B sxtvxxy
.:f._\,

< The Chinese University of Hong Kong
B B ‘

10.5 Informational Divergence



Definition 10.39 Let f and g be two pdf’s defined on 1" with supports S+
and S,, respectively. The informational divergence between f and g is defined

- f(z) F(X)
g(x) g(X)’

D(fllg) = . f(z)log ——=dx = Eylog
f

where /'y denotes expectation with respect to f.



Definition 10.39 Let f and g be two pdf’s defined on 1" with supports S+
and S,, respectively. The informational divergence between f and g is defined

- f(a) £(X)
g(x) g(X)’

where /'y denotes expectation with respect to f.

D(fllg) = . f(z)log ——=dx = Eylog
f

Remark If D(f|lg) < oo, then
Sr\S;={z: f(x) >0 and g(z) =0}

has zero Lebesgue measure, 1.e., Sy 1s essentially a subset of §,.



Theorem 10.40 (Divergence Inequality) Let f and g be two pdf’s defined
on ™. Then

D(fllg) = 0,
with equality if and only if f = g a.e.
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10.6 Maximum Differential Entropy
Distributions
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2.9 Maximum Entropy Distributions



Consider the maximization problem:

Maximize H(p) over all probability distributions p defined on a
countable subset & of the set of real numbers, subject to

Z p(x)r;(x) =a; for 1 <1< m, (1)
€Sy

where S, C § and r;(x) is defined for all z € S.
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where S, C § and r;(x) is defined for all z € S.

Theorem 2.50 Let

p* (ZU) _ —)\0 > Airi(x)
for all x € S, where \g, A1, -+, \;, are chosen such that the constraints in (1)
are satisfied. Then p* maximizes H (p) over all probability distribution p on S,

subject to the constraints in (1).
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Consider the maximization problem:

Maximize H (p) over all probability distributions p defined on a
countable subset & of the set of real numbers, subject to

Zp zr)ri(x) =a; for1l <i<m, (1)
€S,

where S, C § and r;(x) is defined for all z € S.

Theorem 2.50 Let

p* (ZU) _ —)\0 > Airi(x)
for all x € S, where \g, A1, -+, \;, are chosen such that the constraints in (1)
are satisfied. Then p* maximizes H (p) over all probability distribution p on S,

subject to the constraints in (1).
Remark Let ¢; = e . Then we can write
p* (33) _ 6—)\0 €—>\17“1($) e

—Am Tm (T)

where gg is the normalization constant.



Theorem 2.50 Let

p*(a:) — e—Ao—Zgn':l )\Z’T’,L(JZ)
for all £ € &, where Ag, A1, -+, Ay are chosen such
that
Z p(x)r;(x) = a; forl < i< m. (1)

Then p™ maximizes H(p) over all probability distribu-
tion p on S subject to (1).

Sketch of Proof
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p(2) = e~ i (@)

for all z € §. Then p* maximizes H (p) over all probability distribution p defined
on &, subject to the constraints

Z p(x)"“z(ilf) = Zp*(x)n(x) for 1 <1 <m.
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Proof

1. Let ) g0 (x)ri(z) = a; for 1 <i < m.

2. Obviously, Ag, A1, -, A\m, are such that p* satisfies the constraints

> p(x)ri(z) =a; for1<i<m.
rES,

3. Then the corollary is implied by Theorem 2.50.



Example 2.52 Let § be finite and let the set of constraints be empty. Then

a constant that does not depend on x. Therefore, p* is simply the uniform
distribution over S, i.e., p*(x) = |S|"! for all x € S.
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Example 2.53

1. Let S = {0,1,2, -}, and let the set of constraints

be
> p(z)x =a (1)

X

where a > 0, i.e., the mean of the distribution p is
fixed.

2. Let q; = e~ Ni for i = 0,1. Then

p*(z) = e A0 LT

T
3. Evidently, p™ is a geometric distribution, so that
q1 =1 —qqo-

4. Finally, we invoke the constraint (1) on p to obtain

a0 = (a+ 1) 1.
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10.6 Maximum Differential Entropy
Distributions



Consider the maximization problem:

Maximize h(f) over all pdf f defined on a subset S of R", subject
to

/S ri(x)f(x)dx = a; for 1 <i<m (1)

where Sy C S and r;(x) is defined for all x € S.
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Consider the maximization problem:

Maximize h(f) over all pdf f defined on a subset S of R", subject
to

/ ri(xX)f(x)dx =a; forl1<i<m (1)
Sy
where Sy C S and r;(x) is defined for all x € S.

Theorem 10.41 Let
f*(X) _ G_AO_Z;il AT (X)

for all x € S, where \g, A1,--- , A\, are chosen such that the constraints in (1)
are satisfied. Then f* maximizes h(f) over all pdf f defined on S, subject to
the constraints in (1).



Corollary 10.42 Let f* be a pdf defined on § with

F(x) = 0~ Sl M

for all x € §. Then f* maximizes h(f) over all pdf f defined on S, subject to
the constraints

S

[, raseae= [ reorex ori<i<m
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1
h(X) < 5 log(2mek),
with equality if and only if X ~ N (0, k).

Proof

1. Maximize h(f) subject to the constraint
2 __ 2 _
/x f(x)de = EX* = k.

2. Then by Theorem 10.41, f*(x) = ae_b‘”Q, which is the Gaussian distribu-
tion with zero mean.

3. In order to satisfy the second moment constraint, the only choices are

1 1
and b= —.

\V2TK 2K

a =
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An Application of Corollary 10.42

1. Consider the pdf of N(0, 0?):

(1) = ———e 3
€T = € 20
202
2. Write ,

f*(ZIZ') _ e—)\oe—)\lx 7
where

1 1
)\0 — 5 111(27'('0'2) and )\1 — 27‘_2



An Application of Corollary 10.42

. Consider the pdf of N(0,0?):

f(2) =~ 5
T) = € 20
202
. Write ,
f*(ZIZ') _ e—)\oe—Alx 7
where | |
)\0 — 5 111(27'('0'2) and )\1 — 27‘_2

. Then f* maximizes h(f) over all f subject to

/£E2f(213)d33 = /ZUQf*(QZ‘)dZU = FEX? =0
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Theorem 10.44 Let X be a continuous random variable with mean p and

variance 2. Then .
h(X) < 5 log(2mec?)

with equality if and only if X ~ N (i, o?).
Proof
1. Let X' =X — p.
2. Then EX' =0 and E(X')* = E(X — pu)? = varX = o°.
3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X') < =log(2mec?).

1
2

4. Equality holds if and only if X’ ~ N (0,0%), or X ~ N (i, c?).
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A Remark

e Theorem 10.43 says that with the constraint EX? = k, the differential
entropy is maximized by the distribution N (0, k).

e If we impose the additional constraint that £X = 0, then

varX = EX? = k.

e By Theorem 10.44, the differential entropy is still maximized by N (0, ).
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Differential Entropy and Spread

. From Theorem 10.44, we have

1

h(X) < =log(2mec?) =logo + 5 log(2me)

1
2

2

where 0¢ = varX.

. h(X) is at most equal to the logarithm of the standard deviation ( “spread”)
plus a constant.

. h(X) - —cc as o — 0.
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Theorem 10.46 Let X be a vector of n continuous random variables with
mean p and covariance matrix /K. Then

h(X) < 7 log|(2me)" | K]

1
2
with equality if and only if X ~ N (u, K).
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the joint pdf of X ~ N (0, K).

7. Hence, by Theorem 10.20, we have proved (1) with
equality if and only if X ~ N (0, K).




Theorem 10.45 Let X be a vector of n~continuous
random variables with correlation matrix K. Then

1 .~
h(X) <~ log (ere)™ K| (1)

with equality if and only if X ~ N (0, K).

Proof

1. Let rij(x) = x;x; and K = [Ew]

2. Then the constraints on f(x) are equivalent to

E'L] = /Sf r’l',j (x)f(x)dx

= x;x; f(x)dx
/Sf v

= EX;X;

for 1 < 14,75 < n.

3. By Theorem 10.41, the joint pdf that maximizes
h(X) has the form

TLx

FH(x) = e N0 T2y XigTiTj _ o~ Ao —x

where L = [>‘ij]'
4. Thus f* is the joint pdf of a multivariate Gaussian
distribution with zero mean.

5. Then for 1 < 4,35 < n,

Hence, Kf* = K.

6. Accordingly, Ag and L have the unique solution
given by
—Xo _ 1
© - n ~11/2
(\/27{') K1/

and

so that

1 —%XTK_lx

Fr(x) = (m)n |I~<|1/2e

Y

the joint pdf of X ~ N (0, K).

7. Hence, by Theorem 10.20, we have proved (1) with
equality if and only if X ~ N (0, K).

Theorem 10.20 Let X ~ N (u, K). Then

h(X) = % log [(zm)”uﬂ} .




Theorem 10.45 Let X be a vector of n~continuous
random variables with correlation matrix K. Then

1 "~
h(X) <~ log (2me)™ K] (1)

with equality if and only if X ~ N (0, K).

Proof

1. Let rij(x) = x;x; and K = [Ew]

2. Then the constraints on f(x) are equivalent to

E'L] = /Sf r’l',j (x)f(x)dx

= x;x; f(x)dx
/Sf v

= EX;X;

for 1 < 14,75 < n.

3. By Theorem 10.41, the joint pdf that maximizes
h(X) has the form

TLx

FH(x) = e N0 T2y XigTiTj _ o~ Ao —x

where L = [>‘ij]'
4. Thus f* is the joint pdf of a multivariate Gaussian
distribution with zero mean.

5. Then for 1 < 4,35 < n,

Hence, Kf* = K.

6. Accordingly, Ag and L have the unique solution
given by
—Xo _ 1
© - n ~11/2
(\/27{') K1/

and

so that

1 —%XTK_lx

Fr(x) = (m)n |I~<|1/2e

Y

the joint pdf of X ~ N (0, K).

7. Hence, by Theorem 10.20, we have proved (1) with
equality if and only if X ~ N (0, K).

Theorem 10.20 Let X ~ N (u, K). Then

h(X) = % log [(zm)”uﬂ} .




