

Chapter 10 Differential Entropy

© Raymond W. Yeung 2014 The Chinese University of Hong Kong

• Real-valued random vectors

- Real-valued random vectors
- Symmetric, positive definite, and covariance matrices

- Real-valued random vectors
- Symmetric, positive definite, and covariance matrices
- Differential entropy and mutual information

- Real-valued random vectors
- Symmetric, positive definite, and covariance matrices
- Differential entropy and mutual information
- AEP and informational divergence

- Real-valued random vectors
- Symmetric, positive definite, and covariance matrices
- Differential entropy and mutual information
- AEP and informational divergence
- Gaussian distribution

• A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is

• A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is

- discrete if $F_X(x)$ increases only at a countable number of values of x;

• A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is $F_X(x)$

- discrete if $I_X(x)$ increases only at a countable number of values of

• A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is $F_X(x)$

- discrete if $I_X(x)$ increases only at a countable number of values of

• A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is

- discrete if $F_X(x)$ increases only at a countable number of values of x;

• A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is

- discrete if $F_X(x)$ increases only at a countable number of values of x;

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is $F_X(x)$
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;

 ${\mathcal X}$

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is $F_X(x)$
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.

 \mathcal{X}

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is $F_X(x)$
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is $F_X(x)$
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

 ${\mathcal X}$

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is $F_X(x)$
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

$$Eg(X) = \int_{\mathcal{S}_X} g(x) \, dF_X(x),$$

where the right hand side is a Lebesgue-Stieltjes integration which covers all cases (i.e., discrete, continuous, and mixed) for the CDF $F_X(x)$.

• A nonnegative function $f_X(x)$ is called a probability density function (pdf) of X if

$$F_X(\boldsymbol{x}) = \int_{-\infty}^{\boldsymbol{x}} f_X(u) \, du$$

for all x.

• A nonnegative function $f_X(x)$ is called a probability density function (pdf) of X if

$$F_X(\boldsymbol{x}) = \int_{-\infty}^{\boldsymbol{x}} f_X(u) \, du$$

for all x.

• By the fundamental theorem of calculus,

$$\frac{d}{dx}F_X(x) = \frac{d}{dx}\int_{-\infty}^{x} f_X(u)\,du = f_X(x).$$

• A nonnegative function $f_X(x)$ is called a probability density function (pdf) of X if

$$F_X(\boldsymbol{x}) = \int_{-\infty}^{\boldsymbol{x}} f_X(u) \, du$$

for all x.

• By the fundamental theorem of calculus,

$$\frac{d}{dx}F_X(x) = \frac{d}{dx}\int_{-\infty}^x f_X(u)\,du = f_X(x).$$

• If X has a pdf, then X is continuous, but not vice versa.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

$$Eg(X) = \int_{\mathcal{S}_X} g(x) \, dF_X(x),$$

where the right hand side is a Lebesgue-Stieltjes integration which covers all cases (i.e., discrete, continuous, and mixed) for the CDF $F_X(x)$.

- A real r.v. X with cumulative distribution function $F_X(x) = \Pr\{X \le x\}$ (CDF) is
 - discrete if $F_X(x)$ increases only at a countable number of values of x;
 - continuous if $F_X(x)$ is continuous, or equivalently, $\Pr\{X = x\} = 0$ for every value of x;
 - mixed if $F_X(x)$ is neither discrete nor continuous.
- S_X is the set of all x such that $F_X(x) > F_X(x \epsilon)$ for all $\epsilon > 0$.

$$Eg(X) = \int_{\mathcal{S}_X} g(x) \, dF_X(x),$$

where the right hand side is a Lebesgue-Stieltjes integration which covers all cases (i.e., discrete, continuous, and mixed) for the CDF $F_X(x)$.
• Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$

- Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$
- Marginal CDF of X: $F_X(x) = F_{XY}(x, \infty)$

- Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$
- Marginal CDF of X: $F_X(x) = F_{XY}(x, \infty)$
- A nonnegative function $f_{XY}(x, y)$ is called a joint pdf of X and Y if

- Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$
- Marginal CDF of X: $F_X(x) = F_{XY}(x, \infty)$
- A nonnegative function $f_{XY}(x, y)$ is called a joint pdf of X and Y if

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) \, dv \, du$$

- Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$
- Marginal CDF of X: $F_X(x) = F_{XY}(x, \infty)$
- A nonnegative function $f_{XY}(x, y)$ is called a joint pdf of X and Y if

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) \, dv \, du$$

• Conditional pdf of Y given $\{X = x\}$:

- Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$
- Marginal CDF of X: $F_X(x) = F_{XY}(x, \infty)$
- A nonnegative function $f_{XY}(x, y)$ is called a joint pdf of X and Y if

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) \, dv \, du$$

• Conditional pdf of Y given $\{X = x\}$:

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

- Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$
- Marginal CDF of X: $F_X(x) = F_{XY}(x, \infty)$
- A nonnegative function $f_{XY}(x, y)$ is called a joint pdf of X and Y if

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) \, dv \, du$$

• Conditional pdf of Y given
$$\{X = x\}$$
:

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

• Conditional CDF of Y given $\{X = x\}$:

- Let X and Y be two real random variables with joint CDF $F_{XY}(x, y) = \Pr\{X \le x, Y \le y\}.$
- Marginal CDF of X: $F_X(x) = F_{XY}(x, \infty)$
- A nonnegative function $f_{XY}(x, y)$ is called a joint pdf of X and Y if

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) \, dv \, du$$

• Conditional pdf of Y given $\{X = x\}$:

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

• Conditional CDF of Y given $\{X = x\}$:

$$F_{Y|X}(y|x) = \int_{-\infty}^{y} f_{Y|X}(v|x) \, dv$$

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

$$var X = E(X - EX)^2$$

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

$$\operatorname{var} X = E(X - EX)^2$$

= $E[X^2 - 2(X)(EX) + (EX)^2]$

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

$$var X = E(X - EX)^{2}$$

= $E[X^{2} - 2(X)(EX) + (EX)^{2}]$
= $EX^{2} - 2(EX)(EX) + (EX)^{2}$

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

$$varX = E(X - EX)^{2}$$

= $E[X^{2} - 2(X)(EX) + (EX)^{2}]$
= $EX^{2} - 2(EX)(EX) + (EX)^{2}$
= $EX^{2} - (EX)^{2}$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y: cov(X, X) = varX cov(X, Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

$$\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

$$var(X + Y)$$

= $E(X + Y)^2 - [E(X + Y)]^2$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

$$var(X + Y)$$

= $E(X + Y)^2 - [E(X + Y)]^2$
= $[EX^2 + 2E(XY) + EY^2] - [(EX)^2 + 2(EX)(EY) + (EY)^2]$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

$$var(X + Y) = E(X + Y)^{2} - [E(X + Y)]^{2}$$

= $[\underline{EX^{2}} + 2E(XY) + EY^{2}] - [(EX)^{2} + 2(EX)(EY) + (EY)^{2}]$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

$$var(X + Y) = E(X + Y)^{2} - [E(X + Y)]^{2}$$

= $[\underline{EX^{2}} + 2E(XY) + EY^{2}] - [(\underline{EX})^{2} + 2(EX)(EY) + (EY)^{2}]$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

 $\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

$$\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$$

Remarks

1.
$$\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$$

2. If $X \perp Y$, then cov(X, Y) = 0, or X and Y are uncorrelated. However, the converse is not true.

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y: cov(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)

- 1. $\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$
- 2. If $X \perp Y$, then cov(X, Y) = 0, or X and Y are uncorrelated. However, the converse is not true.

• Variance of X:

$$\operatorname{var} X = E(X - EX)^2 = EX^2 - (EX)^2$$

• Covariance between X and Y:

$$\operatorname{cov}(X,Y) = E(X - EX)(Y - EY) = E(XY) - (EX)(EY)$$

- 1. $\operatorname{var}(X+Y) = \operatorname{var}X + \operatorname{var}Y + 2\operatorname{cov}(X,Y)$
- 2. If $X \perp Y$, then cov(X, Y) = 0, or X and Y are uncorrelated. However, the converse is not true.
- 3. If X_1, X_2, \dots, X_n are mutually independent, then

$$\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{var} X_{i}$$

Random Vectors
• Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = \left[\operatorname{cov}(X_i, X_j)\right]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

 $\operatorname{cov}(X_i, X_i) = \operatorname{var} X_i$

 $K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = \left[\operatorname{cov}(X_i, X_j)\right]_{i,j=1}^n$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

$$E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = E\left[(X_i - EX_i)(X_j - EX_j)\right]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

$$E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = E[(X_i - EX_i)(X_j - EX_j)]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

$$E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = E\left[(X_i - EX_i)(X_j - EX_j)\right]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

$$E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = E\left[(X_i - EX_i)(X_j - EX_j)\right]_{i,j=1}^n$$
$$= \left[E(X_i - EX_i)(X_j - EX_j)\right]$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

$$E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = E\left[(X_i - EX_i)(X_j - EX_j)\right]_{i,j=1}^n$$
$$= \left[E(X_i - EX_i)(X_j - EX_j)\right]$$
$$= \left[\operatorname{cov}(X_i, X_j)\right]$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

• Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}} - (E\mathbf{X})(E\mathbf{X})^{\top}$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}} - (E\mathbf{X})(E\mathbf{X})^{\mathsf{T}}$$
$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}-E\mathbf{X}}$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}} - (E\mathbf{X})(E\mathbf{X})^{\mathsf{T}}$$
$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}-E\mathbf{X}}$$

$$var X = EX^{2} - (EX)^{2}$$
$$var X = E(X - EX)^{2}$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}} - (E\mathbf{X})(E\mathbf{X})^{\top}$$
$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}-E\mathbf{X}}$$

$$var X = EX^{2} - (EX)^{2}$$
$$var X = E(X - EX)^{2}$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}} - (E\mathbf{X})(E\mathbf{X})^{\top}$$
$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}-E\mathbf{X}}$$

$$var X = EX^{2} - (EX)^{2}$$
$$var X = E(X - EX)^{2}$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}} - (E\mathbf{X})(E\mathbf{X})^{\top}$$
$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}-E\mathbf{X}}$$

$$var X = EX^{2} - (EX)^{2}$$
$$var X = E(X - EX)^{2}$$

- Let $\mathbf{X} = [X_1 X_2 \cdots X_n]^\top$.
- Covariance matrix:

$$K_{\mathbf{X}} = E(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top} = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^n$$

- Correlation matrix: $\tilde{K}_{\mathbf{X}} = E \mathbf{X} \mathbf{X}^{\top} = [E X_i X_j]$
- Relations between $K_{\mathbf{X}}$ and $\tilde{K}_{\mathbf{X}}$:

$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}} - (E\mathbf{X})(E\mathbf{X})^{\top}$$
$$K_{\mathbf{X}} = \tilde{K}_{\mathbf{X}-E\mathbf{X}}$$

$$var X = EX^{2} - (EX)^{2}$$
$$var X = E(X - EX)^{2}$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\boldsymbol{\mu}, K)$ – multivariate Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix K, i.e., the joint pdf of the distribution is given by

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\boldsymbol{\mu}, K)$ – multivariate Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix K, i.e., the joint pdf of the distribution is given by

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top K^{-1}(\mathbf{x} - \boldsymbol{\mu})}, \quad \mathbf{x} \in \Re^n$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\boldsymbol{\mu}, K)$ – multivariate Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix K, i.e., the joint pdf of the distribution is given by

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top K^{-1}(\mathbf{x} - \boldsymbol{\mu})}, \quad \mathbf{x} \in \Re^n$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\boldsymbol{\mu}, K)$ – multivariate Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix K, i.e., the joint pdf of the distribution is given by

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{1/2}} e^{-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}\right)^\top K^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)}, \quad \mathbf{x} \in \Re^n$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\boldsymbol{\mu}, K)$ – multivariate Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix K, i.e., the joint pdf of the distribution is given by

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top} \underline{K}^{-1}(\mathbf{x} - \boldsymbol{\mu}), \quad \mathbf{x} \in \Re^n$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\boldsymbol{\mu}, K)$ – multivariate Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix K, i.e., the joint pdf of the distribution is given by

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top K^{-1}} \underbrace{(\mathbf{x} - \boldsymbol{\mu})}_{k}, \quad \mathbf{x} \in \Re^n$$

• $\mathcal{N}(\mu, \sigma^2)$ – Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $\mathcal{N}(\boldsymbol{\mu}, K)$ – multivariate Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix K, i.e., the joint pdf of the distribution is given by

$$f(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^n |K|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top K^{-1}(\mathbf{x} - \boldsymbol{\mu})}, \quad \mathbf{x} \in \Re^n$$

10.1 Preliminaries

Definition 10.1 A square matrix K is symmetric if $K^{\top} = K$.
Definition 10.1 A square matrix K is symmetric if $K^{\top} = K$.

Definition 10.2 An $n \times n$ matrix K is positive definite if

Definition 10.1 A square matrix K is symmetric if $K^{\top} = K$. **Definition 10.2** An $n \times n$ matrix K is positive definite if $\mathbf{x}^{\top} K \mathbf{x} > 0$

for all nonzero column *n*-vector \mathbf{x} ,

Definition 10.1 A square matrix K is symmetric if $K^{\top} = K$. **Definition 10.2** An $n \times n$ matrix K is positive definite if $\mathbf{x}^{\top} K \mathbf{x} > 0$

for all nonzero column *n*-vector \mathbf{x} , and is positive semidefinite if

 $\mathbf{x}^{\top} K \mathbf{x} \ge 0$

for all column *n*-vector \mathbf{x} .

Definition 10.1 A square matrix K is symmetric if $K^{\top} = K$. **Definition 10.2** An $n \times n$ matrix K is positive definite if $\mathbf{x}^{\top} K \mathbf{x} > 0$

for all nonzero column *n*-vector \mathbf{x} , and is positive semidefinite if

 $\mathbf{x}^{\top} K \mathbf{x} \ge 0$

for all column n-vector \mathbf{x} .

Proposition 10.3 A covariance matrix is both symmetric and positive semidefinite.

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

$$Q^{-1} = Q^{\top}.$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

Let \mathbf{q}_i be the *i*th column of Q. Then

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

Let \mathbf{q}_i be the *i*th column of Q. Then

$$\mathbf{q}_i \mathbf{q}_j^{\top} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

Let \mathbf{q}_i be the *i*th column of Q. Then

$$\mathbf{q}_i \mathbf{q}_j^{\mathsf{T}} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

$$QQ^{\top} = \begin{bmatrix} | & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & | \end{bmatrix} \begin{bmatrix} - & \mathbf{q}_1^{\top} & - \\ \vdots & \\ - & \mathbf{q}_n^{\top} & - \end{bmatrix} = \begin{bmatrix} \mathbf{q}_i \mathbf{q}_j^{\top} \end{bmatrix} = I.$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

Let \mathbf{q}_i be the *i*th column of Q. Then

$$\mathbf{q}_i \mathbf{q}_j^{\mathsf{T}} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

$$QQ^{\top} = \begin{bmatrix} | & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & | \end{bmatrix} \begin{bmatrix} - & \mathbf{q}_1^{\top} & - \\ \vdots & \\ - & \mathbf{q}_n^{\top} & - \end{bmatrix} = \begin{bmatrix} \mathbf{q}_i \mathbf{q}_j^{\top} \end{bmatrix} = I.$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

Let \mathbf{q}_i be the *i*th column of Q. Then

$$\mathbf{q}_i \mathbf{q}_j^{\top} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

$$QQ^{\top} = \begin{bmatrix} | & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & | \end{bmatrix} \begin{bmatrix} - & \mathbf{q}_1^{\top} & - \\ \vdots & \\ - & \mathbf{q}_n^{\top} & - \end{bmatrix} = \begin{bmatrix} \mathbf{q}_i \mathbf{q}_j^{\top} \end{bmatrix} = I.$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

Let \mathbf{q}_i be the *i*th column of Q. Then

$$\mathbf{q}_i \mathbf{q}_j^{\mathsf{T}} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

$$QQ^{\top} = \begin{bmatrix} | & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & | \end{bmatrix} \begin{bmatrix} - & \mathbf{q}_1^{\top} & - \\ \vdots & \\ - & \mathbf{q}_n^{\top} & - \end{bmatrix} = \begin{bmatrix} \mathbf{q}_i \mathbf{q}_j^{\top} \end{bmatrix} = I.$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

Let \mathbf{q}_i be the *i*th column of Q. Then

$$\mathbf{q}_i \mathbf{q}_j^{\mathsf{T}} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Therefore,

$$QQ^{\top} = \begin{bmatrix} | & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & | \end{bmatrix} \begin{bmatrix} - & \mathbf{q}_1^{\top} & - \\ \vdots & \\ - & \mathbf{q}_n^{\top} & - \end{bmatrix} = \begin{bmatrix} \mathbf{q}_i \mathbf{q}_j^{\top} \end{bmatrix} = I.$$

Hence, $Q^{-1} = Q^{\top}$.

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

$$Q^{-1} = Q^{\top}.$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

• $|Q| = |Q^{\top}| = \pm 1.$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

• $|Q| = |Q^{\top}| = \pm 1.$

Consider

$$|Q|^2 = |Q||Q^\top| = |QQ^\top| = |I| = 1.$$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

• $|Q| = |Q^{\top}| = \pm 1.$

Consider $|Q|^2 = |Q||Q^\top| = |QQ^\top| = |I| = 1.$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

• $|Q| = |Q^{\top}| = \pm 1.$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

• $|Q| = |Q^{\top}| = \pm 1.$

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

$$Q^{-1} = Q^{\top}.$$

- $|Q| = |Q^{\top}| = \pm 1.$
- Let $\lambda_i = i$ th diagonal element of Λ and $\mathbf{q}_i = i$ th column of Q.

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

$$Q^{-1} = Q^{\top}.$$

- $|Q| = |Q^{\top}| = \pm 1.$
- Let $\lambda_i = i$ th diagonal element of Λ and $\mathbf{q}_i = i$ th column of Q.
- Then $KQ = (Q\Lambda Q^{\top})Q = Q\Lambda(Q^{\top}Q) = Q\Lambda$, or

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

$$Q^{-1} = Q^{+}.$$

- $|Q| = |Q^{\top}| = \pm 1.$
- Let $\lambda_i = i$ th diagonal element of Λ and $\mathbf{q}_i = i$ th column of Q.
- Then $KQ = (Q\Lambda Q^{\top})Q = Q\Lambda(Q^{\top}Q) = Q\Lambda$, or

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

$$Q^{-1} = Q^{\top}.$$

- $|Q| = |Q^{\top}| = \pm 1.$
- Let $\lambda_i = i$ th diagonal element of Λ and $\mathbf{q}_i = i$ th column of Q.
- Then $\overline{KQ} = (Q\Lambda Q^{\top})Q = Q\Lambda (Q^{\top}Q) = Q\Lambda$, or

• A symmetric matrix K can be diagonalized as

 $K = Q \Lambda Q^{\top}$

$$Q^{-1} = Q^{\top}.$$

- $|Q| = |Q^{\top}| = \pm 1.$
- Let $\lambda_i = i$ th diagonal element of Λ and $\mathbf{q}_i = i$ th column of Q.
- Then $\overline{KQ} = (Q\Lambda Q^{\top})Q = Q\Lambda(Q^{\top}Q) = Q\Lambda$, or

$$K\mathbf{q}_i = \lambda_i \mathbf{q}_i.$$

Consider

$$KQ = K \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} = \begin{bmatrix} K\mathbf{q}_1 & \cdots & K\mathbf{q}_n \end{bmatrix}$$

Consider

$$KQ = K \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} = \begin{bmatrix} K\mathbf{q}_1 & \cdots & K\mathbf{q}_n \end{bmatrix}$$
and

$$Q\Lambda = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \mathbf{r} & \ddots & \\ & \ddots & \\ & & & \end{pmatrix} = \begin{bmatrix} \lambda_1 \mathbf{q}_1 & \cdots & \lambda_n \mathbf{q}_n \end{bmatrix}.$$

Consider

$$KQ = K \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} = \begin{bmatrix} K\mathbf{q}_1 & \cdots & K\mathbf{q}_n \end{bmatrix}$$
and

$$Q\Lambda = \begin{bmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{q}_1 & \cdots & \lambda_n\mathbf{q}_n \end{bmatrix}.$$

Therefore $KQ = Q\Lambda$ is equivalent to

 $K\mathbf{q}_i = \lambda_i \mathbf{q}_i$

for all i.

Consider

$$KQ = K \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} = \begin{bmatrix} \underline{K}\mathbf{q}_1 & \cdots & K\mathbf{q}_n \end{bmatrix}$$
and

$$Q\Lambda = \begin{bmatrix} \begin{vmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{q}_1 & \cdots & \lambda_n\mathbf{q}_n \end{bmatrix}.$$

Therefore $KQ = Q\Lambda$ is equivalent to

 $K\mathbf{q}_i = \lambda_i \mathbf{q}_i$

for all i.

Consider

$$KQ = K \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} = \begin{bmatrix} \underline{K}\mathbf{q}_1 & \cdots & K\mathbf{q}_n \end{bmatrix}$$
and

$$Q\Lambda = \begin{bmatrix} \begin{vmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = \begin{bmatrix} \underline{\lambda}_1\mathbf{q}_1 & \cdots & \lambda_n\mathbf{q}_n \end{bmatrix}.$$

Therefore $KQ = Q\Lambda$ is equivalent to

 $K\mathbf{q}_i = \lambda_i \mathbf{q}_i$

for all i.

• A symmetric matrix K can be diagonalized as

$$K = Q \Lambda Q^{\top}$$

$$Q^{-1} = Q^{\top}.$$

- $|Q| = |Q^{\top}| = \pm 1.$
- Let $\lambda_i = i$ th diagonal element of Λ and $\mathbf{q}_i = i$ th column of Q.
- Then $KQ = (Q\Lambda Q^{\top})Q = Q\Lambda(Q^{\top}Q) = Q\Lambda$, or

$$K\mathbf{q}_i = \lambda_i \mathbf{q}_i.$$

• A symmetric matrix K can be diagonalized as

$$K = Q \Lambda Q^{\top}$$

where Λ is a diagonal matrix and Q (also Q^{\top}) is an orthogonal matrix, i.e.,

$$Q^{-1} = Q^{\top}.$$

- $|Q| = |Q^{\top}| = \pm 1.$
- Let $\lambda_i = i$ th diagonal element of Λ and $\mathbf{q}_i = i$ th column of Q.
- Then $KQ = (Q\Lambda Q^{\top})Q = Q\Lambda(Q^{\top}Q) = Q\Lambda$, or

$$K\mathbf{q}_i = \lambda_i \mathbf{q}_i.$$

• That is, \mathbf{q}_i is an eigenvector of K with eigenvalue λ_i .

Proposition 10.4 The eigenvalues of a positive semidefinite matrix are non-negative.

Proof

Proposition 10.4 The eigenvalues of a positive semidefinite matrix are non-negative.

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$
Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

$$0 \leq \mathbf{q}^{\top} K \mathbf{q} = \mathbf{q}^{\top} (\lambda \mathbf{q}) = \lambda (\mathbf{q}^{\top} \mathbf{q}).$$

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

$$\underline{0 \leq \mathbf{q}^{\top} K \mathbf{q}} = \mathbf{q}^{\top} (\lambda \mathbf{q}) = \lambda (\mathbf{q}^{\top} \mathbf{q}).$$

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

$$0 \leq \mathbf{q}^{\top} \underline{K} \mathbf{q} = \mathbf{q}^{\top} (\lambda \mathbf{q}) = \lambda (\mathbf{q}^{\top} \mathbf{q}).$$

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

$$0 \leq \mathbf{q}^{\top} \underline{K} \mathbf{q} = \mathbf{q}^{\top} (\underline{\lambda} \mathbf{q}) = \lambda(\mathbf{q}^{\top} \mathbf{q}).$$

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

$$0 \leq \mathbf{q}^{\top} K \mathbf{q} = \mathbf{q}^{\top} (\lambda \mathbf{q}) = \underline{\lambda} (\mathbf{q}^{\top} \mathbf{q}).$$

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

2. Since K is positive semidefinite,

$$0 \leq \mathbf{q}^{\top} K \mathbf{q} = \mathbf{q}^{\top} (\lambda \mathbf{q}) = \lambda (\mathbf{q}^{\top} \mathbf{q}).$$

3. $\lambda \ge 0$ because $\mathbf{q}^{\top}\mathbf{q} = \|\mathbf{q}\|^2 > 0$.

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

2. Since K is positive semidefinite,

$$0 \leq \mathbf{q}^{\top} K \mathbf{q} = \mathbf{q}^{\top} (\lambda \mathbf{q}) = \lambda(\underline{\mathbf{q}^{\top} \mathbf{q}}).$$

3. $\lambda \ge 0$ because $\mathbf{q}^{\top}\mathbf{q} = \|\mathbf{q}\|^2 > 0$.

Proof

1. Consider eigenvector $\mathbf{q} \neq 0$ and corresponding eigenvalue λ of K, i.e.,

 $K\mathbf{q} = \lambda \mathbf{q}.$

2. Since K is positive semidefinite,

$$0 \leq \mathbf{q}^{\top} K \mathbf{q} = \mathbf{q}^{\top} (\lambda \mathbf{q}) = \lambda (\mathbf{q}^{\top} \mathbf{q}).$$

3. $\lambda \ge 0$ because $\mathbf{q}^{\top}\mathbf{q} = \|\mathbf{q}\|^2 > 0$.

Remark Since a covariance matrix is both symmetric and positive semidefinite, it is diagonalizable and its eigenvalues are nonnegative.

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\top}$$

$$\tilde{K}_{\mathbf{Y}} = \mathbf{A}\tilde{K}_{\mathbf{X}}\mathbf{A}^{\mathsf{T}}.$$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = \boldsymbol{A}\tilde{K}_{\mathbf{X}}\boldsymbol{A}^{\top}.$$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = \boldsymbol{A}\tilde{K}_{\mathbf{X}}\boldsymbol{A}^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\underline{\mathbf{Y}}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A\tilde{K}_{\mathbf{X}}A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\underline{\mathbf{Y}}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$
$$= E(A\mathbf{X})(\underline{\mathbf{X}}^{\top}\underline{A}) - (EA\mathbf{X})(E\mathbf{X}^{\top}\underline{A})$$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$
$$= E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (\underline{E}A\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (\underline{E}A\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(\underline{E}\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(\underline{E}\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(\underline{E}\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(\underline{E}\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $\underline{E}(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $\underline{E}(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A(\underline{E}\mathbf{X}\mathbf{X}^{\top})A^{\top} - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $\underline{A}(E\mathbf{X}\mathbf{X}^{\top})A^{\top} - \underline{A}(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = \boldsymbol{A}\tilde{K}_{\mathbf{X}}\boldsymbol{A}^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $\underline{A}(E\mathbf{X}\mathbf{X}^{\top})A^{\top} - \underline{A}(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $\underline{A}[E\mathbf{X}\mathbf{X}^{\top} - (E\mathbf{X})(E\mathbf{X})^{\top}]A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = \boldsymbol{A}\tilde{K}_{\mathbf{X}}\boldsymbol{A}^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A(E\mathbf{X}\mathbf{X}^{\top})\underline{A}^{\top} - A(E\mathbf{X})(E\mathbf{X}^{\top})\underline{A}^{\top}$
= $A[E\mathbf{X}\mathbf{X}^{\top} - (E\mathbf{X})(E\mathbf{X})^{\top}]A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = \boldsymbol{A}\tilde{K}_{\mathbf{X}}\boldsymbol{A}^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A(E\mathbf{X}\mathbf{X}^{\top})\underline{A}^{\top} - A(E\mathbf{X})(E\mathbf{X}^{\top})\underline{A}^{\top}$
= $A[E\mathbf{X}\mathbf{X}^{\top} - (E\mathbf{X})(E\mathbf{X})^{\top}]\underline{A}^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = \boldsymbol{A}\tilde{K}_{\mathbf{X}}\boldsymbol{A}^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A(E\mathbf{X}\mathbf{X}^{\top})A^{\top} - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A[\underline{E\mathbf{X}}\mathbf{X}^{\top} - (E\mathbf{X})(E\mathbf{X})^{\top}]A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A(E\mathbf{X}\mathbf{X}^{\top})A^{\top} - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A[\underline{E\mathbf{X}}\mathbf{X}^{\top} - (E\mathbf{X})(E\mathbf{X})^{\top}]A^{\top}$
= $A[\underline{E\mathbf{X}}\mathbf{X}^{\top} - (E\mathbf{X})(E\mathbf{X})^{\top}]A^{\top}$

$$K_{\mathbf{Y}} = \mathbf{A} K_{\mathbf{X}} \mathbf{A}^{\mathsf{T}}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = E\mathbf{Y}\mathbf{Y}^{\top} - (E\mathbf{Y})(E\mathbf{Y})^{\top}$$

= $E(A\mathbf{X})(\mathbf{X}^{\top}A) - (EA\mathbf{X})(E\mathbf{X}^{\top}A)$
= $E(A\mathbf{X}\mathbf{X}^{\top}A^{\top}) - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A(E\mathbf{X}\mathbf{X}^{\top})A^{\top} - A(E\mathbf{X})(E\mathbf{X}^{\top})A^{\top}$
= $A[E\mathbf{X}\mathbf{X}^{\top} - (E\mathbf{X})(E\mathbf{X})^{\top}]A^{\top}$
= $AK_{\mathbf{X}}A^{\top}$

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$.

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

1. the random variables in \mathbf{Y} are uncorrelated

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

- 1. the random variables in \mathbf{Y} are uncorrelated
- 2. var $Y_i = \lambda_i$ for all i

Lemma 10.6 Let **X** and **Y** be column vectors of n random variables such that

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

 \mathbf{Proof}

Lemma 10.6 Let **X** and **Y** be column vectors of n random variables such that

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

\mathbf{Proof}

1. By Proposition 10.5,
$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

\mathbf{Proof}

$$K_{\mathbf{Y}} = Q^{\top} K_{\mathbf{X}} Q$$

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

\mathbf{Proof}

$$K_{\mathbf{Y}} = Q^{\top} \underline{K_{\mathbf{X}}} Q$$

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

\mathbf{Proof}

$$K_{\mathbf{Y}} = Q^{\top} \underline{K}_{\mathbf{X}} Q$$
$$= Q^{\top} (Q \Lambda Q^{\top}) Q$$

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

Proof

$$K_{\mathbf{Y}} = Q^{\top} K_{\mathbf{X}} Q$$
$$= Q^{\top} (Q \Lambda Q^{\top}) Q$$
$$= (Q^{\top} Q) \Lambda (Q^{\top} Q)$$

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

Proof

$$K_{\mathbf{Y}} = Q^{\top} K_{\mathbf{X}} Q$$
$$= Q^{\top} (Q \Lambda Q^{\top}) Q$$
$$= (Q^{\top} Q) \Lambda (Q^{\top} Q)$$

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

Proof

$$K_{\mathbf{Y}} = Q^{\top} K_{\mathbf{X}} Q$$
$$= Q^{\top} (Q \Lambda Q^{\top}) Q$$
$$= (Q^{\top} Q) \Lambda (Q^{\top} Q)$$

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

Proof

$$K_{\mathbf{Y}} = Q^{\top} K_{\mathbf{X}} Q$$
$$= Q^{\top} (Q \Lambda Q^{\top}) Q$$
$$= (Q^{\top} Q) \Lambda (Q^{\top} Q)$$
$$= \Lambda.$$

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

Proof

1. By Proposition 10.5,

$$K_{\mathbf{Y}} = Q^{\top} K_{\mathbf{X}} Q$$
$$= Q^{\top} (Q \Lambda Q^{\top}) Q$$
$$= (Q^{\top} Q) \Lambda (Q^{\top} Q)$$
$$= \Lambda.$$

2. Since $K_{\mathbf{Y}} = \Lambda$ is a diagonal matrix, the random variables in \mathbf{Y} are uncorrelated because

$$\operatorname{cov}(Y_i, Y_j) = 0$$

for $i \neq j$.

$$\mathbf{Y} = Q^{\top} \mathbf{X},$$

where $Q\Lambda Q^{\top}$ is a diagonalization of $K_{\mathbf{X}}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e., the random variables in \mathbf{Y} are uncorrelated and var $Y_i = \lambda_i$, the *i*th diagonal element of Λ .

Proof

1. By Proposition 10.5,

$$K_{\mathbf{Y}} = Q^{\top} K_{\mathbf{X}} Q$$
$$= Q^{\top} (Q \Lambda Q^{\top}) Q$$
$$= (Q^{\top} Q) \Lambda (Q^{\top} Q)$$
$$= \Lambda.$$

2. Since $K_{\mathbf{Y}} = \Lambda$ is a diagonal matrix, the random variables in \mathbf{Y} are uncorrelated because

$$\operatorname{cov}(Y_i, Y_j) = 0$$

for $i \neq j$.

3. Furthermore, the variance of Y_i is given by the *i*th diagonal element of $K_{\mathbf{Y}} = \Lambda$, i.e., λ_i . The proposition is proved.

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

- 1. the random variables in \mathbf{Y} are uncorrelated
- 2. var $Y_i = \lambda_i$ for all i

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

- 1. the random variables in \mathbf{Y} are uncorrelated
- 2. var $Y_i = \lambda_i$ for all i

Corollary 10.7 Any random vector \mathbf{X} can be written as a linear transformation of an uncorrelated vector. Specifically, $\mathbf{X} = Q\mathbf{Y}$, where $K_{\mathbf{X}} = Q\Lambda Q^{\top}$.

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

- 1. the random variables in \mathbf{Y} are uncorrelated
- 2. var $Y_i = \lambda_i$ for all i

Corollary 10.7 Any random vector \mathbf{X} can be written as a linear transformation of an uncorrelated vector. Specifically, $\mathbf{X} = Q\mathbf{Y}$, where $K_{\mathbf{X}} = Q\Lambda Q^{\top}$.

Proof In Proposition 10.6, $\mathbf{Y} = Q^{\top} \mathbf{X}$ implies $Q \mathbf{Y} = Q Q^{\top} \mathbf{X}$, or $\mathbf{X} = Q \mathbf{Y}$.

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

- 1. the random variables in \mathbf{Y} are uncorrelated
- 2. var $Y_i = \lambda_i$ for all i

Corollary 10.7 Any random vector \mathbf{X} can be written as a linear transformation of an uncorrelated vector. Specifically, $\mathbf{X} = Q\mathbf{Y}$, where $K_{\mathbf{X}} = Q\Lambda Q^{\top}$.

Proof In Proposition 10.6, $\mathbf{Y} = Q^{\top} \mathbf{X}$ implies $Q \mathbf{Y} = Q Q^{\top} \mathbf{X}$, or $\mathbf{X} = Q \mathbf{Y}$.

$$K_{\mathbf{Y}} = A K_{\mathbf{X}} A^{\top}$$

and

$$\tilde{K}_{\mathbf{Y}} = A \tilde{K}_{\mathbf{X}} A^{\top}.$$

Proposition 10.6 (Decorrelation) Let $\mathbf{Y} = Q^{\top} \mathbf{X}$, where $K_{\mathbf{X}} = Q \Lambda Q^{\top}$. Then $K_{\mathbf{Y}} = \Lambda$, i.e.,

- 1. the random variables in \mathbf{Y} are uncorrelated
- 2. var $Y_i = \lambda_i$ for all i

Corollary 10.7 Any random vector \mathbf{X} can be written as a linear transformation of an uncorrelated vector. Specifically, $\mathbf{X} = Q\mathbf{Y}$, where $K_{\mathbf{X}} = Q\Lambda Q^{\top}$.

Proof In Proposition 10.6, $\mathbf{Y} = Q^{\top} \mathbf{X}$ implies $Q \mathbf{Y} = Q \overline{Q}^{\top} \mathbf{X}$, or $\mathbf{X} = Q \mathbf{Y}$.

$$K_{\mathbf{Y}} = K_{\mathbf{X}} + K_{\mathbf{Z}}.$$

$$K_{\mathbf{Y}} = K_{\mathbf{X}} + K_{\mathbf{Z}}.$$

Remarks

$$K_{\mathbf{Y}} = K_{\mathbf{X}} + K_{\mathbf{Z}}.$$

Remarks

1. If $\mathbf{Y} = \sum_{i=1}^{n} \mathbf{X}_{i}$ where $\mathbf{X}_{1}, \mathbf{X}_{2}, \cdots, \mathbf{X}_{n}$ are mutually independent, then

$$K_{\mathbf{Y}} = \sum_{i=1}^{n} K_{\mathbf{X}_{i}}.$$

$$K_{\mathbf{Y}} = K_{\mathbf{X}} + K_{\mathbf{Z}}.$$

Remarks

1. If $\mathbf{Y} = \sum_{i=1}^{n} \mathbf{X}_{i}$ where $\mathbf{X}_{1}, \mathbf{X}_{2}, \cdots, \mathbf{X}_{n}$ are mutually independent, then

$$K_{\mathbf{Y}} = \sum_{i=1}^{n} K_{\mathbf{X}_{i}}.$$

2. When \mathbf{X}_i are scalars, this reduces to

$$\operatorname{var} Y = \sum_{i=1}^{n} \operatorname{var} X_i.$$

Proposition 10.9 (Preservation of Energy) Let $\mathbf{Y} = Q\mathbf{X}$, where Q is an orthogonal matrix. Then

$$E\sum_{i=1}^{n} Y_i^2 = E\sum_{i=1}^{n} X_i^2.$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \underline{\mathbf{Y}}^{\top} \mathbf{Y}$$
$$= (\underline{Q} \mathbf{X})^{\top} (Q \mathbf{X})$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$
$$= (Q\mathbf{X})^\top (Q\mathbf{X})$$
$$= (\mathbf{X}^\top Q^\top) (Q\mathbf{X})$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$
$$= (Q\mathbf{X})^\top (Q\mathbf{X})$$
$$= (\mathbf{X}^\top Q^\top) (Q\mathbf{X})$$
$$= \mathbf{X}^\top (Q^\top Q) \mathbf{X}$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$
$$= (Q\mathbf{X})^\top (Q\mathbf{X})$$
$$= (\mathbf{X}^\top Q^\top) (Q\mathbf{X})$$
$$= \mathbf{X}^\top (Q^\top Q) \mathbf{X}$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$
$$= (Q\mathbf{X})^\top (Q\mathbf{X})$$
$$= (\mathbf{X}^\top Q^\top) (Q\mathbf{X})$$
$$= \mathbf{X}^\top (Q^\top Q) \mathbf{X}$$
$$= \mathbf{X}^\top \mathbf{X}$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$
$$= (Q\mathbf{X})^\top (Q\mathbf{X})$$
$$= (\mathbf{X}^\top Q^\top) (Q\mathbf{X})$$
$$= \mathbf{X}^\top (Q^\top Q) \mathbf{X}$$
$$= \mathbf{X}^\top \mathbf{X}$$
$$= \sum_{i=1}^{n} X_i^2.$$

$$E \sum_{i=1}^{n} Y_i^2 = E \sum_{i=1}^{n} X_i^2.$$

 \mathbf{Proof}

1. Consider

$$\sum_{i=1}^{n} Y_i^2 = \mathbf{Y}^\top \mathbf{Y}$$
$$= (Q\mathbf{X})^\top (Q\mathbf{X})$$
$$= (\mathbf{X}^\top Q^\top) (Q\mathbf{X})$$
$$= \mathbf{X}^\top (Q^\top Q) \mathbf{X}$$
$$= \mathbf{X}^\top \mathbf{X}$$
$$= \sum_{i=1}^{n} X_i^2.$$

2. The proposition is proved upon taking expectation on both sides.