Chapter 9 The Blahut-Arimoto Algorithms

© Raymond W. Yeung 2012

Department of Information Engineering The Chinese University of Hong Kong

Single-Letter Characterization

• For a DMC p(y|x), the capacity

$$C = \max_{r(x)} I(X;Y),$$

where r(x) is the input distribution, gives the maximum asymptotically achievable rate for reliable communication as the blocklength $n \to \infty$.

- This characterization of C, in the form of an optimization problem, is called a single-letter characterization because it involves only p(y|x) but not n.
- Similarly, the rate-distortion function

$$R(D) = \min_{\substack{Q(\hat{x}|x): Ed(X, \hat{X}) \le D}} I(X; \hat{X})$$

for an i.i.d. information source $\{X_k\}$ is a single-letter characterization.

Numerical Methods

- When the alphabets are finite, C and R(D) are given as solutions of finitedimensional optimization problems.
- However, these quantities cannot be expressed in closed-forms except for very special cases.
- Even computing these quantities is not straightforward because the associated optimization problems are nonlinear.
- So we have to resort to numerical methods.
- The BA algorithms are iterative algorithms devised for this purpose.

9.1 Alternating Optimization

Consider the double supremum

 $\sup_{\mathbf{u}_1\in A_1}\sup_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

- A_i is a convex subset of \Re^{n_i} for i = 1, 2.
- $f: A_1 \times A_2 \to \Re$ is bounded from above, such that

- f is continuous and has continuous partial derivatives on $A_1 \times A_2$;

- For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2),\mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1',\mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

• Let $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ and $A = A_1 \times A_2$. Then the double supremum can be written as

 $\sup_{\mathbf{u}\in A}f(\mathbf{u}).$

- In other words, the supremum of f is taken over a subset of $\Re^{n_1+n_2}$ which is equal to the Cartesian product of two convex subsets of \Re^{n_1} and \Re^{n_2} , respectively.
- Let f^* denote this supremum.

An Alternating Optimization Algorithm for Computing f*

- Let $\mathbf{u}^{(k)} = (\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$ for $k \ge 0$, defined as follows.
- Let $\mathbf{u}_1^{(0)}$ be an arbitrarily chosen vector in A_1 , and let $\mathbf{u}_2^{(0)} = c_2(\mathbf{u}_1^{(0)})$.
- For $k \ge 1$, $\mathbf{u}^{(k)}$ is defined by

$$\mathbf{u}_1^{(k)} = c_1(\mathbf{u}_2^{(k-1)})$$

and

$$\mathbf{u}_2^{(k)} = c_2(\mathbf{u}_1^{(k)}).$$

• Let

$$f^{(k)} = f(\mathbf{u}^{(k)}).$$

• Then

 $f^{(k)} \ge f^{(k-1)}.$

- Since the sequence $f^{(k)}$ is non-decreasing, it must converge because f is bounded from above.
- We will show that $f^{(k)} \to f^*$ if f is concave.
- Replacing f by -f, the double supremum becomes the double infimum

 $\inf_{\mathbf{u}_1\in A_1}\inf_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

• The same alternating optimization algorithm can be applied to compute this infimum.

9.2 The Algorithms

• The alternating optimization algorithm is specialized for computing C and R(D).

9.2.1 Channel Capacity

Lemma 9.1 Let r(x)p(y|x) be a given joint distribution on $\mathcal{X} \times \mathcal{Y}$ such that $\mathbf{r} > 0$, and let \mathbf{q} be a transition matrix from \mathcal{Y} to \mathcal{X} . Then

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$

where the maximization is taken over all ${\bf q}$ such that

$$q(x|y) = 0 \quad \text{if and only if} \quad p(y|x) = 0, \tag{1}$$

and

$$q^{*}(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')},$$
(2)

i.e., the maximizing **q** is the one which corresponds to the input distribution **r** and the transition matrix p(y|x).

Proof

1. In (2), let

$$w(y) = \sum_{x'} r(x')p(y|x').$$

- 2. Assume w.l.o.g. that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$.
- 3. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined.
- 4. Rearranging (2), we have

$$r(x)p(y|x) = w(y)q^*(x|y).$$

5. Consider

$$\begin{split} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)} &- \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} \\ &= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} \sum_{x} w(y) q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) \sum_{x} q^*(x|y) \log \frac{q^*(x|y)}{q(x|y)} \\ &= \sum_{y} w(y) D(q^*(x|y) ||q(x|y)) \\ &\geq 0. \end{split}$$

6. The proof is completed by noting in (2) that \mathbf{q}^* satisfies (1) because $\mathbf{r} > 0$.

Theorem 9.2 For a discrete memoryless channel p(y|x),

$$C = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$

where the maximization is taken over all \mathbf{q} that satisfies (1) in Lemma 9.1.

Proof

• Write I(X;Y) as $I(\mathbf{r},\mathbf{p})$ where \mathbf{r} is the input distribution and \mathbf{p} denotes the transition matrix of the generic channel p(y|x). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}).$$

• By Lemma 9.1, we need to prove that

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

• Let \mathbf{r}^* achieves C.

• If $\mathbf{r}^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}).$$

Next, consider r^{*} ≥ 0. Since I(r, p) is continuous in r, for any ε > 0, there exists δ > 0 such that if

$$\|\mathbf{r}-\mathbf{r}^*\|<\delta,$$

then

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon,$$

- In particular, there exists $\tilde{\mathbf{r}} > 0$ such that $\|\tilde{\mathbf{r}} \mathbf{r}^*\| < \delta$.
- Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \ge I(\tilde{\mathbf{r}}, \mathbf{p}) > C - \epsilon.$$

• Let $\epsilon \to 0$ to conclude that

$$C = \sup_{\mathbf{r}>0} I(\mathbf{r}, \mathbf{p}).$$

Recall the double supremum in Section 9.1:

 $\sup_{\mathbf{u}_1\in A_1}\sup_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$

- A_i is a convex subset of \Re^{n_i} for i = 1, 2.
- $f: A_1 \times A_2 \to \Re$ is bounded from above, such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$; - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2),\mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1',\mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of C into this optimization problem:

• Let

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} \frac{r(x)p(y|x) \log \frac{q(x|y)}{r(x)}}{r(x)},$$

where $\mathbf{u}_1 \leftarrow \mathbf{r}$ and $\mathbf{u}_2 \leftarrow \mathbf{q}$.

• Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \} \subset \Re^{|\mathcal{X}|}$$

and

$$A_2 = \{ (q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) > 0 \text{ iff } p(y|x) > 0, \\ \text{and } \sum_x q(x|y) = 1 \text{ for all } y \in \mathcal{Y} \} \\ \subset \Re^{|\mathcal{X}||\mathcal{Y}|}.$$

Remarks

- Both A_1 and A_2 are convex.
- f is bounded from above.
- In $f(\mathbf{r}, \mathbf{q})$, the double summation by convention is over all x such that r(x) > 0 and all y such that p(y|x) > 0.
- Since q(x|y) > 0 whenever p(y|x) > 0, all the probabilities involved in the double summation are positive.
- Therefore, f is continuous and has continuous partial derivatives on $A = A_1 \times A_2$.

• The double supremum now becomes

$$\sup_{\mathbf{r}\in A_1}\sup_{\mathbf{q}\in A_2}\sum_{x}\sum_{y}r(x)p(y|x)\log\frac{q(x|y)}{r(x)} = \sup_{\mathbf{r}\in A_1}\sup_{\mathbf{q}\in A_2}f(\mathbf{r},\mathbf{q}),$$

where the supremum over all $\mathbf{q} \in A_2$ is in fact a maximum, and

$$f^* = \sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} f(\mathbf{r}, \mathbf{q}) = C.$$

Algorithm Details

- By Lemma 9.1, for any given $\mathbf{r} \in A_1$, there exists a unique $\mathbf{q} \in A_2$ that maximizes f.
- By Lagrange multiplies, it can be shown that for a given $\mathbf{q} \in A_2$, the input distribution \mathbf{r} that maximizes f is given by

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}},$$

where the product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all such y. This implies $\mathbf{r} > 0$ and hence $\mathbf{r} \in A_1$.

- Let $\mathbf{r}^{(0)}$ an arbitrarily chosen strictly positive input distribution in A_1 . Then $\mathbf{q}^{(0)} \in A_2$ can be determined accordingly. This forms $(\mathbf{r}^{(0)}, \mathbf{q}^{(0)})$.
- Compute $(\mathbf{r}^{(k)}, \mathbf{q}^{(k)}), k \ge 1$ iteratively.
- It will be shown in Section 9.3 that $f^{(k)} = f(\mathbf{r}^{(k)}, \mathbf{q}^{(k)}) \to f^* = C$.

9.2.2 The Rate-Distortion Function

- Assume R(0) > 0, so that R(D) is strictly decreasing for $0 \le D \le D_{max}$.
- Since R(D) is convex, for any $s \leq 0$, there exists a point on the R(D) curve for $0 \leq D \leq D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s.
- Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique.
- Then this tangent intersects with the ordinate at $R(D_s) sD_s$.

- Write $I(X; \hat{X})$ and $Ed(X, \hat{X})$ as $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$, respectively, where **p** is the distribution for X and **Q** is the transition matrix from \mathcal{X} to $\hat{\mathcal{X}}$ defining \hat{X} .
- For any \mathbf{Q} , $(D(\mathbf{p}, \mathbf{Q}), I(\mathbf{p}, \mathbf{Q}))$ is a point in the rate-distortion region, and the line with slope *s* passing through $(D(\mathbf{p}, \mathbf{Q}), I(\mathbf{p}, \mathbf{Q}))$ intersects the ordinate at $I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})$.
- Then

$$R(D_s) - sD_s = \min_{\mathbf{Q}} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$
(1)

• By varying over all $s \leq 0$, we can then trace out the whole R(D) curve.

Lemma 9.3 Let $p(x)Q(\hat{x}|x)$ be a given joint distribution on $\mathcal{X} \times \hat{\mathcal{X}}$ such that $\mathbf{Q} > 0$, and let \mathbf{t} be any distribution on $\hat{\mathcal{X}}$ such that $\mathbf{t} > 0$. Then

$$\min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t^*(\hat{x})}, \quad (2)$$

where

$$t^*(\hat{x}) = \sum_x p(x)Q(\hat{x}|x),$$

i.e., the minimizing \mathbf{t} is the one which corresponds to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

Remarks:

- $\mathbf{t}^* > 0$ because $\mathbf{Q} > 0$.
- The right-hand side of (2) is equal to $I(\mathbf{p}, \mathbf{Q})$.

- Since I(p, Q) and D(p, Q) are continuous in Q, the minimum over all Q in (1) can be replaced by the infimum over all Q > 0.
- Note that

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x, \hat{x}).$$

• Then

$$\begin{split} R(D_{s}) &- sD_{s} \\ &= \min_{\mathbf{Q}} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})] \\ &= \inf_{\mathbf{Q}>0} \left[\min_{\mathbf{t}>0} \sum_{x,\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x,\hat{x}} p(x)Q(\hat{x}|x)d(x,\hat{x}) \right] \\ &= \inf_{\mathbf{Q}>0} \min_{\mathbf{t}>0} \left[\sum_{x,\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x,\hat{x}} p(x)Q(\hat{x}|x)d(x,\hat{x}) \right]. \end{split}$$

Recall the double infimum in Section 9.1:

$$\inf_{\mathbf{u}_1\in A_1}\inf_{\mathbf{u}_2\in A_2}f(\mathbf{u}_1,\mathbf{u}_2).$$

- A_i is a convex subset of \Re^{n_i} for i = 1, 2.
- $f: A_1 \times A_2 \to \Re$ is bounded from below, such that
 - f is continuous and has continuous partial derivatives on $A_1 \times A_2$;
 - For all $\mathbf{u}_2 \in A_2$, there exists a unique $c_1(\mathbf{u}_2) \in A_1$ such that

$$f(c_1(\mathbf{u}_2),\mathbf{u}_2) = \min_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1',\mathbf{u}_2),$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \min_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$

Cast the computation of $R(D_s) - sD_s$ into this optimization problem:

• Let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}),$$

where $\mathbf{u}_1 \leftarrow \mathbf{Q}$ and $\mathbf{u}_2 \leftarrow \mathbf{t}$.

• Let

$$A_{1} = \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\}$$
$$\subset \Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0.$$

Remarks

- Both A_1 and A_2 are convex.
- f is bounded from below.
- In $f(\mathbf{Q}, \mathbf{t})$, the double summation by convention is over all x such that p(x) > 0 and all \hat{x} such that $Q(\hat{x}|x) > 0$.
- Therefore, f is continuous and has continuous partial derivatives on $A = A_1 \times A_2$.
- The double infimum now becomes

$$\inf_{\mathbf{Q}\in A_1} \inf_{\mathbf{t}\in A_2} \left[\sum_x \sum_{\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_x \sum_{\hat{x}} p(x)Q(\hat{x}|x)d(x,\hat{x}) \right]$$
$$= \inf_{\mathbf{Q}\in A_1} \inf_{\mathbf{t}\in A_2} f(\mathbf{Q},\mathbf{t}),$$

where the infimum over all $\mathbf{t} \in A_2$ is in fact a minimum, and

$$f^* = \inf_{\mathbf{Q}\in A_1} \inf_{\mathbf{t}\in A_2} f(\mathbf{Q}, \mathbf{t}) = R(D_s) - sD_s.$$

Algorithm Details

- By Lemma 9.3, for any given $\mathbf{Q} \in A_1$, there exists a unique $\mathbf{t} \in A_2$ that minimizes f.
- By Lagrange multipliers, it can be shown that for a given $\mathbf{t} \in A_2$, the transition matrix \mathbf{Q} that minimizers f is given by

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0,$$

and so $\mathbf{Q} \in A_1$.

- Let $\mathbf{Q}^{(0)}$ an arbitrarily chosen strictly positive transition matrix in A_1 . Then $\mathbf{t}^{(0)} \in A_2$ can be determined accordingly. This forms $(\mathbf{Q}^{(0)}, \mathbf{t}^{(0)})$.
- Compute $(\mathbf{Q}^{(k)}, \mathbf{t}^{(k)}), k \ge 1$ iteratively.
- It will be shown in Section 9.3 that $f^{(k)} = f(\mathbf{Q}^{(k)}, \mathbf{t}^{(k)}) \to f^* = R(D_s) sD_s$.

9.3 Convergence

- Consider the double supremum optimization problem in Section 9.1.
- We first prove in general that if f is concave, then $f^{(k)} \to f^*$.
- We then apply this sufficient condition to prove the convergence of the BA algorithm for computing C.
- The convergence of the BA algorithm for computing $R(D_s) sD_s$ can be proved likewise.

9.3.1 A Sufficient Condition

• In the alternating optimization algorithm, we have

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$

for $k \ge 0$.

• Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2).$$

• Then

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\mathbf{u}^{(k)})$$

= $f(c_1(\mathbf{u}^{(k)}_2), c_2(c_1(\mathbf{u}^{(k)}_2))) - f(\mathbf{u}^{(k)}_1, \mathbf{u}^{(k)}_2)$
= $\Delta f(\mathbf{u}^{(k)}).$

We first prove that if f is concave, then the algorithm cannot be trapped at **u** if $f(\mathbf{u}) < f^*$.

Lemma 9.4 Let f be concave. If $f^{(k)} < f^*$, then $f^{(k+1)} > f^{(k)}$.

Proof First, prove that if $\Delta f(\mathbf{u}) = 0$, then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$.

1. It suffices to prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we have

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$

proving the lemma.

2. Consider

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \stackrel{a)}{\geq} f(c_1(\mathbf{u}_2), \mathbf{u}_2) \stackrel{b)}{\geq} f(\mathbf{u}_1, \mathbf{u}_2).$$

If $\Delta f(\mathbf{u}) = 0$, then both a) and b) are tight.

3. Due to the uniqueness of $c_2(\cdot)$ and $c_1(\cdot)$,

b) is tight
$$\Rightarrow$$
 $\mathbf{u}_1 = c_1(\mathbf{u}_2)$
a) is tight \Rightarrow $\mathbf{u}_2 = c_2(c_1(\mathbf{u}_2)) = c_2(\mathbf{u}_1).$

4. This also implies that if $f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) = 0$, then $\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)}$.

Second, consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Prove by contradiction that $\Delta f(\mathbf{u}) > 0$.

- 1. Assume that $\Delta f(\mathbf{u}) = 0$. Then $\mathbf{u}_1 = c_1(\mathbf{u}_2)$ and $\mathbf{u}_2 = c_2(\mathbf{u}_1)$, i.e., \mathbf{u}_1 maximizes f for a fixed \mathbf{u}_2 , and \mathbf{u}_2 maximizes f for a fixed \mathbf{u}_1 .
- 2. Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that $f(\mathbf{u}) < f(\mathbf{v})$.
- 3. Let
 - $\tilde{\mathbf{z}}$ unit vector in the direction of $\mathbf{v}-\mathbf{u}$
 - \mathbf{z}_1 unit vector in the direction of $(\mathbf{v}_1 \mathbf{u}_1, 0)$
 - \mathbf{z}_2 unit vector in the direction of $(0, \mathbf{v}_2 \mathbf{u}_2)$.

4. Then $\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2$, where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|}, \quad i = 1, 2.$$

- 5. Since f is continuous and has continuous partial derivatives, the directional derivative of f at **u** in the direction of \mathbf{z}_1 is given by $\nabla f \cdot \mathbf{z}_1$.
- 6. f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed.
- 7. In particular, f attains its maximum value at \mathbf{u} along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$.
- 8. It follows from the concavity of f along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$ that $\nabla f \cdot \mathbf{z}_1 = 0$. Similarly, $\nabla f \cdot \mathbf{z}_2 = 0$.
- 9. Then $\nabla f \cdot \tilde{\mathbf{z}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0.$
- 10. Since f is concave along the line passing through **u** and **v**, this implies $f(\mathbf{u}) \ge f(\mathbf{v})$, a contradiction.
- 11. Hence, $\Delta f(\mathbf{u}) > 0$.

Although $\Delta f(\mathbf{u}) > 0$ as long as $f(\mathbf{u}) < f^*$, $f^{(k)}$ does not necessarily converge to f^* because the increment in $f^{(k)}$ in each step may be arbitrarily small.

Theorem 9.5 If f is concave, then $f^{(k)} \to f^*$.

Proof

- 1. $f^{(k)}$ necessarily converges, say to f', because $f^{(k)}$ is nondecreasing and bounded from above.
- 2. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{1}$$

3. Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),$$

where $A' = \{ \mathbf{u} \in A : f' - \epsilon \le f(\mathbf{u}) \le f' \}.$

4. Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} .

- 5. A' is compact because it is the inverse image of a closed interval under a continuous function and A is bounded. Therefore γ exists.
- 6. Since f is concave, by Lemma 9.4, $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$.
- 7. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (1), $\mathbf{u}^{(k)} \in A'$.
- 8. Thus for all sufficiently large k,

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma.$$

- 9. No matter how smaller γ is, $f^{(k)}$ will eventually be greater than f', which is a contradiction to $f^{(k)} \to f'$.
- 10. Hence, $f^{(k)} \to f^*$.

9.3 Convergence to the Channel Capacity

We only need to verify that

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$

is concave.

- 1. Consider $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A.
- 2. An application of the log-sum inequality gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)} \le \lambda r_1(x) \log \frac{r_1(x)}{q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{r_2(x)}{q_2(x|y)}.$$

3. Taking reciprocal in the logarithms yields

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)}{\lambda r_1(x) + \bar{\lambda} r_2(x)} \geq \lambda r_1(x) \log \frac{q_1(x|y)}{r_1(x)} + \bar{\lambda} r_2(x) \log \frac{q_2(x|y)}{r_2(x)}.$$

4. Upon multiplying by p(y|x) and summing over all x and y, we obtain $f(\lambda \mathbf{r}_1 + \bar{\lambda} \mathbf{r}_2, \lambda \mathbf{q}_1 + \bar{\lambda} \mathbf{q}_2) \ge \lambda f(\mathbf{r}_1, \mathbf{q}_1) + \bar{\lambda} f(\mathbf{r}_2, \mathbf{q}_2).$

5. Hence, $f^{(k)} \to C$.