
10.3 Joint Differential Entropy, 
Conditional (Differential) Entropy, 

and Mutual Information



Definition 10.17 The joint di↵erential entropy h(X) of a random vector X

with joint pdf f(x) is defined as

h(X) = �
Z

S
f(x) log f(x)dx = �E log f(X).

Corollary If X1, X2, · · · , Xn are mutually independent, then

h(X) =

nX

i=1

h(Xi).

Theorem 10.18 (Translation) h(X+ c) = h(X).

Theorem 10.19 (Scaling) h(AX) = h(X) + log |det(A)|.
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Theorem 10.20 (Multivariate Gaussian Distribution) Let X � N (µ, K).
Then

h(X) =
1
2

log [(2�e)n|K|] .



Theorem 10.20 (Multivariate Gaussian Distribu-

tion) Let X ⇠ N(µ, K). Then

h(X) =

1

2

log

h
(2⇡e)n|K|

i
.

Proof

1. Let K be diagonalizable as Q⇤Q>
.

2. Write X = QY, where the random variables in Y

are uncorrelated with varYi = �i, the ith diagonal

element of ⇤ (cf. Corollary 10.7).

3. Since X is Gaussian, so is Y.

4. Then the random variables in Y are mutually inde-

pendent because they are uncorrelated.

5. Now consider

h(X) = h(QY)

= h(Y) + log |det(Q)|

= h(Y) + 0

=

nX

i=1

h(Yi)

=

nX

i=1

1

2

log(2⇡e�i)

=

1

2

log

2

4
(2⇡e)n

nY

i=1

�i

3

5

=

1

2

log[(2⇡e)n|⇤|]

=

1

2

log[(2⇡e)n|K|].

det(Q) = ±1

Theorem 10.19

K = Q⇤Q>

|K| = |Q||⇤||Q>|

= |Q|2|⇤|

= |⇤|
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Definition 10.23 Let X and Y be jointly distributed random variables where

Y is continuous and is related to X through a conditional pdf f(y|x) defined

for all x. The conditional di↵erential entropy of Y given {X = x} is defined as

h(Y |X = x) = �
Z

SY (x)
f(y|x) log f(y|x) dy

and the conditional di↵erential entropy of Y given X is defined as

h(Y |X) = �
Z

SX

h(Y |X = x) dF (x) = �E log f(Y |X)

Conditional Differential Entropy
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Proposition 10.24 If

then f(y) exists and is given by

f(y) =

Z
f(y|x) dF (x).

Remark Proposition 10.24 says that the pdf of Y exists regardless of the

distribution of X. The next proposition is its vector generalization.
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1. The mutual information between X and Y is defined as

I(X;Y ) = E log

f(Y |X)

f(Y )

=

Z

SX

Z

SY (x)
f(y|x) log f(y|x)

f(y)

dy dF (x).

2. When both X and Y are continuous and f(x, y) exists,

I(X;Y ) = E log

f(Y |X)

f(Y )

= E log

f(X,Y )

f(X)f(Y )

.

Mutual Information

Definition 10.26 Let
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• With Definition 10.26, the mutual information is defined when one r.v. is

general and the other is continuous.

• In Ch. 2, the mutual information is defined when both r.v.’s are discrete.

• Thus the mutual information is defined when each of the r.v.’s is either

discrete or continuous.

Remarks
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Definition 10.28 Let

The conditional entropy of X given Y is defined as

H(X|Y ) = H(X)� I(X;Y ).

Proposition 10.29 For two random variables X and Y ,

1. h(Y ) = h(Y |X) + I(X;Y ) if Y is continuous;

2. H(Y ) = H(Y |X) + I(X;Y ) if Y is discrete.

Proposition 10.30 (Chain Rule)

h(X1, X2, · · · , Xn) =

nX

i=1

h(Xi|X1, · · · , Xi�1)

f(y|x) Y (continuous)X (discrete)
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Theorem 10.31
I(X;Y ) ⇥ 0,

with equality if and only if X is independent of Y .

Corollary 10.32
I(X;Y |T ) ⇥ 0,

with equality if and only if X is independent of Y conditioning on T .

Corollary 10.33 (Conditioning Does Not Increase Di�erential En-
tropy)

h(X|Y ) � h(X)

with equality if and only if X and Y are independent.

Remarks For continuous r.v.’s,

1. h(X), h(X|Y ) ⇥ 0 DO NOT generally hold;

2. I(X;Y ), I(X;Y |Z) ⇥ 0 always hold.
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Corollary 10.34 (Independence Bound for Di↵erential Entropy)

h(X1, X2, · · · , Xn) 
nX

i=1

h(Xi)

with equality if and only if i = 1, 2, · · · , n are mutually independent.


