
11.7 The Bandlimited White 
Gaussian Channel



• Both input and output are in continuous time.

• Z(t) is a zero-mean white Gaussian noise process with SZ(f) = N0
2 , called

an additive white Gaussian noise (AWGN).
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Definition 11.24 The Fourier transform of a signal g(t) is defined as

G(f) =

Z 1

�1
g(t)e�j2⇡ftdt.

The signal g(t) can be recovered from G(f) as

g(t) =

Z 1

�1
G(f)ej2⇡ftdf,

and g(t) is called the inverse Fourier transform of G(f). The functions g(t) and

G(f) are said to form a transform pair, denoted by

g(t) ⌦ G(f).

The variables t and f are referred to as time and frequency, respectively.
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• A signal g(t) is called an energy signal if

Z 1

�1
|g(t)|2dt < 1.

• The Fourier transform of an energy signal exists.

Energy Signal:

Definition 11.25 Let g1(t) and g2(t) be a pair of energy signals. The cross-

correlation function for g1(t) and g2(t) is defined as

R12(⌧) =

Z 1

�1
g1(t)g2(t� ⌧)dt.

Proposition 11.26 For a pair of energy signals g1(t) and g2(t)

R12(⌧) ⌦ G1(f)G⇤2(f),

where G⇤2(f) denotes the complex conjugate of G2(f).
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A process {X(t),�1 < t < 1} is wide-sense stationary if EX(t) does not

depend on t and E[X(t+ ⌧)X(t)] depends only on ⌧ .

Definition 11.27 For a wide-sense stationary process {X(t),�1 < t < 1},
the autocorrelation function is defined as

RX(⌧) = E[X(t+ ⌧)X(t)]

which does not depend on t, and the power spectral density is defined as

SX(f) =

Z 1

�1
RX(⌧)e�j2⇡f⌧d⌧

i.e.,

RX(⌧) ⌦ SX(f).
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Let {(X(t), Y (t)),�1 < t < 1} be a bivariate wide-sense stationary process.

Their cross-correlation functions are defined as

RXY (⌧) = E[X(t + ⌧)Y (t)]

and

RY X(⌧) = E[Y (t + ⌧)X(t)]

which do not depend on t. The cross-spectral densities are defined as

SXY (f) =

Z 1

�1
RXY (⌧)e�j2⇡f⌧d⌧

and

SY X(f) =

Z 1

�1
RY X(⌧)e�j2⇡f⌧d⌧

i.e.,

RXY (⌧) ⌦ SXY (f)

and

RY X(⌧) ⌦ SY X(f).
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• Y (t) = X0
(t) + Z0

(t)

• X0
(t) and Z0

(t) are filtered versions of X(t)
and Z(t), respectively.

• Both X0
(t) and Z0

(t) are bandlimited to

[0,W ].

• Z0
(t) is a bandlimited white Gaussian noise

with

SZ0 (f) =

⇢
N

0

/2 �W  f  W
0 otherwise.

• Regard X0
(t) as the channel input and Z0

(t)
as the additive noise process.

• Impose a suitable power constraint on X0
(t).

An Equivalent Model
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• The signal g(t) is sampled at rate equals 2W , called the Nyquist rate.
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Proposition 11.30  i(t), �1 < i <1 form an orthonormal basis for signals

which are bandlimited to [0, W ].
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Theorem 11.30 Let

 i(t) =

p
2W sinc(2Wt � i).

Then  i(t), �1 < i < 1 form an orthonormal basis

for signals which are bandlimited to [0,W ].

Proof

1. Consider

 i(t) =

p
2W sinc

 
2W

 
t �

i

2W

!!

and  
0

(t) =

p
2W sinc (2Wt). Therefore,

 i(t) =  
0

 
t �

i

2W

!
,

and so  i(t) and  
0

(t) have the same energy.

2. Consider

sinc(2Wt) ⌦
1

2W
rect

 
f

2W

!
,

where

rect(f) =

(
1 � 1

2

 f  1

2

0 otherwise.

3. Then by Rayleigh’s energy theorem, we have

Z 1

�1
sinc

2

(2Wt)dt =

✓
1

2W

◆
2

Z 1

�1
rect

2

 
f

2W

!
df

=

✓
1

2W

◆
2

(2W )

=

1

2W
.

4. It then follows that

Z 1

�1
 2

i (t)dt =

Z 1

�1
 2

0

(t)dt = 1. (1)

5. Since (1) implies that both sinc(2Wt � i) and

sinc(2Wt�i0) have finite energy, we can consider their

cross-correlation function

Rii0 (⌧) =

Z 1

�1
sinc(2Wt � i)sinc(2W (t � ⌧) � i0)dt.

In particular,

Rii0 (0) =

Z 1

�1
sinc(2Wt � i)sinc(2Wt � i0)dt.

6. Now

sinc(2Wt� i)

⌦ e
�j2⇡f

⇣
i

2W

⌘ ✓
1

2W

◆
rect

 
f

2W

!
:= Gi(f)
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Heuristic Treatment of the 
Bandlimited Channel

• Assume the input process X 0
(t) has a Fourier transform, so that

X 0
(t) =

1X

i=�1
X 0

i  i(t).

• There is a one-to-one correspondence between {X 0
(t)} and {X 0

i}.

• Likewise, assume the output process Y (t) can be written as

Y (t) =
1X

i=�1
Yi  i(t).

• With these assumptions, the waveform channel can be regarded as a

discrete-time channel defined at t = i
2W , with the ith input and output of

the channel being X 0
i and Yi, respectively.
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To complete the model of the discrete-time channel, we need to
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The Discrete-Time Channel

• Recall that Y (t) =

P
i Yi  i(t) and X 0

(t) =

P
i X 0

i  i(t).

• Let Z 0
(t) =

P
i Z 0

i  i(t), where Z 0
i =

1p
2W

Z 0� i
2W

�
.

• Then Y (t) = X 0
(t) + Z 0

(t) implies

Yi = X 0
i + Z 0

i,

because  i(t),�1 < i <1 are orthonormal.

• Since Z 0 � i
2W

�
are i.i.d. ⇠ N (0, N0W ), Z 0

i are i.i.d. ⇠ N (0, N0
2 ).

• So the bandlimited white Gaussian channel is equivalent to a memoryless

Gaussian channel with noise power equal to

N0
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• Let P 0
be the average energy (i.e., the second moment) of the X 0

i s.

• Since  i(t),�1 < i <1 are orthonormal, each has unit energy and their

energy adds up.

• Therefore, X 0
(t) accumulates energy from the samples at a rate equal to

(2W )P 0
.

• By considering

(2W )P 0  P,

where P is the average power constraint on the input process X 0
(t), we

obtain

P 0  P

2W
.

Relating the Power Constraints
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Capacity of the Bandlimited White 
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