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Single-Letter Characterization

e For a DMC p(y|x), the capacity

C = m(aicl(X;Y),

where r(z) is the input distribution, gives the maximum asymptotically
achievable rate for reliable communication as the blocklength n — oo.

e This characterization of ', in the form of an optimization problem, is
called a single-letter characterization because it involves only p(y|x) but
not n.

e Similarly, the rate-distortion function

R(D) = min I[(X; X)
Q(z|x):Ed(X,X)<D

for an i.i.d. information source { X} is a single-letter characterization.



Numerical Methods

When the alphabets are finite, C' and R(D) are given as solutions of finite-
dimensional optimization problems.

However, these quantities cannot be expressed in closed-forms except for
very special cases.

Even computing these quantities is not straightforward because the asso-
ciated optimization problems are nonlinear.

So we have to resort to numerical methods.

The BA algorithms are iterative algorithms devised for this purpose.



9.1 Alternating Optimization

Consider the double supremum

sup sup f(u,us).
u; €A ugs €A,

e A, is a convex subset of k"™ for 1 =1, 2.
o f: A X Ay, — R is bounded from above, such that

— f is continuous and has continuous partial derivatives on A1 x As;

— For all uy € A,, there exists a unique c¢1(uz) € A; such that

f(cl(U-?)a u2) — ur,rleaifl f(ullv 112),

and for all u; € Ay, there exists a unique co(uy) € As such that

f(uai,cz(uy)) = uf}lgjz f(ug,uy).



e et u = (u;,us) and A = A; X As. Then the double supremum can be
written as

sup f(u).

ucA

e In other words, the supremum of f is taken over a subset of "t "2 which
is equal to the Cartesian product of two convex subsets of R"* and R"2,
respectively.

e Let f* denote this supremum.



An Alternating Optimization
Algorithm for Computing f*

Let ulk) = (ugk), uék)) for £ > 0, defined as follows.

Let u§0) be an arbitrarily chosen vector in A;, and let uéo) = cz(ugo)).

For k > 1, u'® is defined by

) o (ulf )
and ) )
uy” = cp(u).
Let
f = fa®).
Then

f(k) > f(k—l)‘



Since the sequence f (k) ig non-decreasing, it must converge because f is
bounded from above.

We will show that f(¥) — f* if f is concave.

Replacing f by —f, the double supremum becomes the double infimum

inf inf U, Uo).
u1€A1u2€A2f( b 2)

The same alternating optimization algorithm can be applied to compute
this infimum.






9.2 The Algorithms

e The alternating optimization algorithm is specialized for computing C' and

R(D).



9.2.1 Channel Capacity

Lemma 9.1 Let r(x)p(y|z) be a given joint distribution on X x ) such that
r > 0, and let q be a transition matrix from ) to X. Then

max??r p(y|x) log S‘YT p(y|x) log r((a;\)y),

where the maximization is taken over all q such that
q(xly) =0 if and only if p(y|r) =0, (1)

and

o (@l
) = ) 2

i.e., the maximizing q is the one which corresponds to the input distribution r
and the transition matrix p(y|x).




Proof

1. In (2), let
w(y) =Y r()pylz’).

2. Assume w.l.o.g. that for all y € ), p(y|z) > 0 for some x € X.
3. Since r > 0, w(y) > 0 for all y, and hence ¢*(x|y) is well-defined.

4. Rearranging (2), we have

r(z)p(y|z) = w(y)q* (zly).



5. Consider

YY”I“ p(y|z) 10g ai|y YYT p(y|z) log (TB)

’I“

S‘S‘T p(y|z) log (xly)

q(x|y)
_ y‘y‘w 7 (z]y) 1o q* (z|y)
q(x|y)
— Zw Y Zq (x]y) log q*((;?ii/y))
= Zw g (zly)llq(z|y))
> o.

6. The proof is completed by noting in (2) that q* satisfies (1) because r > 0.



Theorem 9.2 For a discrete memoryless channel p(y|x),

—supmax??r p(y|z) log a(x]y)

r>0 ($) |

where the maximization is taken over all q that satisfies (1) in Lemma 9.1.

Proof

e Write I(X;Y) as I(r,p) where r is the input distribution and p denotes
the transition matrix of the generic channel p(y|z). Then

O =g lp)

e By Lemma 9.1, we need to prove that

C' =max I(r,p) =supI(r,p).
r>0 r>0

e Let r* achieves C.



If r* > 0, then

C max (r,p) max (r,p) Sup (r,p)

Next, consider r* > 0. Since I(r, p) is continuous in r, for any € > 0, there

exists 0 > 0 such that if
v —r*|| <,

then
Cj__](rﬂp)<:€7

In particular, there exists r > 0 such that ||r — r*|| < J.

Then

C' =maxI(r,p) >supl(r,p) > I(r,p) > C —e.
r>0 r>0

Let € — 0 to conclude that

C =supl(r,p).
r>0



Recall the double supremum in Section 9.1:

sup sup f(ug,uz).
u;€A; ux €A,

e A, is a convex subset of " for ¢ =1, 2.
o f: A x Ay — R is bounded from above, such that

— f is continuous and has continuous partial derivatives on A7 x As;

— For all uy € A,, there exists a unique c¢1(uz) € A; such that

f(cl(U-?)a u2) — ur,rleaj‘:l f(u/b 112),

and for all u; € Ay, there exists a unique co(uy) € As such that

flai,cz(uy)) = uf}leai f(ug,uy).



Cast the computation of C into this optimization problem:

o Lect

S‘S‘r p(y|z) log )

where uy < r and uy <+

o [et
A = {(r(x),zeX): r(x) >0and > _r(z) =1} C pl]
and

Ay = {(q(zly), (z,y) € X x V) : q(zly) > 0 iff p(y|z) > 0,
and > _q(x|y) =1forall y € Y}
N



Remarks

Both A; and A, are convex.
f is bounded from above.

In f(r,q), the double summation by convention is over all x such that
r(z) > 0 and all y such that p(y|z) > 0.

Since g(x|y) > 0 whenever p(y|z) > 0, all the probabilities involved in the
double summation are positive.

Therefore, f is continuous and has continuous partial derivatives on A =

Al X AQ.



e The double supremum now becomes

q(x|y)
sup sup S r(x)p(y|x) log = sup sup f(r,q),
rcA; q€A- S‘ (.CL’) rcA; qcAs

€T

where the supremum over all q € A5 is in fact a maximum, and

f*=sup sup f(r,q) =C.
I‘EAl QEAQ



Algorithm Details

By Lemma 9.1, for any given r € A;, there exists a unique q € A, that
maximizes f.

By Lagrange multiplies, it can be shown that for a given q € As, the input
distribution r that maximizes f is given by

I, a(zly)p)
> L1, a(a|y)ptle)”

where the product is over all y such that p(y|x) > 0, and g(z|y) > 0 for
all such y. This implies r > 0 and hence r € A;.

r(z)

Let r(®) an arbitrarily chosen strictly positive input distribution in Aj.
Then q(® € A, can be determined accordingly. This forms (r(®), q(©)).

Compute (r'®), q(¥)), k > 1 iteratively.

It will be shown in Section 9.3 that f*) = f(r(*) q¥)) — f* = C.



9.2.2 The Rate-Distortion Function

Assume R(0) > 0, so that R(D) is strictly decreasing for 0 < D < D4z

Since R(D) is convex, for any s < 0, there exists a point on the R(D)
curve for 0 < D < D,,4. such that the slope of a tangent to the R(D)
curve at that point is equal to s.

Denote such a point on the R(D) curve by (D, R(Ds)), which is not
necessarily unique.

Then this tangent intersects with the ordinate at R(D;) — sD;.



R(D)

R(Dy)-sDg

(Dg,R(Dyg))
R(Dy)

DS \ Dmax



Write I(X; X) and Fd(X, X) as I(p, Q) and D(p, Q), respectively, where
p is the distribution for X and Q is the transition matrix from X" to X
defining X.

For any Q, (D(p,Q), I(p,Q)) is a point in the rate-distortion region, and
the line with slope s passing through (D(p,Q),I(p,Q)) intersects the
ordinate at I(p, Q) — sD(p, Q).

Then
R(D;) — sDs = min[I(p. Q) — sD(p, Q). (1)

By varying over all s < 0, we can then trace out the whole R(D) curve.



Lemma 9.3 Let p(z)Q(Z|r) be a given joint distribution on X x X such that
Q > 0, and let t be any distribution on X such that t > 0. Then

%gS‘S‘p Q(z|x) log - YS‘p Q(z|x) log Cii;g), (2)

ZIZ‘

where

= p(2)Q(&lz

i.e., the minimizing t is the one which corresponds to the input distribution p
and the transition matrix Q.

Remarks:
e t* > 0 because Q > 0.

e The right-hand side of (2) is equal to I(p, Q).



e Since I(p,Q) and D(p, Q) are continuous in Q, the minimum over all Q
in (1) can be replaced by the infimum over all Q > 0.

e Note that
D(p,Q) =) S:p(m)Q(fﬁlx)d(mai?)-
e Then
R(Dy) — sDy

= min[l(p, Q) —sD(p, Q)]
gt iy S pecle 10 208 o, 3)
= Guf jpin ) p(2)Q(F|r) log =23 s> p(@)Q(d]x)d(z, £)
ot iy | S Q0o o 2717 e 3)
= Guf min | ) p(2)Q(F|z) log =73 SZP($)Q($|$) (2, 2)]




Recall the double infimum in Section 9.1:

inf inf . U ).
U1EA1u2€A2f( b 2)

e A, is a convex subset of R™ for ¢ =1, 2.
o f:A; Xx Ay — R is bounded from below, such that

— f is continuous and has continuous partial derivatives on A; x As;

— For all uy € As, there exists a unique c¢1(uz) € A; such that

f(cl(U-Q)a u2) — uI,neiﬂl f(u,h u2)7

and for all u; € Ay, there exists a unique co(uy) € As such that

flug, ep(wy)) = min f(uy, us).



Cast the computation of R(Ds) — sD; into this optimization problem:

o [et

= 3 S 0e)Qei) o QUlr) _ s S p@)Qil)d(, ).

where u; <+ Q and uy + t.

o Lect

A = {(Q(ﬂx), (z,8) € X x X) : Q(&|z) > 0, ZQ(i\x) =1 for all x € X}

c RlXNE

and



Remarks

Both A1 and A5 are convex.
f is bounded from below.

In f(Q,t), the double summation by convention is over all x such that
p(x) > 0 and all  such that Q(z|x) > 0.

Therefore, f is continuous and has continuous partial derivatives on A =

Al X AQ.

The double infimum now becomes

i, [ Storto e L 5 oot
= mf mf f(Q, t),

QcA; teAs

where the infimum over all t € A5 is in fact a minimum, and

fr= ngfh tlgnj2 f(Q,t) = R(Dy) — sDs.



Algorithm Details

By Lemma 9.3, for any given Q € Aq, there exists a unique t € A, that
minimizes f.

By Lagrange multipliers, it can be shown that for a given t € A, the
transition matrix Q that minimizers f is given by

tH7 sd(x,T)
(£)e >0

Q(ZC|£IZ) — Z@/ t(i’)eSd(ZE"%,) ’

and so Q € A;.

Let Q) an arbitrarily chosen strictly positive transition matrix in Aj.
Then t(©) € A, can be determined accordingly. This forms (Q(®), t(9).

Compute (Q¥),t(F)) k > 1 iteratively.

It will be shown in Section 9.3 that f(k) — f(Q(k), t(k)) — f*=R(D;s) —
sD..



9.3 Convergence

Consider the double supremum optimization problem in Section 9.1.
We first prove in general that if f is concave, then f¥) — f*,

We then apply this sufficient condition to prove the convergence of the
BA algorithm for computing C.

The convergence of the BA algorithm for computing R(D;) — sD, can be
proved likewise.



9.3.1 A Sufficient Condition

e In the alternating optimization algorithm, we have

uk+1) — (ugkﬂ), ugkﬂ)) _ (cl(ugk)), 02(61(11%’6))))

for £k > 0.
e Define
Af(u) = flei(uz), cz(er(uz))) — f(ur, ug).
e Then
PO ) 0Dy )y

= fler(uy?), ea(er(u”)) = f(uf uy?)
= Af(u¥).



We first prove that if f is concave, then the algorithm cannot be trapped at u
if f(u) < f*.

Lemma 9.4 Let f be concave. If f(¥) < f* then f(k+D > f(k)

Proof First, prove that if Af(u) =0, then u; = ¢1(us3) and us = co(uy).

1. It suffices to prove that Af(u) > 0 for any u € A such that f(u) < f*.
Then if f*) = f(u®)) < f*, we have

FERD — f = Af(u®) >0,

proving the lemma.

2. Consider

a) b)

fe1(uz), ca(c1(uz))) = fler(uz), uz) = f(ur, uz).
If Af(u) =0, then both a) and b) are tight.



3. Due to the uniqueness of cs(+) and ¢ (+),

b) is tight = u; = c¢1(us)
a) 1S tight = U9 = 02(61 (1].2)) — Cg(ul).

4. This also implies that if f*+1) — f(&) = A f(u®)) = 0, then u*tH) = uk),

Second, consider any u € A such that f(u) < f*. Prove by contradiction that
Af(ua) > 0.

1. Assume that Af(u) = 0. Then u; = ¢1(uz) and us = c3(uy), i.e., uy
maximizes f for a fixed usy, and uy maximizes f for a fixed u;.

2. Since f(u) < f*, there exists v € A such that f(u) < f(v).

3. Let

~

z unit vector in the direction of v —u
z, unit vector in the direction of (vi — uy,0)

Zo unit vector in the direction of (0, vy — us).



( 19 2)
u V ( ;
s19 2)

N2

(ul V) u2)
Z,
(Vl ° u2)



11.

. Then z = o121 + aszs, Where

v =y

a4 — 1,2

~v—uf”

. Since f is continuous and has continuous partial derivatives, the direc-

tional derivative of f at u in the direction of z; is given by \/f - z1.

. f attains its maximum value at u = (uy, uz) when u, is fixed.

. In particular, f attains its maximum value at u along the line passing

through (uy,us) and (v, us).

. It follows from the concavity of f along the line passing through (uy, us)

and (Vl, 112) that Vf 41 — 0. Similarly, Vf 2o — 0.

. Then /f -z = o1 (Vf - 21) +ax(Vf-2z2) =0.
10.

Since f is concave along the line passing through u and v, this implies
f(u) > f(v), a contradiction.

Hence, A f(u) > 0.



Although Af(u) > 0 as long as f(u) < f*, f%*) does not necessarily converge
to f* because the increment in f(¥) in each step may be arbitrarily small.

Theorem 9.5 If f is concave, then f(*) — f*.
Proof

1. f(*) necessarily converges, say to f’, because f*) is nondecreasing and
bounded from above.

2. Hence, for any ¢ > 0 and all sufficiently large £,

fr—e< f™ <y (1)
3. Let
v = min Af(u),

where A’ ={ue A: f'—e< f(u) < f'}.

4. Since f has continuous partial derivatives, A f(u) is a continuous function
of u.



10.

. A’ is compact because it is the inverse image of a closed interval under a

continuous function and A is bounded. Therefore v exists.

. Since f is concave, by Lemma 9.4, Af(u) > 0 for all u € A’ and hence

v > 0.

. Since f*) = f(u®)) satisfies (1), ul®) € A’.

. Thus for all sufficiently large £,

fEHD — B = Af®) > .

. No matter how smaller v is, f¥) will eventually be greater than f’, which

is a contradiction to f(¥) — f/.

Hence, f(¥) — f*.



9.3 Convergence to the Channel
Capacity

We only need to verity that

YYT p(y|z) log (zg)

1S concave.

1. Consider (r1,q;) and (re,qs2) in A.

2. An application of the log-sum inequality gives

N Arq(x Aro (x T x
(A1 (@) +Ara(2)) log s i S2 i < A (@) log gy +Ara (2) log 7235

3. Taking reciprocal in the logarithms yields

N T A x T
(Ar1 ()4 Ars () log 2LEWELa ) > \p) (2) log LE 4 Xy (2) log L2121




4. Upon multiplying by p(y|r) and summing over all  and y, we obtain
fOry + Ara, Aq1 + Ag2) > Af(r1,q1) + Af(r2,qz).

5. Hence, f(®) — C.



