
10.5 Informational Divergence



Definition 10.39 Let f and g be two pdf’s defined on ⇥n with supports Sf

and Sg, respectively. The informational divergence between f and g is defined
as

D(f⇤g) =
�

Sf

f(x) log
f(x)
g(x)

dx = Ef log
f(X)
g(X)

,

where Ef denotes expectation with respect to f .

Remark If D(f⇤g) < �, then

Sf \ Sg = {x : f(x) > 0 and g(x) = 0}

has zero Lebesgue measure, i.e., Sf is essentially a subset of Sg.
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Theorem 10.40 (Divergence Inequality) Let f and g be two pdf’s defined
on ⇥n. Then

D(f⇤g) � 0,

with equality if and only if f = g a.e.



10.6 Maximum Differential Entropy 
Distributions



2.9 Maximum Entropy Distributions



Consider the maximization problem:

Maximize H(p) over all probability distributions p defined on a

countable subset S of the set of real numbers, subject to

X

x2Sp

p(x)r
i

(x) = a
i

for 1  i  m, (1)

where S
p

⇢ S and r
i

(x) is defined for all x 2 S.

Theorem 2.50 Let

p⇤(x) = e��0�
Pm

i=1 �iri(x)

for all x 2 S, where �0,�1, · · · ,�m

are chosen such that the constraints in (1)

are satisfied. Then p⇤ maximizes H(p) over all probability distribution p on S,
subject to the constraints in (1).

Remark Let a
i

= e��i
. Then we can write

p⇤(x) = e��0 e��1r1(x) · · · e��mrm(x)

= a0 a1
r1(x) · · · a

m

rm(x)

where a0 is the normalization constant.
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Corollary 2.51 Let p⇤ be a probability distribution defined on S with

p⇤(x) = e��0�
Pm

i=1 �iri(x)

for all x 2 S. Then p⇤ maximizesH(p) over all probability distribution p defined

on S, subject to the constraints

X

x2Sp

p(x)r
i

(x) =
X

x2S
p⇤(x)r

i

(x) for 1  i  m.

Proof

1. Let
P

x2S p

⇤(x)r
i

(x) = a

i

for 1  i  m.

2. Obviously, �0,�1, · · · ,�m

are such that p⇤ satisfies the constraints

X

x2Sp

p(x)r
i

(x) = a

i

for 1  i  m.

3. Then the corollary is implied by Theorem 2.50.
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Example 2.52 Let S be finite and let the set of constraints be empty. Then

p

⇤
(x) = e

��0
,

a constant that does not depend on x. Therefore, p

⇤
is simply the uniform

distribution over S, i.e., p⇤(x) = |S|�1
for all x 2 S.



Example 2.53

1. Let S = {0, 1, 2, · · · }, and let the set of constraints

be X

x

p(x)x = a (1)

where a � 0, i.e., the mean of the distribution p is

fixed.

2. Let q

i

= e

��

i

for i = 0, 1. Then

p

⇤
(x) = e

��

0

e

��

1

x

= q

0

q

x

1

.

3. Evidently, p

⇤
is a geometric distribution, so that

q

1

= 1 � q

0

.

4. Finally, we invoke the constraint (1) on p to obtain

q

0

= (a + 1)

�1

.



Example 2.53

1. Let S = {0, 1, 2, · · · }, and let the set of constraints

be X

x

p(x)x = a (1)

where a � 0, i.e., the mean of the distribution p is

fixed.

2. Let q

i

= e

��

i

for i = 0, 1. Then

p

⇤
(x) = e

��

0

e

��

1

x

= q

0

q

x

1

.

3. Evidently, p

⇤
is a geometric distribution, so that

q

1

= 1 � q

0

.

4. Finally, we invoke the constraint (1) on p to obtain

q

0

= (a + 1)

�1

.



Example 2.53

1. Let S = {0, 1, 2, · · · }, and let the set of constraints

be X

x

p(x)x = a (1)

where a � 0, i.e., the mean of the distribution p is

fixed.

2. Let q

i

= e

��

i

for i = 0, 1. Then

p

⇤
(x) = e

��

0

e

��

1

x

= q

0

q

x

1

.

3. Evidently, p

⇤
is a geometric distribution, so that

q

1

= 1 � q

0

.

4. Finally, we invoke the constraint (1) on p to obtain

q

0

= (a + 1)

�1

.



Example 2.53

1. Let S = {0, 1, 2, · · · }, and let the set of constraints

be X

x

p(x)x = a (1)

where a � 0, i.e., the mean of the distribution p is

fixed.

2. Let q

i

= e

��

i

for i = 0, 1. Then

p

⇤
(x) = e

��

0

e

��

1

x

= q

0

q

x

1

.

3. Evidently, p

⇤
is a geometric distribution, so that

q

1

= 1 � q

0

.

4. Finally, we invoke the constraint (1) on p to obtain

q

0

= (a + 1)

�1

.



Example 2.53

1. Let S = {0, 1, 2, · · · }, and let the set of constraints

be X

x

p(x)x = a (1)

where a � 0, i.e., the mean of the distribution p is

fixed.

2. Let q

i

= e

��

i

for i = 0, 1. Then

p

⇤
(x) = e

��

0

e

��

1

x

= q

0

q

x

1

.

3. Evidently, p

⇤
is a geometric distribution, so that

q

1

= 1 � q

0

.

4. Finally, we invoke the constraint (1) on p to obtain

q

0

= (a + 1)

�1

.



10.6 Maximum Differential Entropy 
Distributions



Consider the maximization problem:

Maximize h(f) over all pdf f defined on a subset S of <n
, subject

to Z

Sf

ri(x)f(x)dx = ai for 1  i  m (1)

where Sf ⇢ S and ri(x) is defined for all x 2 S.

Theorem 10.41 Let

f⇤
(x) = e��0�

Pm
i=1 �iri(x)

for all x 2 S, where �0,�1, · · · ,�m are chosen such that the constraints in (1)

are satisfied. Then f⇤
maximizes h(f) over all pdf f defined on S, subject to

the constraints in (1).
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Corollary 10.42 Let f⇤
be a pdf defined on S with

f⇤
(x) = e��0�

Pm
i=1 �iri(x)

for all x 2 S. Then f⇤
maximizes h(f) over all pdf f defined on S, subject to

the constraints

Z

Sf

ri(x)f(x)dx =

Z

S
ri(x)f

⇤
(x)dx for 1  i  m.



Theorem 10.43 Let X be a continuous random variable with EX2
= . Then

h(X)  1

2

log(2⇡e),

with equality if and only if X ⇠ N (0,).

Proof

1. Maximize h(f) subject to the constraint

Z
x

2
f(x)dx = EX

2
= .

2. Then by Theorem 10.41, f

⇤
(x) = ae

�bx

2

, which is the Gaussian distribu-

tion with zero mean.

3. In order to satisfy the second moment constraint, the only choices are

a =

1p
2⇡

and b =

1

2

.
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1. Consider the pdf of N (0,�

2
):

f

⇤
(x) =

1p
2⇡�

2
e

� x

2

2�2
.

2. Write

f

⇤
(x) = e

��0
e

��1x
2

,

where

�0 =

1

2

ln(2⇡�

2
) and �1 =

1

2�

2
.

3. Then f

⇤
maximizes h(f) over all f subject to

Z
x

2
f(x)dx =

Z
x

2
f

⇤
(x)dx = EX

2
= �

2
.

An Application of Corollary 10.42
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1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof



1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof



1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof



1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof



1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof

________________



1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof

_________________________



1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof

_________________________



1. Let X 0
= X � µ.

2. Then EX 0
= 0 and E(X 0

)

2
= E(X � µ)2 = varX = �2.

3. By Theorem 10.14 (Translation) and then Theorem 10.43,

h(X) = h(X 0
)  1

2

log(2⇡e�2
).

4. Equality holds if and only if X 0 ⇠ N (0,�2
), or X ⇠ N (µ,�2

).

Theorem 10.44 Let X be a continuous random variable with mean µ and

variance �2
. Then

h(X)  1

2

log(2⇡e�2
)

with equality if and only if X ⇠ N (µ,�2
).

Proof



A Remark

• Theorem 10.43 says that with the constraint EX2
= , the di↵erential

entropy is maximized by the distribution N (0,).

• If we impose the additional constraint that EX = 0, then

varX = EX2
= .

• By Theorem 10.44, the di↵erential entropy is still maximized by N (0,).
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Theorem 10.45 Let X be a vector of n continuous random variables with
correlation matrix K̃. Then

h(X) � 1
2

log
�
(2�e)n|K̃|

⇥

with equality if and only if X ⇥ N (0, K̃).

Theorem 10.46 Let X be a vector of n continuous random variables with
mean µ and covariance matrix K. Then

h(X) � 1
2

log [(2�e)n|K|]

with equality if and only if X ⇥ N (µ, K).
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Theorem 10.45 Let X be a vector of n continuous
random variables with correlation matrix K̃. Then

h(X) 
1

2
log

h
(2⇡e)

n|K̃|
i
, (1)

with equality if and only if X ⇠ N(0, K̃).

Proof

1. Let r

ij

(x) = x

i

x

j

and K̃ = [k̃
ij

].

2. Then the constraints on f(x) are equivalent to

k̃

ij

=

Z

S
f

r

ij

(x)f(x)dx

=

Z

S
f

x

i

x

j

f(x)dx

= EX

i

X

j

for 1  i, j  n.

3. By Theorem 10.41, the joint pdf that maximizes
h(X) has the form

f

⇤
(x) = e

��0�
P

i,j

�

ij

x

i

x

j = e

��0�x

>
Lx

,

where L = [�
ij

].

4. Thus f

⇤ is the joint pdf of a multivariate Gaussian
distribution with zero mean.

5. Then for 1  i, j  n,

cov(X
i

,X

j

) = EX

i

X

j

� (EX

i

)(EX

j

) = EX

i

X

j

.

Hence, K

f

⇤ = K̃.

6. Accordingly, �0 and L have the unique solution
given by

e

��0 =
1

⇣p
2⇡

⌘
n |K̃|1/2

and

L =
1

2
K̃

�1
,

so that

f

⇤
(x) =

1
⇣p

2⇡
⌘
n |K̃|1/2

e

� 1
2
x

>
K̃

�1
x

,

the joint pdf of X ⇠ N(0, K̃).

7. Hence, by Theorem 10.20, we have proved (1) with
equality if and only if X ⇠ N(0, K̃).
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and K̃ = [k̃
ij

].

2. Then the constraints on f(x) are equivalent to

k̃

ij

=

Z

S
f

r

ij

(x)f(x)dx

=

Z

S
f

x

i

x

j

f(x)dx

= EX

i

X

j

for 1  i, j  n.

3. By Theorem 10.41, the joint pdf that maximizes
h(X) has the form

f

⇤
(x) = e

��0�
P

i,j

�

ij

x

i

x

j = e

��0�x

>
Lx

,

where L = [�
ij

].

4. Thus f

⇤ is the joint pdf of a multivariate Gaussian
distribution with zero mean.

5. Then for 1  i, j  n,

cov(X
i

,X

j

) = EX

i

X

j

� (EX

i

)(EX

j

) = EX

i

X

j

.

Hence, K

f

⇤ = K̃.

6. Accordingly, �0 and L have the unique solution
given by

e

��0 =
1

⇣p
2⇡

⌘
n |K̃|1/2

and

L =
1

2
K̃

�1
,

so that

f

⇤
(x) =

1
⇣p

2⇡
⌘
n |K̃|1/2

e

� 1
2
x

>
K̃

�1
x

,

the joint pdf of X ⇠ N(0, K̃).

7. Hence, by Theorem 10.20, we have proved (1) with
equality if and only if X ⇠ N(0, K̃).
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