
© Raymond  W.  Yeung 2014
The Chinese University of Hong Kong 

Chapter 10 
Differential Entropy
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• A real r.v. X with cumulative distribution function FX(x) = Pr{X  x}
(CDF) is

– discrete if FX(x) increases only at a countable number of values of

x;

– continuous if FX(x) is continuous, or equivalently, Pr{X = x} = 0

for every value of x;

– mixed if FX(x) is neither discrete nor continuous.

• SX is the set of all x such that FX(x) > FX(x� ✏) for all ✏ > 0.

•
Eg(X) =

Z

SX

g(x)dFX(x),

where the right hand side is a Lebesgue-Stieltjes integration which covers

all cases (i.e., discrete, continuous, and mixed) for the CDF FX(x).
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• A nonnegative function f

X

(x) is called a probability density function (pdf)

of X if

F

X

(x) =

Z
x

�1
f

X

(u) du

for all x.

• By the fundamental theorem of calculus,

d

dx

F

X

(x) =

d

dx

Z
x

�1
f

X

(u) du = f

X

(x).

• If X has a pdf, then X is continuous, but not vice versa.
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Jointly Distributed Random Variables
• Let X and Y be two real random variables with joint CDF F

XY

(x, y) =

Pr{X  x, Y  y}.

• Marginal CDF of X: F

X

(x) = F

XY

(x,1)

• A nonnegative function f

XY

(x, y) is called a joint pdf of X and Y if

F

XY

(x, y) =

Z
x

�1

Z
y

�1
f

XY

(u, v) dv du

• Conditional pdf of Y given {X = x}:

f

Y |X(y|x) = f

XY

(x, y)

f

X

(x)

• Conditional CDF of Y given {X = x}:

F

Y |X(y|x) =
Z

y

�1
f

Y |X(v|x) dv
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Gaussian Distribution

• N (µ, ⇥2) – Gaussian distribution with mean µ and variance ⇥2:

f(x) =
1⇧

2�⇥2
e�

(x�µ)2

2�2 , �⇥ < x <⇥

• N (µ, K) – multivariate Gaussian distribution with mean µ and covariance
matrix K, i.e., the joint pdf of the distribution is given by

f(x) =
1

�⇧
2�

⇥n |K|1/2
e�

1
2 (x�µ)⇥K�1(x�µ), x ⇤ ⌅n

where K is a symmetric positive definite matrix.
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10.1 Preliminaries



Definition 10.1 A square matrix K is symmetric if K� = K.

Definition 10.2 An n� n matrix K is positive definite if

x�Kx > 0

for all nonzero column n-vector x, and is positive semidefinite if

x�Kx ⇥ 0

for all column n-vector x.

Proposition 10.3 A covariance matrix is both symmetric and positive semidef-
inite.
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• A symmetric matrix K can be diagonalized as

K = Q⇤Q>

where ⇤ is a diagonal matrix and Q (also Q>
) is an orthogonal matrix,

i.e.,

Q�1
= Q>.

• |Q| = |Q>| = ±1.

• Let �i = ith diagonal element of ⇤ and qi = ith column of Q.

• Then KQ = (Q⇤Q>
)Q = Q⇤(Q>Q) = Q⇤, or

Kqi = �iqi.

• That is, qi is an eigenvector of K with eigenvalue �i.
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j =
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1 if i = j
0 if i 6= j.

Therefore,
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2

4
| |
q1 · · · qn

| |

3

5

2

64
— q>

1 —
...

— q>
n —

3

75 =
⇥
qiq

>
j

⇤
= I.

Hence, Q�1 = Q>.
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for all i.
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Proposition 10.4 The eigenvalues of a positive semidefinite matrix are non-

negative.

Proof

1. Consider eigenvector q 6= 0 and corresponding eigenvalue � of K, i.e.,

Kq = �q.

2. Since K is positive semidefinite,

0  q

>Kq = q

>
(�q) = �(q>

q).

3. � � 0 because q

>
q = kqk2 > 0.

Remark Since a covariance matrix is both symmetric and positive semidefinite,

it is diagonalizable and its eigenvalues are nonnegative.
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Proposition 10.5 Let Y = AX. Then

KY = AKXA>

and

˜KY = A ˜KXA>.

Proposition 10.6 (Decorrelation) Let Y = Q>
X, where KX = Q⇤Q>

.

Then KY = ⇤, i.e.,

1. the random variables in Y are uncorrelated

2. varYi = �i for all i

Corollary 10.7 Any random vectorX can be written as a linear transformation

of an uncorrelated vector. Specifically, X = QY, where KX = Q⇤Q>
.

Proof In Proposition 10.6, Y = Q>
X implies QY = QQ>

X, or X = QY.
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Lemma 10.6 Let X and Y be column vectors of n
random variables such that

Y = Q>
X,

where Q⇤Q>
is a diagonalization of K

X

. Then K
Y

=

⇤, i.e., the random variables in Y are uncorrelated and

varYi = �i, the ith diagonal element of ⇤.

Proof

1. By Proposition 10.5,

K
Y

= Q>K
X

Q

= Q>
(Q⇤Q>

)Q

= (Q>Q)⇤(Q>Q)

= ⇤.

2. Since K
Y

= ⇤ is a diagonal matrix, the random

variables in Y are uncorrelated because

cov(Yi, Yj) = 0

for i 6= j.

3. Furthermore, the variance of Yi is given by the ith
diagonal element of K

Y

= ⇤, i.e., �i. The proposition

is proved.
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3. Furthermore, the variance of Yi is given by the ith
diagonal element of K

Y

= ⇤, i.e., �i. The proposition

is proved.
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Proposition 10.5 Let Y = AX. Then

KY = AKXA>

and

˜KY = A ˜KXA>.

Proposition 10.6 (Decorrelation) Let Y = Q>
X, where KX = Q⇤Q>

.

Then KY = ⇤, i.e.,

1. the random variables in Y are uncorrelated

2. varYi = �i for all i

Corollary 10.7 Any random vectorX can be written as a linear transformation

of an uncorrelated vector. Specifically, X = QY, where KX = Q⇤Q>
.

Proof In Proposition 10.6, Y = Q>
X implies QY = QQ>

X, or X = QY.
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1. If Y =

Pn
i=1 Xi where X1,X2, · · · ,Xn are mutually independent, then

KY =

nX

i=1

KXi .

2. When Xi are scalars, this reduces to

varY =

nX

i=1

varXi.

Proposition 10.8 Let X and Z be independent and Y = X+ Z. Then

KY = KX +KZ.
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Proposition 10.9 (Preservation of Energy) Let Y = QX, where Q is an

orthogonal matrix. Then

E
nX

i=1

Y 2
i = E

nX

i=1

X2
i .



Proposition 10.9 Let Y = QX, where X and Y are

column vectors of n random variables and Q is an or-

thogonal matrix. Then

E
nX

i=1

Y 2

i = E
nX

i=1

X2

i .

Proof

1. Consider

nX

i=1

Y 2

i = Y

>
Y

= (QX)

>
(QX)

= (X

>Q>
)(QX)

= X

>
(Q>Q)X

= X

>
X

=

nX

i=1

X2

i .

2. The proposition is proved upon taking expectation

on both sides.
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