Chapter 8 Rate-Distortion Theory

© Raymond W. Yeung 2012

Department of Information Engineering The Chinese University of Hong Kong

Information Transmission with Distortion

- Consider compressing an information source with entropy rate H at rate R < H.
- By the source coding theorem, $P_e \to 1$ as $n \to \infty$.
- Under such a situation, information must be transmitted with "distortion".
- What is the best possible tradeoff?

8.1 Single-Letter Distortion Measure

- Let $\{X_k, k \ge 1\}$ be an i.i.d. information source with generic random variable $X \sim p(x)$, where $|\mathcal{X}| < \infty$.
- Consider a source sequence $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ and a reproduction sequence $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_n)$.
- The components of $\hat{\mathbf{x}}$ take values in a reproduction alphabet $\hat{\mathcal{X}}$, where $|\hat{\mathcal{X}}| < \infty$.
- In general, $\hat{\mathcal{X}}$ may be different from \mathcal{X} .
- For example, $\hat{\mathbf{x}}$ can be a quantized version of \mathbf{x} .

Definition 8.1 A single-letter distortion measure is a mapping

$$d: \mathcal{X} \times \hat{\mathcal{X}} \to \Re^+.$$

The value $d(x, \hat{x})$ denotes the distortion incurred when a source symbol x is reproduced as \hat{x} .

Definition 8.2 The average distortion between a source sequence $\mathbf{x} \in \mathcal{X}^n$ and a reproduction sequence $\hat{\mathbf{x}} \in \hat{\mathcal{X}}^n$ induced by a single-letter distortion measure d is defined by

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k).$$

Examples of a Distortion Measure

- Let $\hat{\mathcal{X}} = \mathcal{X}$.
 - 1. Square-error: $d(x, \hat{x}) = (x \hat{x})^2$, where \mathcal{X} and $\hat{\mathcal{X}}$ are real.
 - 2. Hamming distortion:

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{if } x \neq \hat{x} \end{cases}$$

where the symbols in \mathcal{X} do not carry any particular meaning.

- Let \hat{X} be an estimate of X.
 - 1. If d is the square-error distortion measure, $Ed(X, \hat{X})$ is called the mean square error.
 - 2. If d is the Hamming distortion measure,

$$Ed(X, \hat{X}) = \Pr\{X = \hat{X}\} \cdot 0 + \Pr\{X \neq \hat{X}\} \cdot 1 = \Pr\{X \neq \hat{X}\}$$

is the probability of error. For a source sequence \mathbf{x} and a reproduction sequence $\hat{\mathbf{x}}$, the average distortion $d(\mathbf{x}, \hat{\mathbf{x}})$ gives the frequency of error in $\hat{\mathbf{x}}$.

Definition 8.5 For a distortion measure d, for each $x \in \mathcal{X}$, let $\hat{x}^*(x) \in \hat{\mathcal{X}}$ minimize $d(x, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$. A distortion measure d is said to be normal if

$$c_x \stackrel{\text{def}}{=} d(x, \hat{x}^*(x)) = 0$$

for all $x \in \mathcal{X}$.

- A normal distortion measure is one which allows a source X to be reproduced with zero distortion.
- The square-error distortion measure and the Hamming distortion measure are normal distortion measures.
- The normalization of a distortion measure d is the distortion measure \tilde{d} defined by

$$\tilde{d}(x,\hat{x}) = d(x,\hat{x}) - c_x$$

for all $(x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}$.

• It suffices to consider normal distortion measures as we will see.

Example 8.6 Let d be a distortion measure defined by

$d(x, \hat{x})$	a	b	С
1	2	7	5
2	4	3	8

Then \tilde{d} , the normalization of d, is given by

$\tilde{d}(x,\hat{x})$	a	b	С
1	0	5	3
2	1	0	5

Let \hat{X} be any estimate of X which takes values in $\hat{\mathcal{X}}$. Then

$$\begin{aligned} Ed(X,\hat{X}) &= \sum_{x} \sum_{\hat{x}} p(x,\hat{x}) d(x,\hat{x}) \\ &= \sum_{x} \sum_{\hat{x}} p(x,\hat{x}) \left[\tilde{d}(x,\hat{x}) + c_{x} \right] \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) c_{x} \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) c_{x} \left(\sum_{\hat{x}} p(\hat{x}|x) \right) \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) c_{x} \\ &= E\tilde{d}(X,\hat{X}) + \sum_{x} p(x) c_{x} \\ &= E\tilde{d}(X,\hat{X}) + \Delta, \end{aligned}$$

where

$$\Delta = \sum_{x} p(x)c_x$$

is a constant which depends only on p(x) and d but not on the conditional distribution $p(\hat{x}|x)$.

Definition 8.7 Let \hat{x}^* minimizes $Ed(X, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$, and define

$$D_{max} = Ed(X, \hat{x}^*).$$

Note: \hat{x}^* is not the same as $\hat{x}^*(x)$.

- If we know nothing about a source variable X, then \hat{x}^* is the best estimate of X, and D_{max} is the minimum expected distortion between X and a constant estimate of X.
- Specifically, D_{max} can be asymptotically achieved by taking $(\hat{x}^*, \hat{x}^*, \dots, \hat{x}^*)$ to be the reproduction sequence.
- Therefore it is not meanful to impose a constraint $D \ge D_{max}$ on the reproduction sequence.

8.2 The Rate-Distortion Function

All the discussions are with respect to an i.i.d. information source $\{X_k, k \ge 1\}$ with generic random variable X and a distortion measure d.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$f: \mathcal{X}^n \to \{1, 2, \cdots, M\}$$

and a decoding function

$$g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.$$

The set $\{1, 2, \dots, M\}$, denoted by \mathcal{I} , is called the index set. The reproduction sequences $g(1), g(2), \dots, g(M)$ in \hat{X}^n are called codewords, and the set of codewords is called the codebook.

A Rate-Distortion Code

Definition 8.9 The rate of an (n, M) rate-distortion code is $n^{-1} \log M$ in bits per symbol.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) rate-distortion code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

Remark If (R, D) is achievable, then (R', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' \ge R$ and $D' \ge D$.

Definition 8.11 The rate-distortion region is the subset of \Re^2 containing all achievable pairs (R, D).

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- The closeness follows from the definition of the achievability of an (R, D) pair.
- The convexity is proved by time-sharing. Specifically, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is $(R^{(\lambda)}, D^{(\lambda)})$, where

$$R^{(\lambda)} = \lambda R^{(1)} + \bar{\lambda} R^{(2)}$$
$$D^{(\lambda)} = \lambda D^{(1)} + \bar{\lambda} D^{(2)}$$

and $\bar{\lambda} = 1 - \lambda$. This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for λ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\bar{\lambda}$ fraction of the time.

Definition 8.13 The rate-distortion function R(D) is the minimum of all rates R for a given distortion D such that (R, D) is achievable.

Definition 8.14 The distortion-rate function D(R) is the minimum of all distortions D for a given rate R such that (R, D) is achievable.

Theorem 8.15 The following properties hold for the rate-distortion function R(D):

- 1. R(D) is non-increasing in D.
- 2. R(D) is convex.
- 3. R(D) = 0 for $D \ge D_{max}$.
- 4. $R(0) \le H(X)$.

Proof

- 1. Let $D' \ge D$. (R(D), D) achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(\cdot)$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D) = 0$ for $D \ge D_{max}$.
- 4. Since d is assumed to be normal, (H(X), 0) is achievable, and hence $R(0) \leq H(X)$.

8.3 The Rate Distortion Theorem

Definition 8.16 For $D \ge 0$, the information rate-distortion function is defined by

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

• The minimization is taken over the set of all $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \leq D$ is satisfied, namely the set

$$\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x)p(\hat{x}|x)d(x,\hat{x}) \le D \right\}.$$

• Since this set is compact in $\Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$ and $I(X;\hat{X})$ is a continuous functional of $p(\hat{x}|x)$, the minimum value of $I(X;\hat{X})$ can be attained.

• Since

$$E\tilde{d}(X,\hat{X}) = Ed(X,\hat{X}) - \Delta,$$

where Δ does not depend on $p(\hat{x}|x)$, we can always replace d by \tilde{d} and D by $D - \Delta$ in the definition of $R_I(D)$ without changing the minimization problem.

• Without loss of generality, we can assume d is normal.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

Theorem 8.18 The following properties hold for the information rate-distortion function $R_I(D)$:

- 1. $R_I(D)$ is non-increasing in D.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \le H(X)$.

Proof of Theorem 8.18

1. For a larger D, the minimization is taken over a larger set.

- 3. Let $\hat{X} = \hat{x}^*$ w.p. 1 to show that $(0, D_{max})$ is achievable. Then for $D \ge D_{max}$, $R_I(D) \le I(X; \hat{X}) = 0$, which implies $R_I(D) = 0$.
- 4. Let $\hat{X} = \hat{x}^*(X)$, so that $Ed(X, \hat{X}) = 0$ (since d is normal). Then

 $R_I(0) \le I(X; \hat{X}) \le H(X).$

Proof of Theorem 8.18

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda 1$. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for i = 1, 2, i.e., $R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$

where

$$Ed(X, \hat{X}^{(i)}) \le D^{(i)},$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with X defined by

$$p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda} p_2(\hat{x}|x).$$

Then

$$Ed(X, \hat{X}^{(\lambda)})$$

$$= \lambda Ed(X, \hat{X}^{(1)}) + \overline{\lambda} Ed(X, \hat{X}^{(2)})$$

$$\leq \lambda D^{(1)} + \overline{\lambda} D^{(2)}$$

$$= D^{(\lambda)}.$$

Finally consider

$$\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)}) = \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})$$

$$\geq I(X; \hat{X}^{(\lambda)})$$

$$\geq R_I(D^{(\lambda)}).$$

Corollary 8.19 If $R_I(0) > 0$, then $R_I(D)$ is strictly decreasing for $0 \le D \le D_{max}$, and the inequality constraint in the definition of $R_I(D)$ can be replaced by an equality constraint.

Proof

- 1. $R_I(D)$ must be strictly decreasing for $0 \le D \le D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.
- 2. Show that $R_I(D) > 0$ for $0 \le D < D_{max}$ by contradiction.
 - Suppose $R_I(D') = 0$ for some $0 \le D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$R_I(D') = I(X; \hat{X}) = 0$$

implies that X and \hat{X} are independent.

- Show that such an \hat{X} which is independent of X cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \ge Ed(X, \hat{x}^*) = D_{max}$.
- This leads to a contradiction because

$$D' \ge Ed(X, \hat{X}) \ge D_{max}.$$

\mathbf{Proof}

- 3. Show that the inequality constraints in $R_I(D)$ can be replaced by an equality constraint by contradiction.
 - Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) = D'' < D$.
 - Then

$$R_I(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X}) \le I(X; \hat{X}^*) = R_I(D),$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \leq D \leq D_{max}$.

• Therefore, $Ed(X, \hat{X}^*) = D$.

Remark In all problems of interest, $R(0) = R_I(0) > 0$. Otherwise, R(D) = 0 for all $D \ge 0$ because R(D) is nonnegative and non-increasing.

Example 8.20 (Binary Source)

Let X be a binary random variable with

$$\Pr\{X=0\} = 1 - \gamma \quad \text{and} \quad \Pr\{X=1\} = \gamma.$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and d be the Hamming distortion measure. Show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma). \end{cases}$$

First consider $0 \le \gamma \le \frac{1}{2}$, and show that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \gamma \\ 0 & \text{if } D \ge \gamma. \end{cases}$$

• $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = \Pr\{X = 1\} = \gamma.$

- Consider any \hat{X} and let $Y = d(X, \hat{X})$.
- Conditioning on \hat{X} , X and Y determine each other, and so, $H(X|\hat{X}) = H(Y|\hat{X})$.
- Then for $D < \gamma = D_{max}$ and any \hat{X} such that $Ed(X, \hat{X}) \leq D$,

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= h_b(\gamma) - H(Y|\hat{X})$$

$$\geq h_b(\gamma) - H(Y)$$

$$= h_b(\gamma) - h_b(\Pr\{X \neq \hat{X}\})$$

$$\stackrel{a)}{\geq} h_b(\gamma) - h_b(D), \qquad (2)$$

a) because $\Pr\{X \neq \hat{X}\} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \leq a \leq \frac{1}{2}$.

• Therefore,

$$R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \leq D} I(X; \hat{X}) \geq h_b(\gamma) - h_b(D).$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

- (1) tight $\Leftrightarrow Y$ independent of \hat{X}
- (2) tight $\Leftrightarrow \Pr\{X \neq \hat{X}\} = D$
- The required \hat{X} can be specified by the following reverse BSC:

• Therefore, we conclude that

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \gamma \\ 0 & \text{if } D \ge \gamma. \end{cases}$$

For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$. Combining the two cases, we have

$$R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma). \end{cases}$$

for $0 \leq \gamma \leq 1$.

A Remark

The rate-distortion theorem does not include the source coding theorem as a special case:

- In Example 8.20, $R_I(0) = h_b(\gamma) = H(X)$.
- By the rate-distortion theorem, if R > H(X), the average Hamming distortion, i.e., the error probability per symbol, can be made arbitrarily small.
- However, by the source coding theorem, if R > H(X), the message error probability can be made arbitrarily small, which is much stronger.

8.4 The Converse

- Prove that for any achievable rate-distortion pair $(R, D), R \ge R_I(D)$.
- Fix D and minimize R over all achievable pairs (R, D) to conclude that $R(D) \ge R_I(D)$.

Proof

1. Let (R, D) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M \le R + \epsilon$$

and

$$\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X}))$.

2. Then

$$n(R+\epsilon) \stackrel{a)}{\geq} \log M$$

$$\geq \cdots$$

$$\geq \sum_{k=1}^{n} I(X_{k}; \hat{X}_{k})$$

$$\stackrel{c)}{\geq} \sum_{k=1}^{n} R_{I}(Ed(X_{k}, \hat{X}_{k}))$$

$$= n \left[\frac{1}{n} \sum_{k=1}^{n} R_{I}(Ed(X_{k}, \hat{X}_{k})) \right]$$

$$\stackrel{d)}{\geq} n R_{I} \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_{k}, \hat{X}_{k}) \right)$$

$$= n R_{I}(Ed(\mathbf{X}, \hat{\mathbf{X}})).$$

- c) follows from from the definition of $R_I(D)$.
- d) follows from the convexity of $R_I(D)$ and Jensen's inequality.

3. Let $d_{max} = \max_{x,\hat{x}} d(x,\hat{x})$. Then

$$Ed(\mathbf{X}, \hat{\mathbf{X}})$$

$$= E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$$

$$+ E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}$$

$$\leq d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1$$

$$= D + (d_{max} + 1)\epsilon.$$

That is, if the probability that the average distortion between \mathbf{X} and $\hat{\mathbf{X}}$ exceeds $D + \epsilon$ is small, then the expected average distortion between \mathbf{X} and $\hat{\mathbf{X}}$ can exceed D only by a small amount.

4. Therefore,

$$R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))$$

$$\geq R_I(D + (d_{max} + 1)\epsilon),$$

because $R_I(D)$ is non-increasing in D.

5. $R_I(D)$ convex implies it is continuous in D. Finally,

$$R \geq \lim_{\epsilon \to 0} R_I (D + (d_{max} + 1)\epsilon)$$

= $R_I \left(D + (d_{max} + 1) \lim_{\epsilon \to 0} \epsilon \right)$
= $R_I (D).$

Minimizing R over all achievable pairs (R, D) for a fixed D to obtain $R(D) \ge R_I(D)$.

8.5 Achievability of $R_I(D)$

- An i.i.d. source $\{X_k : k \ge 1\}$ with generic random variable $X \sim p(x)$ is given.
- For every random variable \hat{X} taking values in \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$, prove that the rate-distortion pair $(I(X; \hat{X}), D)$ is achievable by showing for large n the existence of a rate-distortion code such that
 - 1. the rate of the code is not more than $I(X; \hat{X}) + \epsilon$;
 - 2. $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon$ with probability almost 1.
- Minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), D)$ is achievable.
- This implies that $R_I(D) \ge R(D)$.

Random Coding Scheme

- Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.
- Let M be an integer satisfying

$$I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,$$

where n is sufficiently large.

- The random coding scheme:
 - 1. Construct a codebook \mathcal{C} of an (n, M) code by randomly generating M codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \dots, \hat{\mathbf{X}}(M)$.
 - 2. Reveal the codebook ${\mathcal C}$ to both the encoder and the decoder.
 - 3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence **X** into an index K in the set $\mathcal{I} = \{1, 2, \dots, M\}$. The index K takes the value *i* if

(a)
$$(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta},$$

(b) for all
$$i' \in \mathcal{I}$$
, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T^n_{[X\hat{X}]\delta}$, then $i' \leq i$;

i.e., if there exists more than one i satisfying (a), let K be the largest one. Otherwise, K takes the constant value 1.

- 5. The index K is delivered to the decoder.
- 6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Performance Analysis

- The event $\{K = 1\}$ occurs in one of the following two scenarios:
 - 1. $\hat{X}(1)$ is the only codeword in \mathcal{C} which is jointly typical with **X**.
 - 2. No codeword in C is jointly typical with **X**.

In other words, if K = 1, then **X** is jointly typical with none of the codewords $\hat{X}(2), \hat{X}(3), \dots, \hat{X}(M)$.

• Define the event

$$E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}$$

• Then

$$\{K=1\} \subset E_2^c \cap E_3^c \cap \dots \cap E_M^c.$$

• Since the codewords are generated i.i.d., conditioning on $\{\mathbf{X} = \mathbf{x}\}$ for any $\mathbf{x} \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

• Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X} = \mathbf{x}\}$$
$$= \prod_{i=2}^M \Pr\{E_i^c | \mathbf{X} = \mathbf{x}\}$$
$$= (\Pr\{E_1^c | \mathbf{X} = \mathbf{x}\})^{M-1}$$
$$= (1 - \Pr\{E_1 | \mathbf{X} = \mathbf{x}\})^{M-1}.$$

• We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$S_{[X]\delta}^{n} = \{ \mathbf{x} \in T_{[X]\delta}^{n} : |T_{[\hat{X}|X]\delta}^{n}(\mathbf{x})| \ge 1 \},\$$

because $\Pr{\{\mathbf{X} \in S_{[X]\delta}^n\}} \approx 1$ for large *n* (Proposition 6.13).

• For $\mathbf{x} \in S_{[X]\delta}^n$, obtain a lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$ as follows:

$$\Pr\{E_1 | \mathbf{X} = \mathbf{x}\} = \Pr\left\{ (\mathbf{x}, \hat{\mathbf{X}}(1)) \in T_{[X\hat{X}]\delta}^n \right\}$$
$$= \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^n} p(\hat{\mathbf{x}})$$
$$\stackrel{a)}{\geq} \sum_{\hat{\mathbf{x}} \in T_{[\hat{X}|X]\delta}^n} 2^{-n(H(\hat{X})+\eta)}$$
$$\stackrel{b)}{\geq} 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}$$
$$= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}$$
$$= 2^{-n(I(X;\hat{X})+\zeta)},$$

where $\zeta = \xi + \eta \to 0$ as $\delta \to 0$. In the above,

a) follows because from the consistency of strong typicality, if $(\mathbf{x}, \hat{\mathbf{x}}) \in T^n_{[X\hat{X}]\delta}$, then $\hat{\mathbf{x}} \in T^n_{[\hat{X}]\delta}$.

b) follows from conditional strong AEP.

• Therefore,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X}=\mathbf{x}\}$$
$$\leq \left[1-2^{-n(I(X;\hat{X})+\zeta)}\right]^{M-1}$$

• Then

$$\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \leq (M - 1) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

$$\stackrel{a)}{\leq} \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1\right) \ln \left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

$$\stackrel{b)}{\leq} - \left(2^{n(I(X;\hat{X}) + \frac{\epsilon}{2})} - 1\right) 2^{-n(I(X;\hat{X}) + \zeta)}$$

$$= -\left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X;\hat{X}) + \zeta)}\right]$$

- a) follows because the logarithm is negative.
- b) follows from the fundamental inequality.

• Let δ be sufficiently small so that

$$\frac{\epsilon}{2} - \zeta > 0. \tag{1}$$

Then the upper bound on $\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\}$ tends to $-\infty$ as $n \to \infty$, i.e., $\Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \to 0$ as $n \to \infty$.

• This implies for sufficiently large n,

$$\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \le \frac{\epsilon}{2}.$$

• It follows that

$$\begin{aligned} \Pr\{K=1\} &= \sum_{\mathbf{x}\in S_{[X]\delta}^n} \Pr\{K=1|\mathbf{X}=\mathbf{x}\}\Pr\{\mathbf{X}=\mathbf{x}\} \\ &+ \sum_{\mathbf{x}\not\in S_{[X]\delta}^n} \Pr\{K=1|\mathbf{X}=\mathbf{x}\}\Pr\{\mathbf{X}=\mathbf{x}\} \\ &\leq \sum_{\mathbf{x}\in S_{[X]\delta}^n} \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X}=\mathbf{x}\} + \sum_{\mathbf{x}\not\in S_{[X]\delta}^n} 1 \cdot \Pr\{\mathbf{X}=\mathbf{x}\} \\ &= \frac{\epsilon}{2} \cdot \Pr\{\mathbf{X}\in S_{[X]\delta}^n\} + \Pr\{\mathbf{X}\not\in S_{[X]\delta}^n\} \\ &\leq \frac{\epsilon}{2} \cdot 1 + (1 - \Pr\{\mathbf{X}\in S_{[X]\delta}^n\}) \\ &< \frac{\epsilon}{2} + \delta, \end{aligned}$$

where we have invoked Proposition 6.13 in the last step.

• By letting δ be sufficiently small so that both (1) and $\delta < \frac{\epsilon}{2}$ are satisfied, we obtain

$$\Pr\{K=1\} < \epsilon.$$

Main Idea

- Randomly generate M codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where n is large.
- $\mathbf{X} \in S^n_{[X]\delta}$ with high probability.
- For $\mathbf{x} \in S_{[X]\delta}^n$, by conditional strong AEP,

$$\Pr\left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \,|\, \mathbf{X} = \mathbf{x} \right\} \approx 2^{-nI(X;\hat{X})}.$$

- If M grows with n at a rate higher than $I(X; \hat{X})$, then the probability that there exists at least one $\hat{\mathbf{X}}(i)$ which is jointly typical with the source sequence \mathbf{X} with respect to $p(x, \hat{x})$ is high.
- Such an $\hat{\mathbf{X}}(i)$, if exists, would have $d(\mathbf{X}, \hat{\mathbf{X}}) \approx Ed(X, \hat{X}) \leq D$, because the joint relative frequency of $(\mathbf{x}, \hat{\mathbf{X}}(i)) \approx p(x, \hat{x})$.
- Use this $\hat{\mathbf{X}}(i)$ to represent \mathbf{X} to satisfy the distortion constraint.

The Remaining Details

• For sufficiently large n, consider

$$\begin{aligned} \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} &= \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} \\ &+ \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \\ &\leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1 \\ &= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}. \end{aligned}$$

- Conditioning on $\{K \neq 1\}$, we have $(\mathbf{X}, \hat{\mathbf{X}}) \in T^n_{[X\hat{X}]\delta}$.
- It can be shown that (see textbook)

$$d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max}\delta.$$

By taking $\delta \leq \frac{\epsilon}{d_{max}}$, we obtain $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon$.

• Therefore, $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} = 0$, which implies $\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon$.

The number of codewords must be at least

$$\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx 2^{nI(X;\hat{X})}$$