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Formal Justification:

1. Let Pi = EX2

i be the input power of the ith channel. Consider

I(X;Y) = h(Y) � h(Z)


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2. The inequalities in (1) and (2) are tight when Xi’s are independent

and Xi ⇠ N(0, Pi).

3. Therefore, maximizing I(X;Y) becomes maximizing

P
i log(Pi + Ni)

in (3).

4. The capacity of the system of parallel Gaussian channels is equal to

the sum of the capacities of the individual Gaussian channels with the

input power optimally allocated.
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Maximize

P
i log(Pi +Ni) subject to

P
i Pi  P and

Pi � 0.

Lagrange Multipliers:

1. Apply the method of Lagrange multipliers by tem-
porarily ignoring the nonnegativity constraints on Pi.

2. Observe that in order for
P

i log(Pi+Ni) to be max-

imized,
P

i Pi = P must hold because log
�
Pi + Ni

�
is

increasing in Pi.

3. Therefore, set
P

i Pi = P .

4. Let

J =
kX

i=1

log
�
Pi + Ni

�
� µ

kX

i=1

Pi.

5. Differentiating with respect to Pi gives

@J

@Pi

=
log e

Pi + Ni

� µ.

6. Setting @J
@Pi

= 0, we have

Pi =
log e

µ
� Ni.

7. Upon letting ⌫ = log e
µ

, we have

Pi = ⌫ � Ni, (1)

where ⌫ is chosen to satisfy the power constraint

kX

i=1

Pi =
kX

i=1

(⌫ � Ni) = P.

This solution has a water-filling interpretation.

8. Note that Pi � 0 if and only if ⌫ � Ni. Thus Pi � 0
for all i if and only if ⌫ � Ni for all i. However, this
is not guaranteed.

9. Nevertheless, (1) suggests the general solution to be
proved in Proposition 11.23.
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By means of Proposition 11.23 (an application of the Karush-Kuhn-Tucker

(KKT) condition), we obtain that in general,

C(P ) =

1

2

kX

i=1

log

✓
1 +

P

⇤
i

Ni

◆

where {P ⇤
i , 1  i  k} is the optimal input power allocation among the channels

given by

P

⇤
i = (⌫ �Ni)

+
, 1  i  k

where

(x)

+
=

⇢
x if x � 0

0 if x < 0

with ⌫ satisfying

kX

i=1

(⌫ �Ni)
+
= P.
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Proposition 11.23 The problem

For given �i � 0, maximize

Pk
i=1

log(ai +�i) subject

to

X

i

ai  P (1)

�ai  0. (2)

has the solution

a⇤i = (⌫ � �i)
+, 1  i  k,

where ⌫ satisfies

kX

i=1

(⌫ � �i)
+

= P.

Proof

1. We will prove the proposition by verifying that the

proposed solution satisfies the KKT condition. This is

done by finding nonnegative µ and µi satisfying the

equations

log e

(a⇤i + �i)
� µ + µi = 0 (3)

µ

0

@P �
kX

i=1

a⇤i

1

A
= 0 (4)

µia⇤i = 0, 1  i  k, (5)

where µ and µi are the multipliers associated with the

constraints in (1) and (2), respectively.

2. To avoid triviality, assume P > 0 so that ⌫ > 0,

and observe that there exists at least one i such that

a⇤i > 0.

3. For i such that a⇤i > 0:

• (5) implies µi = 0

• a⇤i = (⌫ � �i)
+

= ⌫ � �i, or a⇤i + �i = ⌫

• from (3), we obtain µ =

log e
⌫

> 0.

4. For i such that a⇤i = 0,

• ⌫  �i

• following (3), we have

log e

(a⇤i + �i)
� µ + µi = 0

log e

�i

�
log e

⌫
+ µi = 0

which implies

µi = (log e)

 
1

⌫
�

1

�i

!
� 0.

5. Thus we have obtained nonnegative µ and µi satis-

fying the KKT condition.
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(2)
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