
11.6 Correlated Gaussian Channels
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• Y0
= Q>Y and X0

= Q>X (since X = QX0
).

• Let Z0
= Q>Z, and so Z0

is also Gaussian. Then

Y0
= Q>Y = Q>

(X + Z) = Q>X + Q>Z = X0
+ Z0.

• The equivalent noise vector Z0
is uncorrelated, because

KZ0
= Q>KZQ = Q>

(Q⇤Q>
)Q = ⇤,

i.e., Z 0
i ⇠ N (0, �i), and Z 0

i, 1  i  k are mutually independent.

• The “equivalent system” is a system of parallel Gaussian channels.
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