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Sketch of Proof

e W = X =Y — W can be established like the discrete case.

o WV, W — discrete

e X — real but discrete
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Sketch of Proof
e W — X =Y — W can be established like the discrete case.
o W, W — discrete
e X —real but discrete

e Y — real and continuous
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Lemma 11.15 (Data Processing Theorem) I(W;W) < I(X;Y).

Sketch of Proof

e W = X =Y — W can be established like the discrete case.

o WV, W — discrete

e X — real but discrete

e Y — real and continuous

e Y needs to be handled with caution because it is continuous.

W
Encoder

Message

Channel
fylz)

Decoder

/N

w

Estimate
of message



Lemma 11.15 (Data Processing Theorem) I(W;W) < I(X;Y).

Sketch of Proof
e W — X =Y — W can be established like the discrete case.
o WV, W — discrete
e X —real but discrete
e Y —real and continuous
e Y needs to be handled with caution because it is continuous.

e In particular, the existence of the conditional pdf f(y|w) needs to be
established so that I(X;Y|W) can be defined.
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Lemma 11.15 (Data Processing Theorem) I(W;W) < I(X;Y).

Sketch of Proof
e W — X =Y — W can be established like the discrete case.
o WV, W — discrete
e X —real but discrete
e Y —real and continuous
e Y needs to be handled with caution because it is continuous.

e In particular, the existence of the conditional pdf f(y|w) needs to be
established so that I(X;Y|W) can be defined.

e Refer to the textbook for the technical details.
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Definition 11.16 The mutually typical set Wiyy5 with respect to F'(z,y) is
the set of (x,y) € A x Y" such that

1 log f(ylx)

n f(y)

where

Y‘X Hf yz|xz and f Hf yz

and ¢ is an arbitrarily small positive number. A pair of sequences (x,y) is called
mutually o-typical if it is in \IJ'FXY] 5-
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Proof
1. Consider
1 f(YX) 1 = f Y]X & Y|X)
— log log log .
2. By WLLN,

%Zlog f%fi) » Elog f?(/y’,))() = I(X;Y)

in probability.



Lemma 11.18 Let (X', Y’) be n ii.d. copies of a pair of generic random
variables (X', Y"), where X’ and Y’ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y') € Uy s} < 270,



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'

and Y/ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'

and Y/ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'

and Y/ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,
1 f(ylx)
—log ——— — I(X;Y)| < 6.

n f(y)



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'

and Y/ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,

1
—logm — I(X;Y) <6.
n f(y)
2. Then )
_1Ogm > I(X;Y) =6

n F(y)



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'

and Y/ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,
1 f(y|x
—log(—|) — I(X;Y) <6.
n f(y)

2. Then (y]
1 f(y|x
—log—) > I(X;Y) — 96
n F(y)

which implies

T S nx5v)—o)
F(y)



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'

and Y/ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,
1 f(y|x
—log(—|) — I(X;Y) <6.
n f(y)

2. Then (y]
1 f(y|x
—log—) > I(X;Y) — 96
n F(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'

and Y/ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,
1 f(y|x
—log(—|) — I(X;Y) <6.
n f(y)

2. Then (y]
1 f(y|x
—log—) > I(X;Y) — 96
n F(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,
1 f(y|x
—log(—|) — I(X;Y) <6.
n f(y)

2. Then (y]
1 f(y|x
—log—) > I(X;Y) — 96
n F(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)

3. Consider

1 >

Pr{(X,Y) € ‘I’ny](s)}



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof
1. For any (x,y) € ‘IIFJXY](S’ by definition,

1
——log-{SZlfz —I(X;Y)| < 6.
n f(y)

2. Then )
_1Ogm > I(X;Y) -6
n f(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)

3. Consider

1 >

Pr{(X,Y) € ‘I’ny](s)}

//‘I’Fxm f(y|x)dF (x) dy



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof
1. For any (x,y) € ‘IIFJXY]S’ by definition,

1
— 1ogM —I(X;Y)| < 6.
n f(y)

2. Then )
_1Ogm > I(X;Y) -6
n f(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)

3. Consider

1 >

Pr{(X,Y) € ‘I’FXY](S)}

//‘I’nyw

f(y|x)dF(x) dy



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof
1. For any (x,y) € ‘IIFJXY]S’ by definition,

1
——1og-f£3’—Ifz —I(X;Y)| < 6.
n f(y)

2. Then )
_1Ogm > I(X;Y) -6
n f(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)

3. Consider

1 >

Pr{(X,Y) € ‘I’ny](s)}

//‘IJFXY]cS f(y|x)dF (x) dy



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y') € ‘I’ny](s} <

Proof
1. For any (x,y) € ‘IIFJXY]S’ by definition,

1
— 1ogM —I(X;Y)| < 6.
n f(y)

2. Then )
_1Ogm > I(X;Y) -6
n f(y)

which implies

T S nx5v)—o)
F(y)

Flylx) > f(y)2nI(X5Y)=0),

5~ n(I(X;Y)—6)

3. Consider

1 >

Pr{(X,Y) € ‘I’ny](s)}

//‘IJFXY]cS f(y|x)dF (x) dy

n U0 [ rdFeody
(XY]6



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y') € ‘I’ny](s} <

Proof
1. For any (x,y) € ‘IIFJXY]S’ by definition,

1
——1og-f£3’—Ifz —I(X;Y)| < 6.
n f(y)

2. Then )
_1Ogm > I(X;Y) -6
n f(y)

which implies

T S nx5v)—o)
F(y)

Flylx) > f(y)2nI(X5Y)=0)

5~ n(I(X;Y)—6)

3. Consider

1 >

Pr{(X,Y) € ‘I’ny](s)}

//‘IJFXY]cS f(y|x)dF (x) dy

2" (1(X3Y)—9) //\w f(y)dF(x)dy
(X Y]



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY]S’ by definition,
1 f(y|x
" log AL I(X;Y)| < 6.
n f(y)

2. Then |
1 f(y|x
—logQ > I(X;Y) — 96
™ F(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)

3. Consider

1 >

Pr{(X,Y) € ‘I’FXY](S)}

//‘I’FXY]5 f(y|x)dF (x) dy

2" (1(X3Y)—9) //\w f(y)dF(x)dy
(X Y]

o (I(X5Y)—=0) prrx’ v/ e T yst




Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a
pair of generic random variables (X’,Y’), where X'
and Y/ are independent and have the same marginal

distributions as X and Y, respectively. Then

Pr{(X',Y") € ¥fxy 5} < o —n(I(X5Y)—4)

Proof

1. For any (x,y) € ‘IIFJXY](S’ by definition,
1 f(y|x
—log(—|) — I(X;Y) <6.
n f(y)

2. Then (y]
1 f(y|x
—log—) > I(X;Y) — 96
n F(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)

3. Consider

1 >

Pr{(X,Y) € ‘I’ny](s)}

//‘I’Fxm f(y|x)dF (x) dy

n U= [ pareody
(XY]6

2“(ICX?Y>—5)fw{cx’;YJ)e-@ﬁxyqéy



Lemma 11.18 Let (X’,Y’) be n i.i.d. copies of a 3. Comnsider
pair of generic random variables (X’,Y’), where X'

and Y’/ are independent and have the same marginal 1 > Pr{(X,Y) ¢ o )}
distributions as X and Y, respectively. Then - ’ [XY]é

= x)dF (x

> 2”<I<X;Y>—5)//\w f(y)dF (x)dy
(XY]6

Proof
1. For any (x,y) € ‘IIFJXY](S’ by definition, — 2n(I(X;Y)—5) Pr{(X’)Y/) € \IJFXY]é}

1 4. Hen

_1OgM—I(X;Y) < 4. e

n F(y)

Pr{(X',Y") € 5y 5} < o~ n(I(X3Y)—90)

2. Then )

—logM > I(X;Y) — 96

n F(y)

which implies

T S nx5v)—o)
F(y)

or

Flylx) > f(y)2nI(X5Y)=0)



Random Coding Scheme



Random Coding Scheme

Parameter Settings



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

C(P) = sup I(X;Y)
F(x):Ex(X)P




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0

such that .
C(P—~)>C(P)— g
C(P) = sup I(X;Y)
F(x):Ex(X)P
C(P — ) = sup I(X;Y)
F(x):Er(X)<P—~




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

C(P) = sup I(X;Y)
F(x):Ex(X)P
C(P — ) = sup I(X;Y)

F(x):Er(X)<P—~




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

EFEr(X) < P —~ and

C(P) = sup I(X;Y)
F(x):Ex(X)P
C(P — ) = sup I(X;Y)

F(x):Er(X)<P—~




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

C(P) = sup I(X;Y)
F(x):Ex(X)P
C(P — ) = sup I(X;Y)

F(x):Er(X)<P—~




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M

satisfying
€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8
5. Then
1

€ € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFEr(X) < P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M

satisfying
€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8
5. Then
1

€ € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M

satisfying
€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8
5. Then
1

€ € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n




Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that

C(P —~)> C(P) — 2.

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M

satisfying
€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8
5. Then
1

€ € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.

5. The sequence X = X (W) is transmitted through the
channel.



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.

5. The sequence X = X (W) is transmitted through the
channel.

6. The channel outputs a sequence Y according to



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.

5. The sequence X = X (W) is transmitted through the
channel.

6. The channel outputs a sequence Y according to

n
. y.
Pr{Y; <y;,1<i<n|X(W)=x}=]] / b f(ylzg)dy.



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.

5. The sequence X = X (W) is transmitted through the
channel.

6. The channel outputs a sequence Y according to
n Y
. 1
Pr{Y; Sv;, 1 <i<nX(W) =x} = [[ [Y" fleyay.
i=1" 7 °

7. The sequence Y is decoded to the message w if



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.

5. The sequence X = X (W) is transmitted through the
channel.

6. The channel outputs a sequence Y according to
n Y
. 1
Pr{Y; Sv;, 1 <i<nX(W) =x} = [[ [Y" fleyay.
i=1" 7 °

7. The sequence Y is decoded to the message w if

o (X(w),Y) € \IJFXY](S’ and



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.

5. The sequence X = X (W) is transmitted through the
channel.

6. The channel outputs a sequence Y according to
n Y
. 7
Pr{Y, < y,;,1 < i< n|X(W) =x} = H / f(ylx;)dy.
i=1"7"°°
7. The sequence Y is decoded to the message w if
n
o (X(w),Y) € \IJ[XY](S’ and

e there does not exist w’ # w such that

(X(w’),Y) € ‘I’FXY](S-



Random Coding Scheme

Parameter Settings

1. Fix € > 0 and input distribution F'(x). Let § to be
specified later.

2. Since C(P) is left-continuous, there exists v > 0
such that .
C(P—~)>C(P)— —.
6

3. By the definition of C(P — ), there exists an input
random variable X such that

€

EFr(X)<P—~ and I(X;Y)>C(P —~v)— —.
6

4. Choose for a sufficiently large n an even integer M
satisfying

€ 1 €
I(X;Y) — — < —logM < I(X;Y) — —.
6 n 8

5. Then

1 € € €
—logM > I(X;Y)— — >2C(P—v)— - >C(P)— —.
6 3 2

n

The Random Coding Scheme

1. Construct the codebook C of an (n, M) code ran-
domly by generating M codewords in R"™ indepen-
dently and identically according to F(xz)".

2. Denote these codewords by X(1), X(2), - -- , X(M).

3. Reveal the codebook C to both the encoder and the
decoder.

4. A message W is chosen from VYV uniformly.

5. The sequence X = X (W) is transmitted through the
channel.

6. The channel outputs a sequence Y according to
n Y
. 1
Pr{Y; Sv;, 1 <i<nX(W) =x} = [[ [Y" fleyay.
i=1" 7 °

7. The sequence Y is decoded to the message w if

o (X(w),Y) € \IJFXY](S’ and

e there does not exist w’ # w such that

(X(w’),Y) € ‘I’FXY](S-

Otherwise, Y is decoded to a constant message in V.
Denote by W the message to which Y is decoded.



Performance Analysis



Performance Analysis

Code Construction: Fix input distribution F'(x) such
that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -+, Xn(w)).

Code Construction: Fix input distribution F'(x) such
that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U E 4, where

Code Construction: Fix input distribution F'(x) such
that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U E 4, where

Ee = {i Y k(X (W) > P}

noi=1

Code Construction: Fix input distribution F'(x) such
that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U E 4, where

Ee = {i Y k(X (W) > P}
n =1

and A
Eg ={W # W}.

Code Construction: Fix input distribution F'(x) such
that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U E 4, where

Ee = {i Y k(X (W) > P}
n =1

and A
Eg ={W # W}.

Code Construction: Fix input distribution F'(x) such
that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U E 4, where

Ee = {i Y k(X (W) > P}

noi=1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

Code Construction: Fix input distribution F(x)
that

such

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U E 4, where

Ee = {i Y k(X (W) > P}

noi=1

and A
Eg g = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

Code Construction: Fix input distribution F'(x) such
that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = : Y k(X;(W)) > P
n =1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

<  Pr{Ee|W =1} + Pr{E |W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = : Y k(X;(W)) > P
n =1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

<  Pr{Ee|W =1} + Pr{E |W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = : Y k(X;(W)) > P
n =1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€
Pr{Eg |W =1} < —

N

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = : Y k(X;(W)) > P

noi=1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = : Y k(X;(W)) > P

noi=1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = : Y k(X;(W)) > P

noi=1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,



Performance Analysis

1. Let X(w) = (X1 (w), )22(10), co L, X (w)). 5. By WLLN, for sufficiently large n,
2. Define the error event Err = E¢ U Ej , where
Pr{Ec|W =1}
n

Ee = s Y k(X;(W)) > P

n =1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U E 4, where

Ee = s Y k(X;(W)) > P

n =1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

= Pr i im(xz(l))>P W =1

n —1



Performance Analysis

1. Let X(w) = (X1 (w), )22(10), co L, X (w)). 5. By WLLN, for sufficiently large n,

2. Define the error event Err = E¢ U Ej , where
Pr{Ec|W =1}

1 - 1 N
Ee =3 — Y w(X;(W))>P = Prq — > w(X;(1) > P|W=1
1 N
and = Pr{ — Z k(X;(1)) > P
By ={W # W}. noi—=1
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that
€
EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = t Y k(X;(W)) > P
noi=1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€
Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

= Pr

t i kK(X;(1)) > P|W =1

n —1

1 3

— > k(X;(1) > P
n =1

1 mn

— > R(X;(1) > (P —v) +~

n =1



Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = t Y k(X;(W)) > P
noi=1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€
Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

= Pr

t i kK(X;(1)) > P|W =1

n —1

1 3

— > k(X;(1) > P
n =1

1 mn

— > R(X;(1) > (P =)+~

n =1



Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -, Xp(w)).
2. Define the error event Err = E¢ U Ej , where

Ee = t Y k(X;(W)) > P
noi=1

and A
E 4 = {W # W}.
3. Consider
Pr{Err} = Pr{Err|W =1}

IA

Pr{Ee¢|W = 1} + Pr{Ey4|W = 1}.

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€
Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

= Pr

t i kK(X;(1)) > P|W =1

n —1

1 3

— > k(X;(1) > P
n =1

1 mn

— 3 R(X;(1) > (P =)+~

n =1



1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€
Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

Pr ! i k(X;(1)) > P|W =1
n ;—1

Pr{; Zj:l k(X;(1)) > P

Pr{% é:l R(X;(1) > (P =)+~

Pr{% é:l k(X;(1) > Ex(X) + v



Performance Analysis

1. Let X(w) = (X1 (w), )22(10), co L, X (w)). 5. By WLLN, for sufficiently large n,

2. Define the error event Err = E¢ U Ej , where
Pr{Ec|W =1}

n 1 " -
Ee = : Y k(X;(W)) > P = Prq — > rw(X;(1)>PW=1
noi=1 n ;1
and X = Pr{— Z /{(X’z(l)) > P
Eg ={W # W}. noi=1
onsider 1 & 5
3. C d — Pr{—ZK,(Xi(l))>(P_’Y)+'7
noi=1
Pr{Err} = Pr{Err|W =1} | n
< Pr{E¢|W =1} + Pr{E4|W = 1}. < Pr{— Y k(X;(1) > Erx(X) + v
noj=1

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




Performance Analysis

1. Let X(w) = (X1 (w), )22(10), co L, X (w)). 5. By WLLN, for sufficiently large n,

2. Define the error event Err = E¢ U Ej , where
Pr{Ec|W =1}

n 1 " -
Ee = : Y k(X;(W)) > P = Prq — > rw(X;(1)>PW=1
noi=1 n ;1
and X = Pr{— Z /{(X’z(l)) > P
Eg ={W # W}. noi=1
onsider 1 & 5
3. C d — Pr{—ZK,(Xi(l))>(P_’Y)+'7
noi=1
Pr{Err} = Pr{Err|W =1} | n
< Pr{E¢|W =1} + Pr{E4|W = 1}. < Pr{— Y k(X;(1) > Erx(X) + v
noj=1

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose 6 to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that
€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6




1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€
Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

Pr ! i k(X;(1)) > P|W =1
n =4

Pr{; Zj:l k(X;(1)) > P

P{% éw@;(l)) > (P =)+



1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis
case.

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete
So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

— > r(X;(1)) > Er(X) 4+~
=1

=

S

1> s
Pr{— D R(X(1) > (P =)+~

X .

(2

(1) ~ X




1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis
case.

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete
So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

— > r(X;(1)) > Er(X) 4+~
=1

=

S

1> s
Pr{— D R(X(1) > (P =)+~

X .

(2

(1) ~ X




1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

— > r(X;(1)) > Er(X) 4+~
=1

=

S

1> s
Pr{— D R(X(1) > (P =)+~

X (1) ~ X
r(X;(1) ~ r(X)




1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

— > r(X;(1) > Er(X) 4+~
=1

=

S

1> s
Pr{— D R(X(1) > (P =)+~

X (1) ~ X
r(X;(1) ~ r(X)




1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

— > r(X;(1) > Er(X) +~
=1

=

S

1> s
Pr{— D R(X(1) > (P =)+~

X (1) ~ X
r(X;(1) ~ r(X)




1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

— > r(X;(1) > Er(X) +~
=1

=

S

1> s
Pr{— D R(X(1) > (P =)+~

X (1) ~ X
r(X;(1) ~ r(X)




1. Let X(w) = (X (w), Xg(w), - - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee —
and
3. Consider
Pr{Err} =
<

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

Code Construction: Fix input distribution F'(x) such

that

€

EFEr(X)< P —~ and I(X;Y)>C(P —~) — —.
6

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

=1

1 n

— > r(X;(1) > En(X) + v

n

1> s
Pr{— D R(X(1) > (P =)+~

=1

= o

X (1) ~ X
r(X;(1) ~ r(X)




1. Let X(w) = (X1 (w), Xg(w), - -

Performance Analysis

2. Define the error event Err = E¢ U E 4, where

Ee —
and
3. Consider
Pr{Err} =
<

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same

of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

noi=1
1> 5
— > r(X;(1) > Er(X) 4+~

noi=1

1> s
Pr{— D R(X(1) > (P =)+~

= o



1. Let X(w) = (X1 (w), Xg(w), - -

Performance Analysis

2. Define the error event Err = E¢ U E 4, where

Ee —
and
3. Consider
Pr{Err} =
<

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same

of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

1 -
— > r(X;(1) > Er(X) 4+~

noi=1

1> s
Pr{— D R(X(1) > (P =)+~

€
4 .

6. Therefore,



1. Let X(w) = (X1 (w), Xg(w), - -

Performance Analysis

2. Define the error event Err = E¢ U E 4, where

Ee —
and
3. Consider
Pr{Err} =
<

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same

of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

IN

Pr{ — i k(X;(1)) > P|W =1

3

d o r(X;(1) > P

n =1

n =1

1 -
— > r(X;(1) > Er(X) 4+~

noi=1

1> s
Pr{— D R(X(1) > (P =)+~

€
4 .

6. Therefore,



1. Let X(w) = (X1 (w), Xo(w), - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee —
and
3. Consider
Pr{Err} =
<

4. The analysis
as the analysis

1 " -
{— > (X (W) > P}

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W = 1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

for sufficiently large n.

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IA

IA

Pr : i kK(X;(1) > Pl W =1

=1
1M N
Pr{— > r(X; (1) > P}
n =1
1™ _
Pr{— D R(X; (1) > (P —v)+~
n =1
1 N
Pr{— ST k(X;(1) > Er(X) +,Y}
n =1
"

6. Therefore,



1. Let X(w) = (X1 (w), Xo(w), - -

Performance Analysis

2. Define the error event Err = E¢ U Ej , where

Ee —
and
3. Consider
Pr{Err} =
<

4. The analysis
as the analysis

1 " -
{— > (X (W) > P}

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W = 1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

for sufficiently large n.

5. By WLLN, for sufficiently large n,

PI‘{EelW = ]_}

IA

IN

Pr : i kK(X;(1) > Pl W =1

=1
1M N
Pr{— > r(X; (1) > P}
n =1
1™ _
Pr{— D R(X; (1) > (P —v)+~
n =1
1 N
Pr{— ST k(X;(1) > Er(X) +,Y}
n =1
—

6. Therefore,



Performance Analysis

1. Let X(w) = (X1 (w), Xo(w), -+, Xn(w)). 5. By WLLN, for sufficiently large n,

2. Define the error event Err = E¢ U Ej , where
PI‘{EelW = ]_}

Ee:{i im(Xi(W))>P} = Pr : Y r(X;(1) > P|W =1

.

and = Pr

By ={W # W}.

3. Consider _ Pr {

-

3 |r

rR(X; (1)) > P}
1

7

R(Xi(1) > (P =)+~

S |r

=1

Pr{Err} = Pr{Err|W =1}
<  Pr{BE¢|W =1} 4+ Pr{Ey |W = 1}.

IA

Pr

-

3 |e

r(X;(1) > Er(X) + ’Y}
1

(2

4. The analysis of Pr{E;|W = 1} is exactly the same
as the analysis of the decoding error in the discrete
case. So we can choose § to be small to make

6. Therefore,

for sufficiently large n.

IN

€
P 0

m

\V)




1. Let X(w) = (X1 (w), Xo(w), - -

Performance Analysis

2. Define the error event Err = E¢ U E 4, where

Ee:

and

3. Consider

Pr{Err}

IA

4. The analysis
as the analysis

1 _
— > R(X;(W)) > P

noi=1

By ={W # W}.

Pr{Err|W =1}
Pr{Ec|W =1} + Pr{E4|W = 1}.

of Pr{Ej 4|W = 1} is exactly the same
of the decoding error in the discrete

case. So we can choose § to be small to make

€

Pr{Eg |W =1} < —

N

for sufficiently large n.

5. By WLLN, for sufficiently large n,

Pr{E¢|W = 1}

IN

IN

Pr : i k(X;(1)) > P|W =1
n —1
1 -

Pr{— Z k(X;(1)) > P
n ;_q
1 " -

Pr{— S R(Ri(1)) > (P =)+
n =1
1 " -

Pr{— Z &(Xz(l)) > Er(X) + v
n =1

Z.

6. Therefore,

€
Pr{Err} < —
2

which implies for some codebook C™*,



Performance Analysis

1. Let X(w) = (X1 (w), )22(10), co L, X (w)). 5. By WLLN, for sufficiently large n,

2. Define the error event Err = E¢ U E 4, where
Pr{Ec|W =1}

1 _ 1 _
Be=14q— > r(X;(W))>P = Prq — > rw(X;(1)>PW=1
1 " -
and A = Pri— > R(X;(1) > P
Eg ={W # W}. n =1
3. Consider 1 & =
— Pr{—zm(Xi(l))>(P—’Y)+v
n =1
Pr{Err} = Pr{Err|W =1} "
1 ~
<  Pr{Ee|W =1} + Pr{Eg|W = 1}. < Pr{— > r(X;(1) > Er(X) +
n =1
4. The analysis of Pr{E |W = 1} is exactly the same < <
as the analysis of the decoding error in the discrete - 4'
case. So we can choose § to be small to make
. 6. Therefore,
€
Pr{E4g|W =1} < — Pr{Err} < —

N

2

for sufficiently large m. which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n,

=

Pr{E¢|W = 1}

. pr{

= Pr

R(X;(1)) > P

3|+
WE

=1

Z (X, (1)) > P}

&
e
{

S|+~
| 3
—

3|+
\E

[
=

k(X;(1) > (P — )+ w}

- <  Pr R(X; (1)) > Er(X) +v}

1

3|+

7

me
ote

IA

€
4 .

6. Therefore,
€

Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n,

=

Pr{Ec|W = 1}

= Pr{ h > k(X;(1) > P

1 _
— Z rR(X; (1)) > P}

IN
)U
=)

1 N
— Pr{— Z R(X;(1)) > (P —7)+w}

Z r(X;(1)) > Er(X) + 7}

IA
&~

6. Therefore,

M

Pr{Err} < —

\V)

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.

Pr{Ec|W = 1}

_ pr{

k(X;(1) > P|W = 1}

3|+
WE

=1

= Pr {i k(X ; (1)) > P}
n i=1
1 N
- Pr{— Zm(Xi(l))>(P—7)—l—w}
=1
1 N
< Pr{— D> k(X;(1)) > Er(X) +v}
=1
<
4

6. Therefore,
€

Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.
Pr{E¢|W = 1} 8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then
1 -
= Prq — > rw(X;(1)>PW=1
n4i=1
1 -
= Prq— > rw(X;(1)>P
n =1
1 " -
= Prq— > w(X;(1) > (P -7+~
n4=1
1 -
< Pr{— > k(X;(1) > Er(X) + v
n =1

IA

€
4 .

6. Therefore,
€

Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.
Pr{E¢|W = 1} 8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then
1 -
= Prq — > rw(X;(1)>PW=1
n =1 Pr{Err|C*, W = w} < e.
1 -
= Prq— > rw(X;(1)>P
n =1
1 " -
= Prq— > w(X;(1) > (P -7+~
n4=1
1 -
< Prg— Y R(X;(1) > Er(X) + 7~
n =1

IA

€
4 .

6. Therefore,
€

Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.
Pr{E¢|W = 1} 8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then
1 " -
= Prq — > rw(X;(1)>PW=1
n ;=1 Pr{Err|C*, W = w} < e.
1 ~ ~
= Prq — Z k(X;(1)) > P 9. However, it is not clear whether X (w) satisfies both
n =1 Aw < e and the input constraint.
1 -
= Pr{— > w(X;(1)>(P -7+~
n4=1
1 " -
< Pr{— > k(X;(1) > Er(X) + v
ni=1

IA

€
4 .

6. Therefore,
€

Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.
Pr{E¢|W = 1} 8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then
1 " -
= Prq — > rw(X;(1)>PW=1
n ;=1 Pr{Err|C*, W = w} < e.
1 ~ ~
= Pr ¢ — Z k(X; (1)) > P 9. However, it is not clear whether X (w) satisfies both
n =1 Aw < e and the input constraint.
1 N 10. Since Err = E¢ U E;, we have
= Pr{— > w(X;(1)>(P -7+~
n 4=1
1 " -
< Pr{— > k(X;(1) > Er(X) + v
ni=1
€
< —.
4
6. Therefore,
€
Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.
Pr{E¢|W = 1} 8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then
1 " -
= Prq — > rw(X;(1)>PW=1
n ;=1 Pr{Err|C*, W = w} < e.
1 ~ ~
= Pr ¢ — Z k(X; (1)) > P 9. However, it is not clear whether X (w) satisfies both
n =1 Aw < e and the input constraint.
1 N 10. Since Err = E¢ U E;, we have
= Pr{— > w(X;(1)>(P -7+~
n 4=1
1 " -
< Pr{— > k(X;(1) > Er(X) + v
ni=1
€
< —.
4
6. Therefore,
€
Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.
Pr{E¢|W = 1} 8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then
1 " -
= Prq — > rw(X;(1)>PW=1
n ;=1 Pr{Err|C*, W = w} < e.
1 ~ ~
= Pr ¢ — Z k(X; (1)) > P 9. However, it is not clear whether X (w) satisfies both
n =1 Aw < e and the input constraint.
1 N 10. Since Err = E¢ U E;, we have
= Pr{— > w(X;(1)>(P -7+~
n 4=1
Aw = Pr{E4|C*", W = w} < e
1 " -
< Pr{— > k(X;(1) > Er(X) + v
ni=1
€
< —.
4

6. Therefore,
€

Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



Performance Analysis

5. By WLLN, for sufficiently large n, 7. Rank the codewords in C*™ in ascending order ac-
cording to Pr{Err|C*, W = w}.
Pr{E¢|W = 1} 8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then
1 " -
= Prq — > rw(X;(1)>PW=1
n ;=1 Pr{Err|C*, W = w} < e.
1 ~ ~
= Pr ¢ — Z k(X; (1)) > P 9. However, it is not clear whether X (w) satisfies both
n =1 Aw < e and the input constraint.
1 N 10. Since Err = E¢ U E;, we have
= Pr{— > w(X;(1)>(P -7+~
n 4=1
Aw = Pr{E4|C*", W = w} < e
1 " -
< Pr{— > k(X;(1) > Er(X) + v
n i=1 and
. Pr{Ec|C", W = w} < e.
< —.
4

6. Therefore,
€

Pr{Err} < —
2

which implies for some codebook C™,

€
Pr{Err|C*} < —.
2



5. By WLLN, for sufficiently large n,

Pr{Ec|W = 1}

I

)U

)
S |+

S |~

n

n

> k(X;(1) > P
,—1

1 n

3

=1

1 n

IN

)U

)
S

IA

€
4 .

6. Therefore,

which implies for

Pr{Err} < —

some codebook C™*,

Pr{Err|C*} <

€

2

Y k(X;(1) > P|W =1
=1

— > r(X;(1)) > Er(X) 4+~
=1

= Pr{—ZIi(Xi(l))>(P_'7)+'7

€

2

Performance Analysis

7. Rank the codewords in C* in ascending order ac-
cording to Pr{Err|C*, W = w}.

8. After discarding the worst half of the codewords in
C*, if a codeword X (w) remains in C*, then

Pr{Err|C*, W = w} < e.

9. However, it is not clear whether X (w) satisfies both
Aw < € and the input constraint.

10. Since Err = E¢ U E;, we have
Aw = Pr{E4|C*", W = w} < e

and
Pr{Ec|C", W = w} < e.

11. Observe that conditioning on {C*, W = w}, the
codeword X (w) is deterministic, so either
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