Chapter 8 Rate-Distortion Theory

© Raymond W. Yeung 2012

Department of Information Engineering The Chinese University of Hong Kong

Information Transmission with Distortion

- *•* Consider compressing an information source with entropy rate *H* at rate $R < H$.
- By the source coding theorem, $P_e \rightarrow 1$ as $n \rightarrow \infty$.
- *•* Under such a situation, information must be transmitted with "distortion".
- What is the best possible tradeoff?

8.1 Single-Letter Distortion Measure

- Let $\{X_k, k \geq 1\}$ be an i.i.d. information source with generic random variable $X \sim p(x)$, where $|\mathcal{X}| < \infty$.
- Consider a source sequence $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ and a reproduction sequence $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_n)$.
- The components of $\hat{\mathbf{x}}$ take values in a reproduction alphabet $\hat{\mathcal{X}}$, where $|\mathcal{X}| < \infty$.
- In general, $\hat{\mathcal{X}}$ may be different from \mathcal{X} .
- For example, $\hat{\mathbf{x}}$ can be a quantized version of **x**.

Definition 8.1 A single-letter distortion measure is a mapping

$$
d: \mathcal{X} \times \hat{\mathcal{X}} \to \Re^+.
$$

The value $d(x, \hat{x})$ denotes the distortion incurred when a source symbol x is reproduced as \hat{x} .

Definition 8.2 The average distortion between a source sequence $\mathbf{x} \in \mathcal{X}^n$ and a reproduction sequence $\hat{\mathbf{x}} \in \hat{\mathcal{X}}^n$ induced by a single-letter distortion measure *d* is defined by

$$
d(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} \sum_{k=1}^{n} d(x_k, \hat{x}_k).
$$

Examples of a Distortion Measure

- Let $\hat{\mathcal{X}} = \mathcal{X}$.
	- 1. Square-error: $d(x, \hat{x}) = (x \hat{x})^2$, where *X* and $\hat{\mathcal{X}}$ are real.
	- 2. Hamming distortion:

$$
d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{if } x \neq \hat{x} \end{cases}
$$

where the symbols in $\mathcal X$ do not carry any particular meaning.

- *•* Let *^X*^ˆ be an estimate of *^X*.
	- 1. If *d* is the square-error distortion measure, $Ed(X, \hat{X})$ is called the mean square error.
	- 2. If *d* is the Hamming distortion measure,

$$
Ed(X, \hat{X}) = Pr\{X = \hat{X}\}\cdot 0 + Pr\{X \neq \hat{X}\}\cdot 1 = Pr\{X \neq \hat{X}\}\
$$

is the probability of error. For a source sequence x and a reproduction sequence $\hat{\mathbf{x}}$, the average distortion $d(\mathbf{x}, \hat{\mathbf{x}})$ gives the frequency of error in $\hat{\mathbf{x}}$.

Definition 8.5 For a distortion measure *d*, for each $x \in \mathcal{X}$, let $\hat{x}^*(x) \in \hat{\mathcal{X}}$ minimize $d(x, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$. A distortion measure *d* is said to be normal if

$$
c_x \stackrel{\text{def}}{=} d(x, \hat{x}^*(x)) = 0
$$

for all $x \in \mathcal{X}$.

- *•* A normal distortion measure is one which allows a source *X* to be reproduced with zero distortion.
- The square-error distortion measure and the Hamming distortion measure are normal distortion measures.
- The normalization of a distortion measure d is the distortion measure \tilde{d} defined by

$$
\tilde{d}(x,\hat{x}) = d(x,\hat{x}) - c_x
$$

for all $(x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}$.

• It suffices to consider normal distortion measures as we will see.

Example 8.6 Let *d* be a distortion measure defined by

Then \tilde{d} , the normalization of d , is given by

Let \hat{X} be any estimate of X which takes values in $\hat{\mathcal{X}}$. Then

$$
Ed(X, \hat{X}) = \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) d(x, \hat{x})
$$

\n
$$
= \sum_{x} \sum_{\hat{x}} p(x, \hat{x}) \left[\tilde{d}(x, \hat{x}) + c_x \right]
$$

\n
$$
= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) \sum_{\hat{x}} p(\hat{x}|x) c_x
$$

\n
$$
= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) c_x \left(\sum_{\hat{x}} p(\hat{x}|x) \right)
$$

\n
$$
= E\tilde{d}(X, \hat{X}) + \sum_{x} p(x) c_x
$$

\n
$$
= E\tilde{d}(X, \hat{X}) + \Delta,
$$

where

$$
\Delta = \sum_{x} p(x)c_x
$$

is a constant which depends only on $p(x)$ and *d* but not on the conditional distribution $p(\hat{x}|x)$.

Definition 8.7 Let \hat{x}^* minimizes $Ed(X, \hat{x})$ over all $\hat{x} \in \hat{\mathcal{X}}$, and define

$$
D_{max} = Ed(X, \hat{x}^*).
$$

Note: \hat{x}^* is not the same as $\hat{x}^*(x)$.

- If we know nothing about a source variable X , then \hat{x}^* is the best estimate of *X*, and D_{max} is the minimum expected distortion between *X* and a constant estimate of *X*.
- Specifically, D_{max} can be asymptotically achieved by taking $(\hat{x}^*, \hat{x}^*, \dots, \hat{x}^*)$ to be the reproduction sequence.
- Therefore it is not meanful to impose a constraint $D \geq D_{max}$ on the reproduction sequence.

8.2 The Rate-Distortion Function

All the discussions are with respect to an i.i.d. information source $\{X_k, k \geq 1\}$ with generic random variable *X* and a distortion measure *d*.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding function

$$
f: \mathcal{X}^n \to \{1, 2, \cdots, M\}
$$

and a decoding function

$$
g: \{1, 2, \cdots, M\} \to \hat{\mathcal{X}}^n.
$$

The set $\{1, 2, \dots, M\}$, denoted by *I*, is called the index set. The reproduction sequences $g(1), g(2), \cdots, g(M)$ in \hat{X}^n are called codewords, and the set of codewords is called the codebook.

A Rate-Distortion Code

Definition 8.9 The rate of an (n, M) rate-distortion code is $n^{-1} \log M$ in bits per symbol.

Definition 8.10 A rate-distortion pair (*R, D*) is (asymptotically) achievable if for any $\epsilon > 0$, there exists for sufficiently large *n* an (n, M) rate-distortion code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

Remark If (R, D) is achievable, then (R', D) and (R, D') are achievable for all $R' \ge R$ and $D' \ge D$. This in turn implies that (R', D') are achievable for all $R' \geq R$ and $D' \geq D$.

Definition 8.11 The rate-distortion region is the subset of \mathbb{R}^2 containing all achievable pairs (*R, D*).

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

- *•* The closeness follows from the definition of the achievability of an (*R, D*) pair.
- The convexity is proved by time-sharing. Specifically, if $(R^{(1)}, D^{(1)})$ and $(R^{(2)}, D^{(2)})$ are achievable, then so is $(R^{(\lambda)}, D^{(\lambda)})$, where

$$
R^{(\lambda)} = \lambda R^{(1)} + \overline{\lambda} R^{(2)}
$$

$$
D^{(\lambda)} = \lambda D^{(1)} + \overline{\lambda} D^{(2)}
$$

and $\bar{\lambda} = 1 - \lambda$. This can be seen by time-sharing between two codes, one achieving $(R^{(1)}, D^{(1)})$ for λ fraction of the time, and the other one achieving $(R^{(2)}, D^{(2)})$ for $\overline{\lambda}$ fraction of the time.

Definition 8.13 The rate-distortion function $R(D)$ is the minimum of all rates *R* for a given distortion *D* such that (*R, D*) is achievable.

Definition 8.14 The distortion-rate function *D*(*R*) is the minimum of all distortions *D* for a given rate *R* such that (*R, D*) is achievable.

Theorem 8.15 The following properties hold for the rate-distortion function *R*(*D*):

- 1. *R*(*D*) is non-increasing in *D*.
- 2. $R(D)$ is convex.
- 3. $R(D) = 0$ for $D \ge D_{max}$.
- 4. $R(0) \leq H(X)$.

Proof

- 1. Let $D' \geq D$. $(R(D), D)$ achievable $\Rightarrow (R(D), D')$ achievable. Then $R(D) \ge R(D')$ by definition of $R(\cdot)$.
- 2. Follows from the convexity of the rate-distortion region.
- 3. $(0, D_{max})$ is achievable $\Rightarrow R(D) = 0$ for $D \geq D_{max}$.
- 4. Since *d* is assumed to be normal, $(H(X), 0)$ is achievable, and hence $R(0) \le$ *H*(*X*).

8.3 The Rate Distortion Theorem

Definition 8.16 For $D \geq 0$, the information rate-distortion function is defined by

$$
R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}).
$$

• The minimization is taken over the set of all $p(\hat{x}|x)$ such that $Ed(X, \hat{X}) \le$ *D* is satisfied, namely the set

$$
\left\{ p(\hat{x}|x) : \sum_{x,\hat{x}} p(x)p(\hat{x}|x)d(x,\hat{x}) \le D \right\}.
$$

• Since this set is compact in $\mathbb{R}^{|\mathcal{X}||\hat{\mathcal{X}}|}$ and $I(X; \hat{X})$ is a continuous functional of $p(\hat{x}|x)$, the minimum value of $I(X;\hat{X})$ can be attained.

• Since

$$
E\tilde{d}(X,\hat{X}) = Ed(X,\hat{X}) - \Delta,
$$

where Δ does not depend on $p(\hat{x}|x)$, we can always replace *d* by \tilde{d} and *D* by $D - \Delta$ in the definition of $R_I(D)$ without changing the minimization problem.

• Without loss of generality, we can assume *d* is normal.

Theorem 8.17 (The Rate-Distortion Theorem) $R(D) = R_I(D)$.

Theorem 8.18 The following properties hold for the information rate-distortion function $R_I(D)$:

- 1. $R_I(D)$ is non-increasing in *D*.
- 2. $R_I(D)$ is convex.
- 3. $R_I(D) = 0$ for $D \ge D_{max}$.
- 4. $R_I(0) \leq H(X)$.

Proof of Theorem 8.18

1. For a larger *D*, the minimization is taken over a larger set.

- 3. Let $\hat{X} = \hat{x}^*$ w.p. 1 to show that $(0, D_{max})$ is achievable. Then for $D \geq$ $D_{max}, R_I(D) \leq I(X; \hat{X}) = 0$, which implies $R_I(D) = 0$.
- 4. Let $\hat{X} = \hat{x}^*(X)$, so that $Ed(X, \hat{X}) = 0$ (since *d* is normal). Then

 $R_I(0) \leq I(X; \hat{X}) \leq H(X)$.

Proof of Theorem 8.18

2. Consider any $D^{(1)}, D^{(2)} \ge 0$ and $0 \le \lambda$ 1. Let $\hat{X}^{(i)}$ achieves $R_I(D^{(i)})$ for $i = 1, 2, i.e.,$ $R_I(D^{(i)}) = I(X; \hat{X}^{(i)}),$

where

$$
Ed(X, \hat{X}^{(i)}) \le D^{(i)},
$$

Let $\hat{X}^{(\lambda)}$ be jointly distributed with *X* defined by

$$
p_{\lambda}(\hat{x}|x) = \lambda p_1(\hat{x}|x) + \bar{\lambda}p_2(\hat{x}|x).
$$

Then

$$
Ed(X, \hat{X}^{(\lambda)})
$$

= $\lambda Ed(X, \hat{X}^{(1)}) + \overline{\lambda}Ed(X, \hat{X}^{(2)})$

$$
\leq \lambda D^{(1)} + \overline{\lambda}D^{(2)}
$$

= $D^{(\lambda)}.$

Finally consider

$$
\lambda R_I(D^{(1)}) + \bar{\lambda} R_I(D^{(2)}) = \lambda I(X; \hat{X}^{(1)}) + \bar{\lambda} I(X; \hat{X}^{(2)})
$$

\n
$$
\geq I(X; \hat{X}^{(\lambda)})
$$

\n
$$
\geq R_I(D^{(\lambda)}).
$$

Corollary 8.19 If $R_I(0) > 0$, then $R_I(D)$ is strictly decreasing for $0 \leq D <$ D_{max} , and the inequality constraint in the definition of $R_I(D)$ can be replaced by an equality constraint.

Proof

- 1. $R_I(D)$ must be strictly decreasing for $0 \le D \le D_{max}$ because $R_I(0) > 0$, $R_I(D_{max}) = 0$, and $R_I(D)$ is non-increasing and convex.
- 2. Show that $R_I(D) > 0$ for $0 \leq D < D_{max}$ by contradiction.
	- Suppose $R_I(D') = 0$ for some $0 \leq D' < D_{max}$, and let $R_I(D')$ be achieved by some \hat{X} . Then

$$
R_I(D') = I(X; \hat{X}) = 0
$$

implies that *X* and \hat{X} are independent.

- *•* Show that such an *^X*^ˆ which is independent of *^X* cannot do better than the constant estimate \hat{x}^* , i.e., $Ed(X, \hat{X}) \geq Ed(X, \hat{x}^*) = D_{max}$.
- This leads to a contradiction because

$$
D' \ge Ed(X, \hat{X}) \ge D_{max}.
$$

Proof

- 3. Show that the inequality constraints in *R^I* (*D*) can be replaced by an equality constraint by contradiction.
	- Assume that $R_I(D)$ is achieved by some \hat{X}^* such that $Ed(X, \hat{X}^*) =$ $D'' < D$.
	- *•* Then

$$
R_I(D'') = \min_{\hat{X}: Ed(X, \hat{X}) \le D''} I(X; \hat{X}) \le I(X; \hat{X}^*) = R_I(D),
$$

a contradiction because $R_I(D)$ is strictly decreasing for $0 \leq D \leq$ D_{max} .

• Therefore, $Ed(X, \hat{X}^*) = D$.

Remark In all problems of interest, $R(0) = R_I(0) > 0$. Otherwise, $R(D) = 0$ for all $D \geq 0$ because $R(D)$ is nonnegative and non-increasing.

Example 8.20 (Binary Source)

Let *X* be a binary random variable with

$$
\Pr\{X=0\}=1-\gamma \text{ and } \Pr\{X=1\}=\gamma.
$$

Let $\hat{\mathcal{X}} = \{0, 1\}$ and *d* be the Hamming distortion measure. Show that

$$
R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma). \end{cases}
$$

First consider $0 \le \gamma \le \frac{1}{2}$, and show that

$$
R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \gamma \\ 0 & \text{if } D \ge \gamma. \end{cases}
$$

- $\hat{x}^* = 0$ and $D_{max} = Ed(X, 0) = Pr\{X = 1\} = \gamma$.
- Consider any \hat{X} and let $Y = d(X, \hat{X})$.
- Conditioning on \hat{X} , *X* and *Y* determine each other, and so, $H(X|\hat{X}) =$ $H(Y|\hat{X})$.
- Then for $D < \gamma = D_{max}$ and any \hat{X} such that $Ed(X, \hat{X}) \leq D$,

$$
I(X; \hat{X}) = H(X) - H(X|\hat{X})
$$

\n
$$
= h_b(\gamma) - H(Y|\hat{X})
$$

\n
$$
\geq h_b(\gamma) - H(Y)
$$

\n
$$
= h_b(\gamma) - h_b(\Pr{X \neq \hat{X}})
$$

\n
$$
\overset{a)}{\geq} h_b(\gamma) - h_b(D),
$$
\n(2)

a) because $Pr{X \neq \hat{X}} = Ed(X, \hat{X}) \leq D$ and $h_b(a)$ is increasing for $0 \le a \le \frac{1}{2}.$

• Therefore,

$$
R_I(D) = \min_{\hat{X}: Ed(X, \hat{X}) \le D} I(X; \hat{X}) \ge h_b(\gamma) - h_b(D).
$$

Now need to construct \hat{X} which is tight for (1) and (2), so that the above bound is achieved.

- (1) tight \Leftrightarrow *Y* independent of \hat{X}
- (2) tight \Leftrightarrow $\Pr{X \neq \hat{X}} = D$
- The required \hat{X} can be specified by the following reverse BSC:

• Therefore, we conclude that

$$
R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \gamma \\ 0 & \text{if } D \ge \gamma. \end{cases}
$$

For $1/2 \leq \gamma \leq 1$, by exchanging the roles of the symbols 0 and 1 and applying the same argument, we obtain $R_I(D)$ as above except that γ is replaced by $1 - \gamma$. Combining the two cases, we have

$$
R_I(D) = \begin{cases} h_b(\gamma) - h_b(D) & \text{if } 0 \le D < \min(\gamma, 1 - \gamma) \\ 0 & \text{if } D \ge \min(\gamma, 1 - \gamma). \end{cases}
$$

for $0 \leq \gamma \leq 1$.

A Remark

The rate-distortion theorem does not include the source coding theorem as a special case:

- In Example 8.20, $R_I(0) = h_b(\gamma) = H(X)$.
- By the rate-distortion theorem, if $R > H(X)$, the average Hamming distortion, i.e., the error probability per symbol, can be made arbitrarily small.
- However, by the source coding theorem, if $R > H(X)$, the message error probability can be made arbitrarily small, which is much stronger.

8.4 The Converse

- Prove that for any achievable rate-distortion pair $(R, D), R \ge R_I(D)$.
- *•* Fix *D* and minimize *R* over all achievable pairs (*R, D*) to conclude that $R(D) \geq R_I(D)$.

Proof

1. Let (R, D) be any achievable rate-distortion pair, i.e., for any $\epsilon > 0$, there exists for sufficiently large n an (n, M) code such that

$$
\frac{1}{n}\log M \le R + \epsilon
$$

and

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} \le \epsilon,
$$

where $\hat{\mathbf{X}} = g(f(\mathbf{X})).$

2. Then

$$
n(R + \epsilon) \geq \log M
$$

\n
$$
\geq \dots
$$

\n
$$
\geq \sum_{k=1}^{n} I(X_k; \hat{X}_k)
$$

\n
$$
\geq \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k))
$$

\n
$$
= n \left[\frac{1}{n} \sum_{k=1}^{n} R_I(Ed(X_k, \hat{X}_k)) \right]
$$

\n
$$
\geq nR_I \left(\frac{1}{n} \sum_{k=1}^{n} Ed(X_k, \hat{X}_k) \right)
$$

\n
$$
= nR_I(Ed(\mathbf{X}, \hat{\mathbf{X}})).
$$

- c) follows from from the definition of $R_I(D)$.
- d) follows from the convexity of $R_I(D)$ and Jensen's inequality.

3. Let $d_{max} = \max_{x, \hat{x}} d(x, \hat{x})$. Then

$$
Ed(\mathbf{X}, \hat{\mathbf{X}})
$$

= $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\}$
+ $E[d(\mathbf{X}, \hat{\mathbf{X}})|d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon]Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) \le D + \epsilon\}$
 $\le d_{max} \cdot \epsilon + (D + \epsilon) \cdot 1$
= $D + (d_{max} + 1)\epsilon$.

That is, if the probability that the average distortion between X and \overline{X} exceeds $D + \epsilon$ is small, then the expected average distortion between **X** and \bar{X} can exceed D only by a small amount.

4. Therefore,

$$
R + \epsilon \geq R_I(Ed(\mathbf{X}, \hat{\mathbf{X}}))
$$

\n
$$
\geq R_I(D + (d_{max} + 1)\epsilon),
$$

because $R_I(D)$ is non-increasing in *D*.

5. $R_I(D)$ convex implies it is continuous in *D*. Finally,

$$
R \geq \lim_{\epsilon \to 0} R_I(D + (d_{max} + 1)\epsilon)
$$

= $R_I(D + (d_{max} + 1)\lim_{\epsilon \to 0} \epsilon)$
= $R_I(D)$.

Minimizing *R* over all achievable pairs (R, D) for a fixed *D* to obtain $R(D) \geq R_I(D)$.

8.5 Achievability of R_I(D)

- An i.i.d. source $\{X_k : k \geq 1\}$ with generic random variable $X \sim p(x)$ is given.
- For every random variable \hat{X} taking values in $\hat{\mathcal{X}}$ with $Ed(X, \hat{X}) \leq D$, where $0 \le D \le D_{max}$, prove that the rate-distortion pair $(I(X; \hat{X}), D)$ is achievable by showing for large *n* the existence of a rate-distortion code such that
	- 1. the rate of the code is not more than $I(X; \hat{X}) + \epsilon$;
	- 2. $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon$ with probability almost 1.
- Minimize $I(X; \hat{X})$ over all such \hat{X} to conclude that $(R_I(D), D)$ is achievable.
- This implies that $R_I(D) \ge R(D)$.

Random Coding Scheme

- Fix $\epsilon > 0$ and \hat{X} with $Ed(X, \hat{X}) \leq D$, where $0 \leq D \leq D_{max}$. Let δ be specified later.
- Let *M* be an integer satisfying

$$
I(X; \hat{X}) + \frac{\epsilon}{2} \le \frac{1}{n} \log M \le I(X; \hat{X}) + \epsilon,
$$

where n is sufficiently large.

- *•* The random coding scheme:
	- 1. Construct a codebook *C* of an (*n, M*) code by randomly generating *M* codewords in $\hat{\mathcal{X}}^n$ independently and identically according to $p(\hat{x})^n$. Denote these codewords by $\hat{\mathbf{X}}(1), \hat{\mathbf{X}}(2), \cdots, \hat{\mathbf{X}}(M)$.
	- 2. Reveal the codebook *C* to both the encoder and the decoder.
	- 3. The source sequence **X** is generated according to $p(x)^n$.

4. The encoder encodes the source sequence X into an index *K* in the set $\mathcal{I} = \{1, 2, \cdots, M\}$. The index *K* takes the value *i* if

(a)
$$
(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T_{[X\hat{X}]\delta}^n
$$

(b) for all
$$
i' \in \mathcal{I}
$$
, if $(\mathbf{X}, \hat{\mathbf{X}}(i')) \in T_{[X\hat{X}]\delta}^n$, then $i' \leq i$;

i.e., if there exists more than one *i* satisfying (a), let *K* be the largest one. Otherwise, *K* takes the constant value 1.

- 5. The index *K* is delivered to the decoder.
- 6. The decoder outputs $\hat{\mathbf{X}}(K)$ as the reproduction sequence $\hat{\mathbf{X}}$.

Performance Analysis

- The event ${K = 1}$ occurs in one of the following two scenarios:
	- 1. $\hat{X}(1)$ is the only codeword in *C* which is jointly typical with **X**.
	- 2. No codeword in *C* is jointly typical with X.

In other words, if $K = 1$, then **X** is jointly typical with none of the $\operatorname{codewords} \hat{X}(2), \hat{X}(3), \cdots, \hat{X}(M).$

• Define the event

$$
E_i = \left\{ (\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \right\}
$$

• Then

$$
\{K=1\} \subset E_2^c \cap E_3^c \cap \cdots \cap E_M^c.
$$

• Since the codewords are generated i.i.d., conditioning on *{*X = x*}* for any $x \in \mathcal{X}^n$, the events E_i are mutually independent and have the same probability.

• Then for any $\mathbf{x} \in \mathcal{X}^n$,

$$
\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X}=\mathbf{x}\}
$$

=
$$
\prod_{i=2}^M \Pr\{E_i^c | \mathbf{X}=\mathbf{x}\}
$$

=
$$
(\Pr\{E_1^c | \mathbf{X}=\mathbf{x}\})^{M-1}
$$

=
$$
(1 - \Pr\{E_1 | \mathbf{X}=\mathbf{x}\})^{M-1}.
$$

• We will focus on $\mathbf{x} \in S^n_{[X]\delta}$ where

$$
S_{[X]\delta}^n = \{ \mathbf{x} \in T_{[X]\delta}^n : |T_{[\hat{X}|X]\delta}^n(\mathbf{x})| \ge 1 \},\
$$

because $Pr{\mathbf{X} \in S_{[X]\delta}^n} \approx 1$ for large *n* (Proposition 6.13).

• For $\mathbf{x} \in S_{[X]\delta}^n$, obtain a lower bound on $\Pr\{E_1 | \mathbf{X} = \mathbf{x}\}$ as follows:

$$
\Pr{E_1|\mathbf{X} = \mathbf{x}} = \Pr \left\{ (\mathbf{x}, \hat{\mathbf{X}}(1)) \in T^n_{[X\hat{X}]\delta} \right\}
$$

\n
$$
= \sum_{\hat{\mathbf{x}} \in T^n_{[\hat{X}|X]\delta}(\mathbf{x})} p(\hat{\mathbf{x}})
$$

\n
$$
\geq \sum_{\hat{\mathbf{x}} \in T^n_{[\hat{X}|X]\delta}(\mathbf{x})} 2^{-n(H(\hat{X})+\eta)}
$$

\n
$$
\geq 2^{n(H(\hat{X}|X)-\xi)} 2^{-n(H(\hat{X})+\eta)}
$$

\n
$$
= 2^{-n(H(\hat{X})-H(\hat{X}|X)+\xi+\eta)}
$$

\n
$$
= 2^{-n(I(X;\hat{X})+\zeta)},
$$

where $\zeta = \xi + \eta \to 0$ as $\delta \to 0$. In the above,

a) follows because from the consistency of strong typicality, if $(\mathbf{x}, \hat{\mathbf{x}}) \in$ T_rx^n $\lim_{[X\hat{X}]\delta}$, then $\hat{\mathbf{x}} \in T_{[\hat{X}]\delta}^n$.

b) follows from conditional strong AEP.

• Therefore,

$$
\Pr\{K=1|\mathbf{X}=\mathbf{x}\} \leq \Pr\{E_2^c \cap E_3^c \cap \dots \cap E_M^c | \mathbf{X}=\mathbf{x}\}
$$

\$\leq\$
$$
\left[1 - 2^{-n(I(X;\hat{X}) + \zeta)}\right]^{M-1}
$$

• Then

$$
\ln \Pr\{K = 1 | \mathbf{X} = \mathbf{x}\} \le (M - 1) \ln \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]
$$

\n
$$
\le \left(2^{n(I(X; \hat{X}) + \frac{\epsilon}{2})} - 1\right) \ln \left[1 - 2^{-n(I(X; \hat{X}) + \zeta)}\right]
$$

\n
$$
\le -\left(2^{n(I(X; \hat{X}) + \frac{\epsilon}{2})} - 1\right) 2^{-n(I(X; \hat{X}) + \zeta)}
$$

\n
$$
= -\left[2^{n(\frac{\epsilon}{2} - \zeta)} - 2^{-n(I(X; \hat{X}) + \zeta)}\right]
$$

- a) follows because the logarithm is negative.
- b) follows from the fundamental inequality.

• Let δ be sufficiently small so that

$$
\frac{\epsilon}{2} - \zeta > 0. \tag{1}
$$

Then the upper bound on $\ln \Pr{K = 1 | \mathbf{X} = \mathbf{x}}$ tends to $-\infty$ as $n \to \infty$, i.e., $Pr{K = 1 | \mathbf{X} = \mathbf{x}} \to 0$ as $n \to \infty$.

• This implies for sufficiently large n ,

$$
\Pr\{K=1|\mathbf{X}=\mathbf{x}\}\leq \frac{\epsilon}{2}.
$$

• It follows that

$$
\Pr{K = 1} = \sum_{\mathbf{x} \in S_{[X]\delta}^n} \Pr{K = 1 | \mathbf{X} = \mathbf{x}} \Pr{\mathbf{X} = \mathbf{x}}
$$

+
$$
\sum_{\mathbf{x} \notin S_{[X]\delta}^n} \Pr{K = 1 | \mathbf{X} = \mathbf{x}} \Pr{\mathbf{X} = \mathbf{x}}
$$

$$
\leq \sum_{\mathbf{x} \in S_{[X]\delta}^n} \frac{\epsilon}{2} \cdot \Pr{\mathbf{X} = \mathbf{x}} + \sum_{\mathbf{x} \notin S_{[X]\delta}^n} 1 \cdot \Pr{\mathbf{X} = \mathbf{x}}
$$

=
$$
\frac{\epsilon}{2} \cdot \Pr{\mathbf{X} \in S_{[X]\delta}^n} + \Pr{\mathbf{X} \notin S_{[X]\delta}^n}
$$

$$
\leq \frac{\epsilon}{2} \cdot 1 + (1 - \Pr{\mathbf{X} \in S_{[X]\delta}^n})
$$

$$
< \frac{\epsilon}{2} + \delta,
$$

where we have invoked Proposition 6.13 in the last step.

• By letting δ be sufficiently small so that both (1) and $\delta < \frac{\epsilon}{2}$ are satisfied, we obtain

$$
\Pr\{K=1\} < \epsilon.
$$

Main Idea

- Randomly generate *M* codewords in $\hat{\mathcal{X}}^n$ according to $p(\hat{x})^n$, where *n* is large.
- $\mathbf{X} \in S^n_{[X]\delta}$ with high probability.
- For $\mathbf{x} \in S^n_{[X]\delta}$, by conditional strong AEP,

$$
\Pr\left\{(\mathbf{X}, \hat{\mathbf{X}}(i)) \in T^n_{[X\hat{X}]\delta} \,|\, \mathbf{X} = \mathbf{x}\right\} \approx 2^{-nI(X;\hat{X})}.
$$

- If *M* grows with *n* at a rate higher than $I(X; \hat{X})$, then the probability that there exists at least one $\hat{\mathbf{X}}(i)$ which is jointly typical with the source sequence **X** with respect to $p(x, \hat{x})$ is high.
- Such an $\hat{\mathbf{X}}(i)$, if exists, would have $d(\mathbf{X}, \hat{\mathbf{X}}) \approx Ed(X, \hat{X}) \leq D$, because the joint relative frequency of $(\mathbf{x}, \hat{\mathbf{X}}(i)) \approx p(x, \hat{x})$.
- Use this $\hat{\mathbf{X}}(i)$ to represent **X** to satisfy the distortion constraint.

The Remaining Details

• For sufficiently large n , consider

$$
\Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon\} = \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K = 1\} \Pr\{K = 1\} + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \Pr\{K \neq 1\} \leq 1 \cdot \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\} \cdot 1
$$
\n
$$
= \epsilon + \Pr\{d(\mathbf{X}, \hat{\mathbf{X}}) > D + \epsilon | K \neq 1\}.
$$

- Conditioning on $\{K \neq 1\}$, we have $(\mathbf{X}, \hat{\mathbf{X}}) \in T_{[X\hat{X}]\delta}^n$.
- It can be shown that (see textbook)

$$
d(\mathbf{X}, \hat{\mathbf{X}}) \le D + d_{max} \delta.
$$

By taking $\delta \leq \frac{\epsilon}{d_{max}}$, we obtain $d(\mathbf{X}, \hat{\mathbf{X}}) \leq D + \epsilon$.

• Therefore, $Pr{d(\mathbf{X}, \hat{\mathbf{X}})} > D + \epsilon | K \neq 1$ } = 0, which implies $Pr{d(\mathbf{X}, \hat{\mathbf{X}})} >$ $D + \epsilon$ [}] $\leq \epsilon$.

The number of codewords must be at least

$$
\frac{2^{nH(X)}}{2^{nH(X|\hat{X})}} \approx 2^{nI(X;\hat{X})}
$$