

11.8 The Bandlimited Colored Gaussian Channel

• Z(*t*) is a zero-mean additive colored Gaussian noise.

- *• Z*(*t*) is a zero-mean additive colored Gaussian noise.
- $X'(t)$ and $Z'(t)$ are filtered versions of $X(t)$ and $Z(t)$, respectively, bandlimited to $[0, W]$.

- *• Z*(*t*) is a zero-mean additive colored Gaussian noise.
- $X'(t)$ and $Z'(t)$ are filtered versions of $X(t)$ and $Z(t)$, respectively, bandlimited to $[0, W]$.
- $Y(t) = X'(t) + Z'(t)$

- *• Z*(*t*) is a zero-mean additive colored Gaussian noise.
- $X'(t)$ and $Z'(t)$ are filtered versions of $X(t)$ and $Z(t)$, respectively, bandlimited to $[0, W]$.
- $Y(t) = X'(t) + Z'(t)$
- $Z'(t)$ is a bandlimited colored Gaussian noise with

$$
S_{Z'}(f) \begin{cases} \geq 0 & -W \leq f \leq W \\ = 0 & \text{otherwise.} \end{cases}
$$

- *• Z*(*t*) is a zero-mean additive colored Gaussian noise.
- $X'(t)$ and $Z'(t)$ are filtered versions of $X(t)$ and $Z(t)$, respectively, bandlimited to $[0, W]$.
- $Y(t) = X'(t) + Z'(t)$
- $Z'(t)$ is a bandlimited colored Gaussian noise with

$$
S_{Z'}(f) \begin{cases} \geq 0 & -W \leq f \leq W \\ = 0 & \text{otherwise.} \end{cases}
$$

• Regard $X'(t)$ as the channel input and $Z'(t)$ as the additive noise process.

- *• Z*(*t*) is a zero-mean additive colored Gaussian noise.
- $X'(t)$ and $Z'(t)$ are filtered versions of $X(t)$ and $Z(t)$, respectively, bandlimited to $[0, W]$.
- $Y(t) = X'(t) + Z'(t)$
- $Z'(t)$ is a bandlimited colored Gaussian noise with

$$
S_{Z'}(f) \begin{cases} \geq 0 & -W \leq f \leq W \\ = 0 & \text{otherwise.} \end{cases}
$$

- Regard $X'(t)$ as the channel input and $Z'(t)$ as the additive noise process.
- Impose a power constraint *P* on $X'(t)$.

• The capacity of the white Gaussian channel bandlimited to [0*, W*] is

$$
W \log \left(1 + \frac{P}{N_0 W} \right)
$$
 bits per unit time.

• The capacity of the white Gaussian channel bandlimited to [0*, W*] is

$$
W \log \left(1 + \frac{P}{N_0 W} \right)
$$
 bits per unit time.

• For the white Gaussian channel bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W = f_h - f_l$, apply the bandpass version of the sampling theorem to obtain the same capacity formula.

• The capacity of the white Gaussian channel bandlimited to [0*, W*] is

$$
W \log \left(1 + \frac{P}{N_0 W} \right)
$$
 bits per unit time.

- For the white Gaussian channel bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W = f_h - f_l$, apply the bandpass version of the sampling theorem to obtain the same capacity formula.
- *•* This model is called the bandpass white Gaussian channel.

• The capacity of the white Gaussian channel bandlimited to [0*, W*] is

$$
W \log \left(1 + \frac{P}{N_0 W} \right)
$$
 bits per unit time.

- For the white Gaussian channel bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W = f_h - f_l$, apply the bandpass version of the sampling theorem to obtain the same capacity formula.
- *•* This model is called the bandpass white Gaussian channel.
- When $f_l = 0$, the bandpass white Gaussian channel reduces to the bandlimited white Gaussian channel.

The Channel Model

1. $Z(t)$ is a zero-mean additive colored Gaussian noise.

The Channel Model

1. $Z(t)$ is a zero-mean additive colored Gaussian noise.

2. $X'(t)$ and $Z'(t)$ are filtered versions of $X(t)$ and *Z*(*t*), respectively, bandlimited to [0*, W*].

The Channel Model

1. $Z(t)$ is a zero-mean additive colored Gaussian noise.

2. $X'(t)$ and $Z'(t)$ are filtered versions of $X(t)$ and *Z*(*t*), respectively, bandlimited to [0*, W*].

3. The input power constraint on $X'(t)$ is *P*.

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

 \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

- \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$
- \mathcal{N}_0 is the noise problem 9) that the noise problem 9) is defined by a set of the nois \bullet noise $\text{free} = \frac{1}{2}$, • noise level $=\frac{N_0}{2}$;

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

- \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$
- \mathcal{N}_0 is the noise problem 9) that the noise problem 9) is defined by a set of the nois \bullet holse $\text{free} = \frac{1}{2}$, • noise level $=\frac{N_0}{2}$;
- power constraint $= P$;

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

- \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$
- \mathcal{N}_0 is the noise problem 9) that the noise problem 9) is defined by a set of the nois \bullet holse $\text{free} = \frac{1}{2}$, • noise level $=\frac{N_0}{2}$;
- power constraint $= P$;

$$
W' \log \left(1 + \frac{P}{N_O W'} \right).
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

- \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$
- \mathcal{N}_0 is the noise problem 9) that the noise problem 9) is defined by a set of the nois \bullet holse $\text{free} = \frac{1}{2}$, • noise level $=\frac{N_0}{2}$;
- power constraint $= P$;

$$
W' \log\left(1+\frac{P}{N_OW'}\right).
$$
 Here, $W' = \Delta_k$, $P = P_i$, and $\frac{N_0}{2} = S_{Z,i}$, or $N_0 = 2S_{Z,i}$.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

- \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$
- \mathcal{N}_0 is the noise problem 9) that the noise problem 9) is defined by a set of the nois \bullet holse $\text{free} = \frac{1}{2}$, • noise level $=\frac{N_0}{2}$;
- power constraint $= P$;

$$
W' \log\left(1+\frac{P}{N_0W'}\right).
$$
 Here, $W' = \Delta_k$, $P = P_i$, and $\frac{N_0}{2} = S_{Z,i}$, or $N_0 = 2S_{Z,i}$.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

- \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$
- \mathcal{N}_0 is the noise problem 9) that the noise problem 9) is defined by a set of the nois \bullet holse $\text{free} = \frac{1}{2}$, • noise level $=\frac{N_0}{2}$;
- power constraint $= P$;

$$
W' \log\left(1+\frac{P}{N_0W'}\right).
$$
 Here, $W' = \Delta_k$, $P = P_i$, and $\frac{N_0}{2} = S_{Z,i}$, or $N_0 = 2S_{Z,i}$.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

For a white Gaussian channel

- \bullet bondlimited to $\begin{bmatrix} f & f \end{bmatrix}$ where f is a multiple of **v** bandlimited to $[f_l, f_h]$, where f_l is a m
 $W' = f_h - f_l$; • bandlimited to $[f_l, f_h]$, where f_l is a multiple of $W' = f_h - f_l;$
- \mathcal{N}_0 is the noise problem 9) that the noise problem 9) is defined by a set of the nois \bullet holse $\text{free} = \frac{1}{2}$, • noise level $=\frac{N_0}{2}$;
- power constraint $= P$;

$$
W' \log\left(1 + \frac{P}{N_0 W'}\right).
$$

Here, $W' = \Delta_k$, $P = P_i$, and $\frac{N_0}{2} = S_{Z,i}$, or $N_0 = 2S_{Z,i}$.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

$$
S_Z(f)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^k \Delta_k \log \left(1+\frac{P^*_i}{2S_{Z,i}\Delta_k}\right)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^k \Delta_k \log \left(1+\frac{P_i^*}{2S_{Z,i}\underline{\Delta_k}}\right) = \sum_{i=1}^k \Delta_k \log \left(1+\frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}}\right)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^k \Delta_k \log \left(1+\frac{P_i^*}{2S_{Z,i}\Delta_k}\right) = \sum_{i=1}^k \Delta_k \log \left(1+\frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}}\right)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^k \Delta_k \log \left(1+\frac{P_i^*}{2S_{Z,i}\Delta_k}\right) = \sum_{i=1}^k \Delta_k \log \left(1+\frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}}\right)
$$

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^k \Delta_k \log \left(1+\frac{P_i^*}{2S_{Z,i}\Delta_k}\right) = \sum_{i=1}^k \Delta_k \log \left(1+\frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}}\right)
$$

$$
\frac{P_i^*}{2\Delta_k} = (\underline{\nu} - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^k \Delta_k \log \left(1+\frac{P_i^*}{2S_{Z,i}\Delta_k}\right) = \sum_{i=1}^k \Delta_k \log \left(1+\frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}}\right)
$$

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As
$$
k \to \infty
$$
,

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As
$$
k \to \infty
$$
,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As
$$
k \to \infty
$$
,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As
$$
k \to \infty
$$
,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

1. Divide [0*, W*] into *k* subintervals, each with width $\Delta_k = \frac{W}{k}$.

2. Let the *i*th subinterval be $\left[f_l^i, f_h^i\right]$ $\Big\},\ 1\,\leq\, i\,\leq\, k\,.$

3. As an approximation, assume that the noise power over the *i*th subinterval is a constant $S_{Z,i}$.

4. Then the channel consists of *k* sub-channels, with the *i*th sub-channel being a bandpass white Gaussian channel occupying the frequency band $\left[f_l^i, f_h^i\right]$ i .

5. Let *Pi* be the power allocated to the *i*th sub-channel. Then the capacity of the *i*th sub-channel is

$$
\Delta_k \log \left(1+\frac{P_i}{2S_{Z,i}\Delta_k}\right).
$$

6. The noise process $Z_i'(t)$ of the *i*th sub-channel is obtained by passing $Z(t)$ through the corresponding ideal bandpass filter bandlimited to $\left[f_l^i, f_h^i\right]$ i .

7. It can be shown (see Problem 9) that the noise processes $Z'_{i}(t)$, $1 \leq i \leq k$ are independent.

8. By sampling the sub-channels at the Nyquist rate $2\Delta_k$, the *k* sub-channels can be regarded as a system of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum of the capacities of the individual sub-channels when the power allocation among the *k* sub-channels is optimal.

10. Let P_i^* be the optimal power allocation for the *i*th sub-channel.

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

 \mathbf{a} 11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

 $\mathop{\text{it}}\nolimits$ a n

where by Proposition 11.23,

el.

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

 P_i^* $2\Delta_{\bm{k}}$ $\sum_{i=1}^{n}$

 $\begin{array}{c} \hline \end{array}$

 $(\nu - S_Z(f))^+$

 \setminus

A *df*

SZ (*f*)

SZ,i

 $(1 +$

 $\sqrt{ }$

12. As
$$
k \to \infty
$$
,

 i ^s ng

$$
\sum_{i=1}^k \Delta_k \log \left(1 + \right.
$$

 \rightarrow

 $\int W$

0

ro-

 $\mathop{\text{ate}}$ 2*k*, the *k* sub-channels can be regarded as a system

1 m en

 i the i

$$
= \frac{1}{2} \int_{-W}^{W} \log \left(1 + \frac{(\nu - S_Z(f))^{+}}{S_Z(f)} \right) df
$$

bits per unit time

log

 $p -$

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

11. The channel capacity is equal to

13. As $k \to \infty$,

 $\overline{}$ *k*

 P_i^* =

i=1

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

11. The channel capacity is equal to

13. As $k \to \infty$,

 $\overline{}$ *k*

 P_i^* =

i=1

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

11. The channel capacity is equal to

13. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

$$
\sum_{i=1}^{k} P_i^* = \sum_{i=1}^{k} 2\Delta_k(\nu - S_{Z,i})^+
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+
$$
 with
$$
\sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

11. The channel capacity is equal to

13. As $k \to \infty$,

 $\overline{}$ *k*

 P_i^* = \sum

 \rightarrow 2

k

 $\frac{2\Delta_{k}(\nu - S_{Z,i})^{+}}{2}$

 $\frac{2}{\pi} \int_{0}^{W} (\nu - S_{Z}(f))^{+} df$

i=1

 $\int W$

0

i=1

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

11. The channel capacity is equal to

13. As $k \to \infty$,

 $\overline{}$ *k*

i=1

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

$$
P_i^* = \sum_{i=1}^k 2\Delta_k(\nu - S_{Z,i})^+
$$

\n
$$
\rightarrow 2\int_0^W (\nu - S_Z(f))^+ df
$$

\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

11. The channel capacity is equal to

 \sum *k i*=1 Δ_k log $\sqrt{ }$ $(1 +$ P_i^* $2S_{\bm{Z},\bm{i}}\Delta_{\bm{k}}$ $\sum_{i=1}^{n}$ $\Big| = \sum$ *k i*=1 Δ_k log $\sqrt{ }$ $\Bigg|1 +$ P_i^* $2\Delta_{\bm{k}}$ *SZ,i* $\sum_{i=1}^n$ $\begin{array}{c} \hline \end{array}$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

13. As $k \to \infty$,

$$
\sum_{i=1}^{k} P_i^* = \sum_{i=1}^{k} 2\Delta_k (\nu - S_{Z,i})^+
$$

\n
$$
\rightarrow 2 \int_0^W (\nu - S_Z(f))^+ df
$$

\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

since $S_Z(f) = S_Z(-f)$.

12. As
$$
k \to \infty
$$
,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

13. As $k \to \infty$,

$$
\sum_{i=1}^{k} P_i^* = \sum_{i=1}^{k} 2\Delta_k (\nu - S_{Z,i})^+
$$

\n
$$
\rightarrow 2 \int_0^W (\nu - S_Z(f))^+ df
$$

\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

since $S_Z(f) = S_Z(-f)$. 14. Therefore,

$$
\sum_{i=1}^{k} P_i^* = P
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

since $S_Z(-f) = S_Z(f)$ (see Problem 8).

13. As $k \to \infty$,

$$
\frac{\sum_{i=1}^{k} P_i^*}{\sum_{i=1}^{k} 2\Delta_k (\nu - S_{Z,i})^+}
$$
\n
$$
\rightarrow 2 \int_0^W (\nu - S_Z(f))^+ df
$$
\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

since $S_Z(f) = S_Z(-f)$. 14. Therefore,

$$
\sum_{i=1}^{k} P_i^* = P \rightarrow \frac{\int_W^W (\nu - S_Z(f))^+ df = P. \quad (1)
$$

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

i=1

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

since $S_Z(-f) = S_Z(f)$ (see Problem 8).

13. As $k \to \infty$,

$$
\sum_{i=1}^{k} P_i^* = \sum_{i=1}^{k} 2\Delta_k (\nu - S_{Z,i})^+
$$

\n
$$
\rightarrow 2 \int_0^W (\nu - S_Z(f))^+ df
$$

\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

since $S_Z(f) = S_Z(-f)$. 14. Therefore,

$$
\sum_{i=1}^{k} P_i^* = P \rightarrow \int_{-W}^{W} (\nu - S_Z(f))^+ df = P. \quad (1)
$$
The Capacity of the Bandlimited Colored Gaussian Channel

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

since $S_Z(-f) = S_Z(f)$ (see Problem 8).

13. As $k \to \infty$,

$$
\sum_{i=1}^{k} P_i^* = \sum_{i=1}^{k} 2\Delta_k (\nu - S_{Z,i})^+
$$

\n
$$
\rightarrow 2 \int_0^W (\nu - S_Z(f))^+ df
$$

\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

since $S_Z(f) = S_Z(-f)$. 14. Therefore,

$$
\sum_{i=1}^{k} P_i^* = P \rightarrow \int_{-W}^{W} (\nu - S_Z(f))^+ df = P. \quad (1)
$$

The Capacity of the Bandlimited Colored Gaussian Channel

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

13. As
$$
k \to \infty
$$
,

$$
\sum_{i=1}^{k} P_i^* = \sum_{i=1}^{k} 2\Delta_k(\nu - S_{Z,i})^+
$$

\n
$$
\rightarrow 2 \int_0^W (\nu - S_Z(f))^+ df
$$

\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

since $S_Z(f) = S_Z(-f)$. 14. Therefore,

$$
\sum_{i=1}^{k} P_i^* = P \rightarrow \int_{-W}^{W} (\nu - S_Z(f))^+ df = P.
$$
 (1)

12. As
$$
k \to \infty
$$
,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

since $S_Z(-f) = S_Z(f)$ (see Problem 8).

The Capacity of the Bandlimited Colored Gaussian Channel

11. The channel capacity is equal to

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{P_i^*}{2S_{Z,i} \Delta_k} \right) = \sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$

where by Proposition 11.23,

$$
\frac{P_i^*}{2\Delta_k} = (\nu - S_{Z,i})^+ \quad \text{with} \quad \sum_{i=1}^k P_i^* = P.
$$

12. As $k \to \infty$,

$$
\sum_{i=1}^{k} \Delta_k \log \left(1 + \frac{\frac{P_i^*}{2\Delta_k}}{S_{Z,i}} \right)
$$
\n
$$
\rightarrow \quad \int_0^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$
\n
$$
= \quad \frac{1}{2} \int_{-W}^W \log \left(1 + \frac{(\nu - S_Z(f))^+}{S_Z(f)} \right) df
$$

bits per unit time

since $S_Z(-f) = S_Z(f)$ (see Problem 8).

13. As $k \to \infty$,

$$
\sum_{i=1}^{k} P_i^* = \sum_{i=1}^{k} 2\Delta_k (\nu - S_{Z,i})^+
$$

\n
$$
\rightarrow 2 \int_0^W (\nu - S_Z(f))^+ df
$$

\n
$$
\rightarrow \int_{-W}^W (\nu - S_Z(f))^+ df
$$

since $S_Z(f) = S_Z(-f)$. 14. Therefore,

$$
\sum_{i=1}^{k} P_i^* = P \rightarrow \int_{-W}^{W} (\nu - S_Z(f))^+ df = P.
$$
 (1)

15. The optimal power allocation given in (1) has a water-filling interpretation.

