
11.3.1 The Converse



Lemma 11.15 (Data Processing Theorem) I(W ; Ŵ )  I(X;Y).

Sketch of Proof

• W ! X ! Y ! ˆW can be established like the discrete case.

• W ,

ˆW – discrete

• X – real but discrete

• Y – real and continuous

• Y needs to be handled with caution because it is continuous.

• In particular, the existence of the conditional pdf f(y|ŵ) needs to be

established so that I(X;Y| ˆW ) can be defined.

• Refer to the textbook for the technical details.
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established so that I(X;Y| ˆW ) can be defined.

• Refer to the textbook for the technical details.



Lemma 11.15 (Data Processing Theorem) I(W ; Ŵ )  I(X;Y).
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1. Let R be an achievable rate, i.e., for any ✏ > 0,

there exists for sufficiently large n and (n,M) code

such that

1

n
log M > R � ✏ and �max < ✏.

2. Consider

log M = H(W )

= H(W | ˆW ) + I(W ;

ˆW )

 H(W | ˆW ) + I(X;Y)

= H(W | ˆW ) + h(Y) � h(Y|X)

 H(W | ˆW ) +

nX

i=1

h(Yi) � h(Y|X)

= H(W | ˆW ) +

nX

i=1

h(Yi) �
nX

i=1

h(Yi|Xi)

= H(W | ˆW ) +

nX

i=1

I(Xi;Yi).

3. Let V be a mixing random variable distributed uni-

formly on {1, 2, · · · , n} which is independent of Xi,
1  i  n.

4. Let X = XV and Y be the output of the channel

with X being the input.

5. Then

E(X) = EE[(X)|V ]

=

nX

i=1

Pr{V = i}E[(X)|V = i]

=

nX

i=1

Pr{V = i}E[(Xi)|V = i]

=

nX

i=1

1

n
E(Xi)

= E

2

4
1

n

nX

i=1

(Xi)

3

5

 P.

6. By the concavity of mutual information with respect

to the input distribution,

1

n

nX

i=1

I(Xi;Yi)  I(X;Y )  C(P ).

7. It follows that

n(R � ✏) < log M  H(W | ˆW ) + nC(P ).

8. Invoke Fano’s inequality to conclude that R  C(P ).

Proof of Converse
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11.3.2 Achievability



• In the formula
C(P ) = sup

F (x):E(X)P

I(X;Y ),

X can be a mixed random variable, so it is di�cult to consider sequences
that are typical w.r.t. F (x).

• Need a new notion of joint typicality – mutual typicality.

• Recall that for any input distribution F (x), f(y) exists as long as f(y|x)
exists. Hence

I(X;Y ) = E log
f(Y |X)
f(Y )

.
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Definition 11.16 The mutually typical set  

n
[XY ]� with respect to F (x, y) is

the set of (x,y) 2 Xn ⇥ Yn
such that

����
1

n

log

f(y|x)
f(y)

� I(X;Y )

����  �,

where

f(y|x) =
nY

i=1

f(yi|xi) and f(y) =

nY

i=1

f(yi),

and � is an arbitrarily small positive number. A pair of sequences (x,y) is called

mutually �-typical if it is in  

n
[XY ]�.
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1. Consider

1

n
log

f(Y|X)

f(Y)

=

1

n
log

nY

i=1

f(Yi|Xi)

f(Yi)
=

1

n

nX

i=1

log

f(Yi|Xi)

f(Yi)
.

2. By WLLN,

1

n

nX

i=1

log

f(Yi|Xi)

f(Yi)
! E log

f(Y |X)

f(Y )

= I(X;Y )

in probability.

Lemma 11.17 For any � > 0, for su�ciently large n,

Pr{(X,Y) 2  n
[XY ]�)} � 1� �.

Proof
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Parameter Settings

1. Fix ✏ > 0 and input distribution F (x). Let � to be
specified later.

2. Since C(P ) is left-continuous, there exists � > 0
such that

C(P � �) > C(P ) �
✏

6
.

3. By the definition of C(P � �), there exists an input
random variable X such that

E(X)  P � � and I(X; Y ) � C(P � �) �
✏

6
.

4. Choose for a sufficiently large n an even integer M

satisfying

I(X; Y ) �
✏

6
<

1

n

log M < I(X; Y ) �
✏

8
.

5. Then

1

n

log M > I(X; Y )�
✏

6
� C(P ��)�

✏

3
> C(P )�

✏

2
.

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in <n indepen-
dently and identically according to F (x)n.

2. Denote these codewords by X̃(1), X̃(2), · · · , X̃(M).
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7. Rank the codewords in C⇤ in ascending order ac-
cording to Pr{Err|C⇤,W = w}.

8. After discarding the worst half of the codewords in
C⇤, if a codeword X̃(w) remains in C⇤, then

Pr{Err|C⇤,W = w}  ✏.

9. However, it is not clear whether X̃(w) satisfies both
�w  ✏ and the input constraint.

10. Since Err = Ee [ Ed, we have

�w = Pr{Ed|C⇤,W = w}  ✏

and
Pr{Ee|C⇤,W = w}  ✏.

11. Observe that conditioning on {C⇤,W = w}, the
codeword X̃(w) is deterministic, so either

Pr{Ee|C⇤,W = w} = 0

or
Pr{Ee|C⇤,W = w} = 1.

Therefore, Pr{Ee|C⇤,W = w} = 0.
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