum_{x \in S_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

$$\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) = \sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x).$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in S} p^*(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= -\sum_{x \in S_p} p(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= \sum_{x \in S_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

$$\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) = \sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x).$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1). Theorem 10.41 Let

$$f^*(\mathbf{x}) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(\mathbf{x})}$$

for all $\mathbf{x} \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\int_{\mathcal{S}_f} r_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = a_i \quad \text{for } 1 \le i \le m.$$
(2)

Then f^* maximizes h(f) over all pdf f defined on S, subject to the constraints in (2).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in S} p^*(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= -\sum_{x \in S_p} p(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= \sum_{x \in S_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

$$\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) = \sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x).$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in S} p^*(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= -\sum_{x \in S_p} p(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= \sum_{x \in S_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

Remark The key step is to establish that

$$\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) = \sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x).$$

Theorem 10.41 Let

$$f^*(\mathbf{x}) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(\mathbf{x})}$$

for all $\mathbf{x} \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\int_{\mathcal{S}_f} r_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = a_i \quad \text{for } 1 \le i \le m.$$
(2)

Then f^* maximizes h(f) over all pdf f defined on S, subject to the constraints in (2).

$$\int_{\mathcal{S}} f^*(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{S}_f} f(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x}.$$
 (3)

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= -\sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= \sum_{x \in \mathcal{S}_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

Theorem 10.41 Let

$$f^*(\mathbf{x}) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(\mathbf{x})}$$

for all $\mathbf{x} \in \mathcal{S}$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\int_{\mathcal{S}_f} r_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = a_i \quad \text{for } 1 \le i \le m.$$
(2)

Then f^* maximizes h(f) over all pdf f defined on S, subject to the constraints in (2).

Remark The key step is to establish that

$$\int_{\mathcal{S}} f^*(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{S}_f} f(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x}.$$
 (3)

Theorem 10.45 Let **X** be a vector of n continuous random variables with correlation matrix \tilde{K} . Then

$$h(\mathbf{X}) \leq \frac{1}{2} \log \left[\left(2\pi e \right)^n |\tilde{K}| \right]$$

with equality if and only if $\mathbf{X} \sim \mathcal{N}(0, \tilde{K})$.

$$\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) = \sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x).$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x) r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= -\sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x) + \sum_{x \in \mathcal{S}_p} p(x) \ln p(x)$$

$$= \sum_{x \in \mathcal{S}_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

Theorem 10.41 Let

$$f^*(\mathbf{x}) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(\mathbf{x})}$$

for all $\mathbf{x} \in \mathcal{S}$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\int_{\mathcal{S}_f} r_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = a_i \quad \text{for } 1 \le i \le m.$$
(2)

Then f^* maximizes h(f) over all pdf f defined on S, subject to the constraints in (2).

Remark The key step is to establish that

$$\int_{\mathcal{S}} f^*(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{S}_f} f(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x}.$$
 (3)

Theorem 10.45 Let **X** be a vector of n continuous random variables with correlation matrix \tilde{K} . Then

$$h(\mathbf{X}) \leq rac{1}{2} \log \left[\left(2\pi e
ight)^n | \tilde{K} |
ight]$$

with equality if and only if $\mathbf{X} \sim \mathcal{N}(0, \tilde{K})$.

Then (3) and Theorem 10.45 together imply

$$\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) = \sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x).$$

$$p^*(x) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(x)}$$

for all $x \in S$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\sum_{x \in \mathcal{S}_p} p(x)r_i(x) = a_i \quad \text{for } 1 \le i \le m.$$
(1)

Then p^* maximizes H(p) over all probability distribution p on S subject to (1).

Sketch of Proof

$$H(p^*) - H(p)$$

$$= -\sum_{x \in S} p^*(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= -\sum_{x \in S_p} p(x) \ln p^*(x) + \sum_{x \in S_p} p(x) \ln p(x)$$

$$= \sum_{x \in S_p} p(x) \ln \frac{p(x)}{p^*(x)}$$

$$= D(p || p^*)$$

$$\geq 0.$$

Remark The key step is to establish that

$$\sum_{x \in \mathcal{S}} p^*(x) \ln p^*(x) = \sum_{x \in \mathcal{S}_p} p(x) \ln p^*(x).$$

Theorem 10.41 Let

$$f^*(\mathbf{x}) = e^{-\lambda_0 - \sum_{i=1}^m \lambda_i r_i(\mathbf{x})}$$

for all $\mathbf{x} \in \mathcal{S}$, where $\lambda_0, \lambda_1, \cdots, \lambda_m$ are chosen such that

$$\int_{\mathcal{S}_f} r_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = a_i \quad \text{for } 1 \le i \le m.$$
(2)

Then f^* maximizes h(f) over all pdf f defined on S, subject to the constraints in (2).

Remark The key step is to establish that

$$\int_{\mathcal{S}} f^*(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{S}_f} f(\mathbf{x}) \ln f^*(\mathbf{x}) d\mathbf{x}.$$
 (3)

Theorem 10.45 Let **X** be a vector of n continuous random variables with correlation matrix \tilde{K} . Then

$$h(\mathbf{X}) \leq rac{1}{2} \log \left[\left(2\pi e
ight)^n | \tilde{K} |
ight]$$

with equality if and only if $\mathbf{X} \sim \mathcal{N}(0, \tilde{K})$.

Then (3) and Theorem 10.45 together imply

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

Theorem Let X, X', Y, and Y' be real random variables such that f_{XY} and $f_{X'Y'}$ exist, and $f_{Y|X} = f_{Y'|X'}$. Then

 $D(f_X || f_{X'}) \ge D(f_Y || f_{Y'}).$

Theorem Let X, X', Y, and Y' be real random variables such that f_{XY} and $f_{X'Y'}$ exist, and $f_{Y|X} = f_{Y'|X'}$. Then

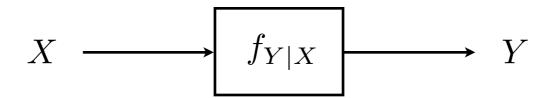
 $D(f_X || f_{X'}) \ge D(f_Y || f_{Y'}).$

Proof Exercise.

Theorem Let X, X', Y, and Y' be real random variables such that f_{XY} and $f_{X'Y'}$ exist, and $f_{Y|X} = f_{Y'|X'}$. Then

 $D(f_X || f_{X'}) \ge D(f_Y || f_{Y'}).$

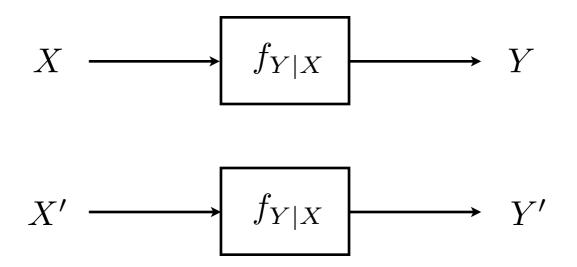
Proof Exercise.



Theorem Let X, X', Y, and Y' be real random variables such that f_{XY} and $f_{X'Y'}$ exist, and $f_{Y|X} = f_{Y'|X'}$. Then

 $D(f_X || f_{X'}) \ge D(f_Y || f_{Y'}).$

Proof Exercise.



Proof

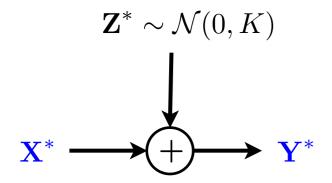
$$\mathbf{Y}=\mathbf{X}^{*}+\mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

\mathbf{Proof}

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

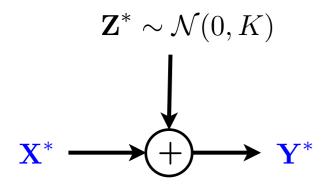
where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

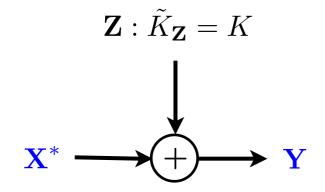


\mathbf{Proof}

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.



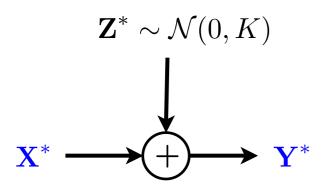


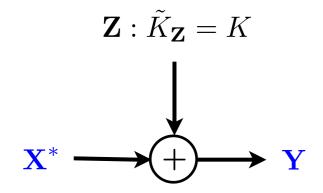
$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.





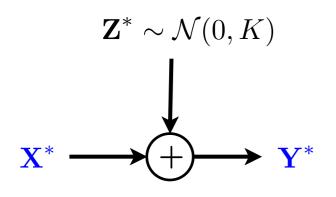
$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

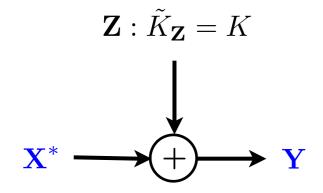
where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.





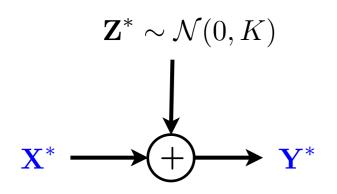
$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

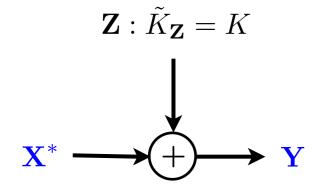
where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.





Lemma 11.33 Let X be a zero-mean random vector and

 $\mathbf{Y} = \mathbf{X} + \mathbf{Z}$

where \mathbf{Z} is independent of \mathbf{X} . Then

$$\tilde{K}_{\mathbf{Y}} = \tilde{K}_{\mathbf{X}} + \tilde{K}_{\mathbf{Z}}.$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^*;\mathbf{Y}^*) - I(\mathbf{X}^*;\mathbf{Y})$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^*; \mathbf{Y}^*) - I(\mathbf{X}^*; \mathbf{Y})$$

= $h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z})$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^*; \mathbf{Y}^*) - I(\mathbf{X}^*; \mathbf{Y})$$

= $\underline{h(\mathbf{Y}^*)} - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z})$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^{*}; \mathbf{Y}^{*}) - I(\mathbf{X}^{*}; \mathbf{Y})$$

$$= \underline{h(\mathbf{Y}^{*})} - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= \underline{-\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y}} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^*; \mathbf{Y}^*) - I(\mathbf{X}^*; \mathbf{Y})$$

$$= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^{*}; \mathbf{Y}^{*}) - I(\mathbf{X}^{*}; \mathbf{Y})$$

$$= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^*; \mathbf{Y}^*) - I(\mathbf{X}^*; \mathbf{Y})$$

$$= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^{*}; \mathbf{Y}^{*}) - I(\mathbf{X}^{*}; \mathbf{Y})$$

$$= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^*; \mathbf{Y}^*) - I(\mathbf{X}^*; \mathbf{Y})$$

$$= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + \underline{h(\mathbf{Z})}$$

$$= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^{*}; \mathbf{Y}^{*}) - I(\mathbf{X}^{*}; \mathbf{Y})$$

$$= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + \underline{h(\mathbf{Z})}$$

$$= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

3. The theorem is proved by considering

$$I(\mathbf{X}^*; \mathbf{Y}^*) - I(\mathbf{X}^*; \mathbf{Y})$$

$$= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

3. The theorem is proved by considering

$$I(\mathbf{X}^*; \mathbf{Y}^*) - I(\mathbf{X}^*; \mathbf{Y})$$

$$= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int \underline{f_{\mathbf{Y}^*}(\mathbf{y})} \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

3. The theorem is proved by considering

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int \underline{f}_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int \underline{f}_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \end{split}$$

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

3. The theorem is proved by considering

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int \underline{f_{\mathbf{Z}^*}(\mathbf{z})} \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \end{split}$$

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

3. The theorem is proved by considering

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int \underline{f_{\mathbf{Z}^*}(\mathbf{z})} \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} \underline{f_{\mathbf{Z}}(\mathbf{z})} \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \end{split}$$

$$\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} = \int_{\mathcal{S}_{\mathbf{Y}}} f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y}.$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^{*}; \mathbf{Y}^{*}) - I(\mathbf{X}^{*}; \mathbf{Y})$$

$$= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$I(\mathbf{X}^{*}; \mathbf{Y}^{*}) - I(\mathbf{X}^{*}; \mathbf{Y})$$

$$= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z})$$

$$= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}$$

$$= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^{*};\mathbf{Y}^{*}) &- I(\mathbf{X}^{*};\mathbf{Y}) \\ &= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^{*}}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^{*}}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \frac{\int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^{*};\mathbf{Y}^{*}) &- I(\mathbf{X}^{*};\mathbf{Y}) \\ &= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^{*}}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^{*}}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^{*};\mathbf{Y}^{*}) &- I(\mathbf{X}^{*};\mathbf{Y}) \\ &= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \frac{\int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \frac{\int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \frac{\int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^{*}}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \frac{\int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^{*}}(\mathbf{z})}\right)}{f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}} \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^{*};\mathbf{Y}^{*}) &- I(\mathbf{X}^{*};\mathbf{Y}) \\ &= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^{*}}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^{*}}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \frac{\int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \frac{D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^*}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^*})}{D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^*})} \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

\mathbf{Proof}

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^{*}; \mathbf{Y}^{*}) &= I(\mathbf{X}^{*}; \mathbf{Y}) \\ &= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^{*}}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^{*}}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^{*}}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^{*}}) \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

\mathbf{Proof}

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^{*}; \mathbf{Y}^{*}) &= I(\mathbf{X}^{*}; \mathbf{Y}) \\ &= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^{*}}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^{*}}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^{*}}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^{*}}) \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

Proof

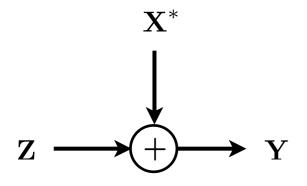
1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^*}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^*}) \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.



Proof

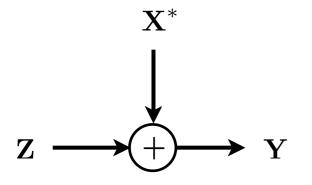
1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^*}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^*}) \end{split}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

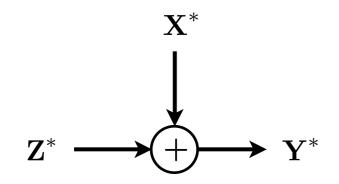
where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.



1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

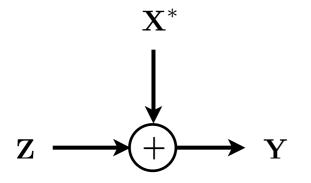
2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^*}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^*}) \end{split}$$



$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.

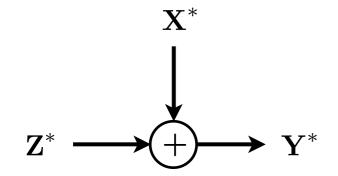


Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

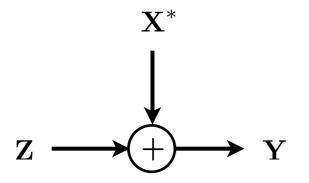
2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

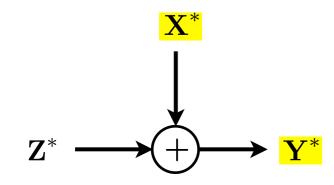
$$\begin{split} I(\mathbf{X}^{*}; \mathbf{Y}^{*}) &= I(\mathbf{X}^{*}; \mathbf{Y}) \\ &= h(\mathbf{Y}^{*}) - h(\mathbf{Z}^{*}) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^{*}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^{*}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^{*}}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^{*}}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^{*}}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^{*}}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^{*}}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^{*}}) \\ &\leq 0. \end{split}$$



$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.





Proof

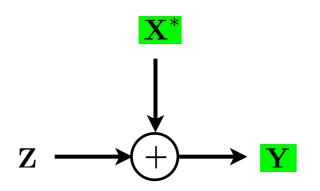
1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

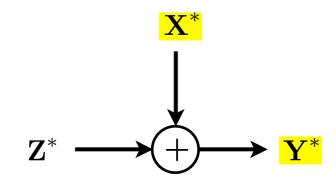
2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{aligned} \mathbf{I}(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^*}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^*}) \\ &\leq 0. \end{aligned}$$

$$\mathbf{Y} = \mathbf{X}^* + \mathbf{Z},$$

where the joint pdf of \mathbf{Z} exists and \mathbf{Z} is independent of \mathbf{X}^* . Under the constraint that the correlation matrix of \mathbf{Z} is equal to K, where K is any symmetric positive definite matrix, $I(\mathbf{X}^*; \mathbf{Y})$ is minimized if and only if $\mathbf{Z} = \mathbf{Z}^* \sim \mathcal{N}(0, K)$.





Proof

1. Since $E\mathbf{Z}^* = 0$, $\tilde{K}_{\mathbf{Z}^*} = K_{\mathbf{Z}^*} = K$. Therefore, \mathbf{Z}^* and \mathbf{Z} have the same correlation matrix.

2. By noting that \mathbf{X}^* has zero mean, we apply Lemma 11.33 to see that \mathbf{Y}^* and \mathbf{Y} have the same correlation matrix.

$$\begin{split} I(\mathbf{X}^*; \mathbf{Y}^*) &- I(\mathbf{X}^*; \mathbf{Y}) \\ &= h(\mathbf{Y}^*) - h(\mathbf{Z}^*) - h(\mathbf{Y}) + h(\mathbf{Z}) \\ &= -\int f_{\mathbf{Y}^*}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int f_{\mathbf{Z}^*}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= -\int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}^*}(\mathbf{y}) d\mathbf{y} + \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &+ \int f_{\mathbf{Y}}(\mathbf{y}) \log f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} f_{\mathbf{Z}}(\mathbf{z}) \log f_{\mathbf{Z}^*}(\mathbf{z}) d\mathbf{z} \\ &= \int \log \left(\frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}^*}(\mathbf{y})}\right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} - \int_{\mathcal{S}_{\mathbf{Z}}} \log \left(\frac{f_{\mathbf{Z}}(\mathbf{z})}{f_{\mathbf{Z}^*}(\mathbf{z})}\right) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \\ &= D(f_{\mathbf{Y}} \| f_{\mathbf{Y}^*}) - D(f_{\mathbf{Z}} \| f_{\mathbf{Z}^*}) \\ &\leq 0. \end{split}$$