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Theorem 10.35 (AEP I for Continuous Random Variables)
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in probability as n — oo, i.e., for any € > 0, for n sufficiently large,

Pr{|—%logf(X) —h(X)| < e} >1—e.
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Definition 10.36 The typical set W/, with respect to f(x) is the set of

sequences X = (1,2, - ,Ty) € X™ such that
1
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or equivalently,
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where € is an arbitrarily small positive real number. The sequences in I/V[T)"(]E are
called e-typical sequences.
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Empirical Differential Entropy:

1 log f(x) = 1 Zlogi(a?k)
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k=1
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1) If x € Wk, then
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2) For n sufficiently large,

3) For n sufficiently large,

(1 — )27 < Vol (Wik,,) < 2"+
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Remarks

1. The volume of the typical set is approximately equal to 2"(X) when n is
large.

2. The fact that h(X) can be negative does not incur any difficulty because
2nh(X) is always positive.

3. If the differential entropy is large, then the volume of the typical set is
large.



