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e In a physical communication system, the input and output of a channel
often take continuous real values.

e A waveform channel is one such that transmission is in continuous time.

e At the physical layer, we need to deal with channels such that the values
taken are continuous and transmission is in continuous time.
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| 1.1 Discrete-Time Channel



Definition 11.1 (Continuous Channel I) Let f(y|x) be a conditional pdf
defined for all x, where

—/ f(ylx)log f(ylx)dy < oo
Sy (x)

for all . A (discrete-time) continuous channel f(y|z) is a system with input
random variable X and output random variable Y such that Y is related to X
through f(y|z).
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Definition 11.2 (Continuous Channel ITI) Let o : ® x ® — R, and Z be
a real random variable, called the noise variable. A (discrete-time) continuous
channel (a, Z) is a system with a real input and a real output. For any input
random variable X, the noise random variable Z is independent of X, and the
output random variable Y is given by

Y = a(X, 2).
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Definition 11.3 Two continuous channels f(y|z) and («, Z) are equivalent if
for every input distribution F'(x),
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Definition 11.1 Definition 11.2

e Definition 11.2 is more general than Definition 11.1 because the former
does not require the existence of f(y|x).

e We confine our discussion to channels defined by Definition 11.1.



Definition 11.4 (CMC I) A continuous memoryless channel (CMC) f(y|z) is
a sequence of replicates of a generic continuous channel f(y|x). These continuous
channels are indexed by a discrete-time index ¢, where ¢ > 1, with the ¢th channel
being available for transmission at time 2. Transmission through a channel is
assumed to be instantaneous. Let X; and Y, be respectively the input and the
output of the CMC at time ¢, and let T;_ denote all the random variables that
are generated in the system before X,;. The Markov chain T;_ — X; — Y, holds,
and

z oy
Pr{X; <x,Y, <y} = / / fyix (w|u)dv dFx, (u).
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Definition 11.5 (CMC II) A continuous memoryless channel (o, 2) is a
sequence of replicates of a generic continuous channel («a, Z). These continuous
channels are indexed by a discrete-time index ¢, where ¢+ > 1, with the ¢th
channel being available for transmission at time ¢. Transmission through a
channel is assumed to be instantaneous. Let X; and Y, be respectively the
input and the output of the CMC at time ¢, and let T;_ denote all the random
variables that are generated in the system before X;. The noise variable Z;
for the transmission at time ¢ is a copy of the generic noise variable Z, and is

independent of (X;,T;_). The output of the CMC at time i is given by

Y;; — Oé(Xr,;, Zz)






Definition 11.6 Let « be a real function. An average input constraint (x, P)
for a CMC is the requirement that for any codeword (x1, x2,- - - , x, ) transmitted
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1 n
— ;) < P.
n;&(w)_



Definition 11.6 Let « be a real function. An average input constraint (x, P)
for a CMC is the requirement that for any codeword (x1, x2,- - - , x, ) transmitted
over the channel,

1 n
— ;) < P.
n;&(w)_

Remarks



Definition 11.6 Let « be a real function. An average input constraint (x, P)
for a CMC is the requirement that for any codeword (x1, x2,- - - , x, ) transmitted
over the channel,

1 n
— ;) < P.
n;&(w)_

Remarks

1. For a fixed value of x, x(x) is the “cost” for transmitting x.



Definition 11.6 Let « be a real function. An average input constraint (x, P)
for a CMC is the requirement that for any codeword (x1, x2,- - - , x, ) transmitted
over the channel,

1 n
— ;) < P.
n;&(w)_

Remarks
1. For a fixed value of x, x(x) is the “cost” for transmitting x.

2. For example, if k(x) = 22, then x(x) is the energy, and P is the power.



Definition 11.6 Let « be a real function. An average input constraint (x, P)
for a CMC is the requirement that for any codeword (x1, x2,- - - , x, ) transmitted
over the channel,

1 n
— ;) < P.
n;&(w)_

Remarks
1. For a fixed value of x, x(x) is the “cost” for transmitting x.

2. For example, if k(x) = 22, then x(x) is the energy, and P is the power.

Definition 11.7 The capacity of a continuous memoryless channel f(y|x) with
input constraint (x, P) is defined as

C(P) = sup I(X;Y).
F(z):Ex(X)<P
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Theorem 11.8 C'(P) is non-decreasing, concave, and left-continuous.

Ideas of Proof

1. Non-decreasing — immediate.

2. Concave — a consequence of the the concavity of mutual information with
respect to the input distribution.

3. Left-continuous — a consequence of concavity.

Remarks

1. C'(P) is also right-continous (a consequence of concavity) but requires a
separate proof.

2. This property of C'(P) is not used in this chapter.
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1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xN) vy (N > xop)+a0(Py)—¢

6. Letting ¢ — 0, we have
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by Xj and Yj, respectively.
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such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
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1(x);y (M) AN (X1;Y7) + A (X2;Y9)
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5. Then
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C(P) = sup
F(x):Er(X)ZP

I(X;Y) (1)

is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.

C(P) is concave

1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
to the input distribution, we have

1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have
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C(P) = sup
F(x):Er(X)ZP

I(X;Y) (1)

is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.

C(P) is concave

1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
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1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.
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5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > AP + APy. Since C(P)
is non-decreasing, we have

C(P3) > C(APy + AP3)
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C(P) = sup
F(x):Er(X)ZP

I(X;Y) (1)

is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.
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1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
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1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + APg) > AC(Py) 4+ AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).
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Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.
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1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
to the input distribution, we have

1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).

2. Letting A — 0, we have
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is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.

C(P) is concave

1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
to the input distribution, we have

1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).
2. Letting A — 0, we have

C(Pg) > lim C(APy + APgy) > C(Pa),
A—0
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C(P) = sup
F(x):Er(X)ZP

I(X;Y) (1)

is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.

C(P) is concave

1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
to the input distribution, we have

1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).

2. Letting A — 0, we have

C(Pg) > lim C(APy + APgy) > C(Pa),
A—0
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C(P) = sup
F(x):Er(X)ZP

I(X;Y) (1)

is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.

C(P) is concave

1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
to the input distribution, we have

1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).

2. Letting A — 0, we have

C(P2) > lim C(APp + AP2) > C(Pg),
A—0 —
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is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.
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1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
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Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.
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5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).
2. Letting A — 0, we have

C(Pg) > lim C(APy + APgy) > C(Pa),
A—0

which implies

lim C(AP] + APy) = C(Py).
A—0



Theorem 11.8

C(P) = sup
F(x):Er(X)ZP

I(X;Y) (1)

is non-decreasing, concave, and left-continuous.
Proof

C(P) is non-decreasing

Note that in (1), the supremum is taken over a larger
set for a larger P.

C(P) is concave

1. Let j = 1, 2. For an input distribution F; (), denote

the corresponding input and output random variables
by Xj and Yj, respectively.

2. Then for any Pj, for all € > 0, there exists F) ()

such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable

x A AF (2) + NFo(z).

Then
Er(XMN) = AEx(X1) + NEr(Xg) < APy + APsy.

4. By the concavity of mutual information with respect
to the input distribution, we have

1(x);y (M) AN (X1;Y7) + A (X2;Y9)
A(C(P1) —€e) + X(C(Pg) — €)
AC(P1) + AC(Pg) — e.

AVARLY,

5. Then
C(APL+APy) > I(xMN ;v (N > 0P +a0(Py) —e.
6. Letting ¢ — 0, we have

C(APy + AP3) > AC(Py) + AC(Py), (2)

proving that C(P) is concave.

C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).
2. Letting A — 0, we have

C(Py) > lim C(APy + APg) > C(Pg),
A—0
which implies
lim C(AP] + APy) = C(Py).
A—0

3. Hence, we conclude that

Jim, C(P) = C(Pp),
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Then
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3. Hence, we conclude that

Jim, C(P) = C(Pp),
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Note that in (1), the supremum is taken over a larger
set for a larger P.
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such that

and

3. For 0 < A < 1,let A\ =1 — X and define the random
variable
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Then
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5. Then
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C(APy + AP3) > AC(Py) + AC(Py), (2)
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C(P) is left-continuous

1. Let P{ < Py, so that Py > APy + APy. Since C(P)
is non-decreasing, we have

C(Pg) > C(APy + AP3) > AC(P1) + AC(Py).
2. Letting A — 0, we have
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3. Hence, we conclude that

Jim, C(P) = C(Pp),

i.e., C(P) is left-continuous.



