' # % XX #

o ['he Chinese University of Hong Kong
[ SN \ )

10.3 Joint Differential Entropy,
Conditional (Differential) Entropy,
and Mutual Information
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e With Definition 10.26, the mutual information is defined when one r.v. is
general and the other is continuous.

e In Ch. 2, the mutual information is defined when both r.v.’s are discrete.

e Thus the mutual information is defined when each of the r.v.’s is either
discrete or continuous.
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4. XA and Y/A are quantizations of X and Y, respec-

tively.
e 7. Therefore, I(X;Y) can be interpreted as the limit

of I(XA,Y/A) as A — 0.

8. This interpretation continues to be valid for general
distribution for X and Y.



Definition 10.28 Let

X (discrete)

f(yl|x)

» Y (continuous)



Definition 10.28 Let

X (discrete) >  f(y|r) » Y (continuous)

The conditional entropy of X given Y is defined as

H(X|Y)=H(X)-I(X;Y).



Definition 10.28 Let

X (discrete) >  f(y|r) » Y (continuous)

The conditional entropy of X given Y is defined as

H(X|Y)=H(X)-I(X;Y).

Proposition 10.29 For two random variables X and Y,



Definition 10.28 Let

X (discrete)

f(yl|x)

» Y (continuous)

The conditional entropy of X given Y is defined as

H(X|Y)=H(X)-I(X;Y).

Proposition 10.29 For two random variables X and Y,

1. h(Y)=h(Y|X)+ I(X;Y) if Y is continuous;



Definition 10.28 Let

X (discrete) >  f(y|r) » Y (continuous)

The conditional entropy of X given Y is defined as

H(X|Y)=H(X)-I(X;Y).

Proposition 10.29 For two random variables X and Y,
1. h(Y)=h(Y|X)+ I(X;Y) if Y is continuous;
2. HY)=H((Y|X)+ I[(X;Y) if Y is discrete.



Definition 10.28 Let

X (discrete) >  f(y|r) » Y (continuous)

The conditional entropy of X given Y is defined as

H(X|Y)=H(X)-I(X;Y).

Proposition 10.29 For two random variables X and Y,
1. h(Y)=h(Y|X)+ I(X;Y) if Y is continuous;
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Proposition 10.30 (Chain Rule)

h(X17X27 T 7Xn) — Zh(Xz|X17 T 7Xi—1)
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Theorem 10.31
I(X;Y) >0,

with equality if and only if X is independent of Y.

Corollary 10.32
I(X;Y|T) = 0,

with equality if and only if X is independent of Y conditioning on 7.

Corollary 10.33 (Conditioning Does Not Increase Differential En-

tropy)
” WMXY) < h(X)

with equality if and only if X and Y are independent.

Remarks For continuous r.v.’s,
1. h(X),h(X|Y) >0 DO NOT generally hold;
2. I(X;Y),I(X;Y|Z) > 0 always hold.



Corollary 10.34 (Independence Bound for Differential Entropy)
h(Xla X27 T 7Xn) < Z h(X’L)
i=1

with equality if and only if 1 = 1,2, --- ,n are mutually independent.



