
11.8 The Bandlimited Colored 
Gaussian Channel



• Z(t) is a zero-mean additive colored Gaussian

noise.

• X0(t) and Z0(t) are filtered versions of X(t)
and Z(t), respectively, bandlimited to [0, W ].

• Y (t) = X0(t) + Z0(t)

• Z0(t) is a bandlimited colored Gaussian noise

with

SZ0 (f)

⇢
� 0 �W  f  W
= 0 otherwise.

• Regard X0(t) as the channel input and Z0(t)
as the additive noise process.

• Impose a power constraint P on X0(t).
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Capacity of the Bandpass White 
Gaussian Channel

• The capacity of the white Gaussian channel bandlimited to [0, W ] is

W log

✓
1 +

P

N0W

◆
bits per unit time.

• For the white Gaussian channel bandlimited to [fl, fh], where fl is a mul-

tiple of W = fh� fl, apply the bandpass version of the sampling theorem

to obtain the same capacity formula.

• This model is called the bandpass white Gaussian channel.

• When fl = 0, the bandpass white Gaussian channel reduces to the ban-

dlimited white Gaussian channel.
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1. Divide [0,W ] into k subintervals, each with width

�k =

W
k

.

2. Let the ith subinterval be

h
fi
l , fi

h

i
, 1  i  k.

3. As an approximation, assume that the noise power

over the ith subinterval is a constant SZ,i.

4. Then the channel consists of k sub-channels, with

the ith sub-channel being a bandpass white Gaussian

channel occupying the frequency band

h
fi
l , fi

h

i
.

5. Let Pi be the power allocated to the ith sub-channel.

Then the capacity of the ith sub-channel is

�k log

0

@
1 +

Pi

2SZ,i�k

1

A .

6. The noise process Z0
i(t) of the ith sub-channel is

obtained by passing Z(t) through the corresponding

ideal bandpass filter bandlimited to

h
fi
l , fi

h

i
.

7. It can be shown (see Problem 9) that the noise pro-

cesses Z0
i(t), 1  i  k are independent.

8. By sampling the sub-channels at the Nyquist rate

2�k, the k sub-channels can be regarded as a system

of parallel Gaussian channels.

9. Thus the capacity of the channel is equal to the sum

of the capacities of the individual sub-channels when

the power allocation among the k sub-channels is op-

timal.

10. Let P⇤
i be the optimal power allocation for the ith

sub-channel.

11. The channel capacity is equal to

kX

i=1

�k log

0

@
1 +

P⇤
i

2SZ,i�k

1

A
=

kX

i=1

�k log

0

BBB@
1 +

P⇤
i

2�k

SZ,i

1

CCCA

where by Proposition 11.23,

P⇤
i

2�k

= (⌫ � SZ,i)
+

with

kX

i=1

P⇤
i = P.

12. As k ! 1,

kX

i=1

�k log

0

BBB@
1 +

P⇤
i

2�k

SZ,i

1

CCCA

!
Z W

0

log

0

@
1 +

(⌫ � SZ (f))

+

SZ (f)

1

A df

=

1

2

Z W

�W
log

0

@
1 +

(⌫ � SZ (f))

+

SZ (f)

1

A df

bits per unit time

since SZ (�f) = SZ (f) (see Problem 8).
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