
11.4 Memoryless Gaussian Channel



The Gaussian channel is the most commonly used model for a noisy channel

with real input and output, because:

1. the Gaussian channel is highly analytically tractable

2. the Gaussian noise can be regarded as the worst kind of additive noise

subject to a constraint on the noise power.
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Definition 11.19 (Gaussian Channel) A Gaussian channel with noise en-

ergy N is a continuous channel with the following two equivalent specifications:

1. f(y|x) = 1p
2⇡N

e

� (y�x)2

2N

2. Z ⇠ N (0, N) and ↵(X,Z) = X + Z.

Definition 11.20 (Memoryless Gaussian Channel) A memoryless Gaus-

sian channel with noise power N and input power constraint P is a memoryless

continuous channel with the generic continuous channel being the Gaussian

channel with noise energy N . The input power constraint P refers to the input

constraint (, P ) with (x) = x
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Theorem 11.21 (Capacity of a Memoryless Gaussian Channel) The
capacity of a memoryless Gaussian channel with noise power N and input power
constraint P is

1
2

log
�

1 +
P

N

⇥
.

The capacity is achieved by the input distribution N (0, P ).

Remarks

• The capacity of a memoryless Gaussian channel depends only on P/N ,
called the signal-to-noise ratio.

• The capacity is strictly positive no matter how small P/N is.

• The capacity is infinite if there is no input power constraint.

Lemma 11.22 Let Y = X + Z. Then h(Y |X) = h(Z|X) provided that
fZ|X(z|x) exists for all x � SX .
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Lemma 11.22 Let Y = X + Z. Then

h(Y |X) = h(Z|X)

provided that f

Z|X (z|x) exists for all x 2 S
X

.

Theorem 11.21 (Capacity of a Memoryless Gaus-

sian Channel) The capacity of a memoryless Gaus-
sian channel with noise power N and input power con-
straint P is

1

2
log

 
1 +

P

N

!
.

The capacity is achieved by the input distribution
N(0, P ).

Proof

1. Let F (x) be the CDF of the input random variable
X such that EX

2  P , where X is not necessarily
continuous.

2. Since Z ⇠ N(0, N), f

Z

exists. Then f

Z|X (z|x)

exists and is equal to f

Z

(z) because Z is independent
of X.

3. From the proof of Lemma 11.22,

f

Y |X (y|x) = f

Z|X (y � x|x) = f

Z

(y � x),

and by Proposition 10.24,

f

Y

(y) =
Z

f

Y |X (y|x) dF

X

(x).

Therefore f

Y

(y) exists and hence h(Y ) is defined.

4. Therefore, by Lemma 11.22,

I(X; Y ) = h(Y ) � h(Y |X)

= h(Y ) � h(Z|X)

= h(Y ) � h(Z).

5. Since Z is independent of X and Z is zero-mean,

EY

2 = E(X + Z)2

= EX

2 + EZ

2 + 2(EXZ)

= EX

2 + EZ

2 + 2(EX)(EZ)

 P + N.

6. By Theorem 10.43,

h(Y ) 
1

2
log[2⇡e(P + N)]

with equality if Y ⇠ N(0, P + N). This is achieved
with X ⇠ N(0, P ).

7. Hence,

C = max
F (x):EX

2P

h(Y ) � h(Z)

=
1

2
log[2⇡e(P + N)] �

1

2
log(2⇡eN)

=
1

2
log

 
1 +

P

N

!
.

Proof

1. Assume that f

Z|X (z|x) exists for all x 2 S
X

.

2. Consider

f

Y |X (y|x) = f

X+Z|X (y|x)

= f

x+Z|X (y|x)

= f

(x+Z)�x|X (y � x|x)

= f

Z|X (y � x|x).

Thus f

Y |X (y|x) exists.

3. Then h(Y |X = x) is defined, and

h(Y |X) =

Z
h(Y |X = x)dF

X

(x)

=

Z
h(X + Z|X = x)dF

X

(x)

=

Z
h(x + Z|X = x)dF

X

(x)

=

Z
h(Z|X = x)dF

X

(x)

= h(Z|X).
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