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e A real r.v. X with cumulative distribution function F'x(z) = Pr{X < z}
(CDF) is

— discrete if Fx(x) increases only at a countable number of values of
L

— continuous if Fx(z) is continuous, or equivalently, Pr{X = z} =0
for every value of x;

— mixed if Fx(x) is neither discrete nor continuous.
e Sx is the set of all z such that Fx(z) > Fx(xz — ¢) for all € > 0.
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Real Random Variables

e A nonnegative function fx(x) is called a probability density function (pdf)

of X it ;
=/ fx (u) du

e By the fundamental theorem of calculus,

for all x.

d

%FX / fx(u)du= fx(x).

e If X has a pdf, then X is continuous, but not vice versa.
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Jointly Distributed Random Variables

Let X and Y be two real random variables with joint CDF Fxvy(z,y) =
Pr{X <z, Y < y}.

Marginal CDF of X: Fx(x) = Fxy(x,o0)

A nonnegative function fxy (x,y) is called a joint pdf of X and Y if

Fyy (2,) = / / ey (1, v) do du

Conditional pdf of Y given {X = z}:

. fXY(xay)
fY|X(y’x) = Fx(2)

Conditional CDF of Y given {X = x}:

Fy | x(ylz) = /_y fyx (v]z) dv
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e Variance of X:

varX = B(X — EX)* =EX* — (EX)?

e Covariance between X and Y:
cov(X,Y)=FE(X - EX)(Y —EY)=FEXY)— (FEX)(EFY)
Remarks

1. var(X +Y) = varX + varY 4 2cov(X,Y)

2. If X LY, then cov(X,Y) =0, or X and Y are uncorrelated. However,
the converse is not true.

3. It X7, X9, ---,X,, are mutually independent, then

var (En: X7;> — En:varXi
i=1 i=1
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Covariance matrix:
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Definition 10.1 A square matrix K is symmetric if k' = K.

Definition 10.2 An n X n matrix K is positive definite if
x' Kx >0

for all nonzero column n-vector x, and is positive semidefinite if
x'Kx >0

for all column n-vector x.

Proposition 10.3 A covariance matrix is both symmetric and positive semidef-
inite.
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A symmetric matrix K can be diagonalized as
K =QAQ'

where A is a diagonal matrix and @ (also Q') is an orthogonal matrix,
l.e.,

Q' =Q".
QI =1Q"|=+1.
Let \; = ith diagonal element of A and q, = ¢th column of ().

Then KQ = (QAQT)Q = QA(QTQ) = QA, o

Kq; = \q;.



Diagonalization

A symmetric matrix K can be diagonalized as
K =QAQ'

where A is a diagonal matrix and @ (also Q') is an orthogonal matrix,
l.e.,

Q' =Q".
QI =1Q"|=+1.
Let \; = ith diagonal element of A and q, = ¢th column of ().

Then KQ = (QAQT)Q = QA(QTQ) = QA, o

Kq; = \q;.

That is, q; is an eigenvector of K with eigenvalue A;.
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Proposition 10.4 The eigenvalues of a positive semidefinite matrix are non-
negative.

Proof

1. Consider eigenvector q # 0 and corresponding eigenvalue A of K, i.e.,

Kq= \q.

2. Since K is positive semidefinite,

0<q'Kq=q'(\q)=A(q'q).

3. A >0 because q'q = ||q||? > 0.



Proposition 10.4 The eigenvalues of a positive semidefinite matrix are non-
negative.

Proof

1. Consider eigenvector q # 0 and corresponding eigenvalue A of K, i.e.,

Kq= \q.

2. Since K is positive semidefinite,
0<q'Kq=q'(Aq)=A(q'q).

3. A >0 because q'q = ||q||? > 0.

Remark Since a covariance matrix is both symmetric and positive semidefinite,
it is diagonalizable and its eigenvalues are nonnegative.
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var Y; = X\;, the ith diagonal element of A.

Proof
1. By Proposition 10.5,

Kyv = Q!KxQ
= @'@reha
= Q' @a'e)
= A.
2. Since K~ = A is a diagonal matrix, the random

variables in Y are uncorrelated because
COV(Y,I:, Yj) =0

for i #£ j.

3. Furthermore, the variance of Y, is given by the ith
diagonal element of K~y = A, i.e., A;. The proposition

is proved.
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Proposition 10.8 Let X and Z be independent and Y = X + Z. Then

Ky = Kx + Kg.

Remarks

1. Y =", X; where X1,Xa, -+ ,X,, are mutually independent, then

Ky =) Kx,.
1=1

2. When X, are scalars, this reduces to

mn
varyY — g var X;.
i=1



Proposition 10.9 (Preservation of Energy) Let Y = QX, where () is an
orthogonal matrix. Then

Ei:y;? — Ein.
1=1 1=1
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Proposition 10.9 Let Y = QX, where X and Y are
column vectors of n random variables and @ is an or-
thogonal matrix. Then

Proof
1. Consider

Sy = vly

= QX)) (QX)
= x'e"ex)

- x" (@ Qx
_

= X X

mn
= 3 xZ.
i—=1

2. The proposition is proved upon taking expectation
on both sides.



