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e Both input and output are in continuous time.
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e Z(t) is a zero-mean white Gaussian noise process with Sz(f) = 22, called
an additive white Gaussian noise (AWGN).
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Signal Analysis Preliminaries

Definition 11.24 The Fourier transform of a signal ¢(t) is defined as
G = [ gwera

The signal g(t) can be recovered from G(f) as
o) = [ G,

and ¢g(t) is called the inverse Fourier transform of G(f). The functions g(¢) and
G(f) are said to form a transform pair, denoted by

g(t) = G(f).

The variables t and f are referred to as time and frequency, respectively.
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e The Fourier transform of an energy signal exists.

Definition 11.25 Let g1(¢) and g2(t) be a pair of energy signals. The cross-
correlation function for g;(t) and g2(t) is defined as

R12(7') — /OO gl(t)gg(t —T)dt.
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Proposition 11.26 For a pair of energy signals g1 (¢) and g2(t)

Ria(7) = G1(f)G5(f),

where G5(f) denotes the complex conjugate of Ga(f).
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Wide-sense Stationary Process

A process {X(t),—00 < t < oo} is wide-sense stationary if EX(f) does not
depend on t and F|X (¢t + 7) X (¢)] depends only on 7.

Definition 11.27 For a wide-sense stationary process { X (t), —oo < t < 00},
the autocorrelation function is defined as

Rx(7)=FE|X(t+ 7)X(t)]

which does not depend on ¢, and the power spectral density is defined as
Sx(f) = / Rx (1)e 2™/ " dr

l.e.,

Rx(T) — Sx(f)
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Let {(X(t),Y(t)),—00 <t < oo} be a bivariate wide-sense stationary process.
Their cross-correlation functions are defined as

Rxy (1) =FE|X({t+ 7)Y (t)]

and
Ryx (1) =FE[Y(t+ 7)X(t)]

which do not depend on ¢. The cross-spectral densities are defined as

Sxy(f) — / ny(T)e_jZWdeT
and -
Sy)((f) = / Ry x (T)e_jQWdeT
l.e.,
Rxy (1) = Sxy(f)
and

Ryx(T) — Syx(f)
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Y(t) = X'(t) + Z'(¢)

X' (t) and Z’(t) are filtered versions of X (t)
and Z(t), respectively.

Both X’(¢t) and Z’/(t) are bandlimited to
[0, W].

Z'(t) is a bandlimited white Gaussian noise
with

No/2 —W < f<W

SZ/(f) — { 0 otherwise.

Regard X’/ (t) as the channel input and Z’/(t)
as the additive noise process.

Impose a suitable power constraint on X/(t).
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With these assumptions, the waveform channel can be regarded as a

discrete-time channel defined at t = 5757, with the ¢th input and output of

the channel being X and Y;, respectively.
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7!~ N (O &) e The capacity of the discrete-time channel is
( » 2
1 P/2W 1 P
—log | 1 4+ = —log |1+ bits per sample.
2 Np/2 2 NoW

X! > Y,
e Since there are 2W samples per unit time, the

capacity is

P

: _ P
Input power constraint = oW W log <1 - ) bits per unit time.

NoW



