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Information Transmission with 
Distortion

• Consider compressing an information source with entropy rate H at rate

R < H.

• By the source coding theorem, Pe ! 1 as n ! 1.

• Under such a situation, information must be transmitted with “distor-

tion”.

• What is the best possible tradeo↵?



8.1 Single-Letter Distortion 
Measure

• Let {Xk, k � 1} be an i.i.d. information source with generic random vari-

able X ⇠ p(x), where |X | < 1.

• Consider a source sequence x = (x1, x2, · · · , xn) and a reproduction se-

quence

ˆ

x = (x̂1, x̂2, · · · , x̂n).

• The components of

ˆ

x take values in a reproduction alphabet

ˆX , where

| ˆX| < 1.

• In general,

ˆX may be di↵erent from X .

• For example,

ˆ

x can be a quantized version of x.



Definition 8.1 A single-letter distortion measure is a mapping

d : X ⇥ ˆX ! <+
.

The value d(x, x̂) denotes the distortion incurred when a source symbol x is

reproduced as x̂.

Definition 8.2 The average distortion between a source sequence x 2 Xn
and

a reproduction sequence

ˆ

x 2 ˆXn
induced by a single-letter distortion measure

d is defined by

d(x,

ˆ

x) =

1

n

nX

k=1

d(xk, x̂k).



Examples of a Distortion Measure

• Let X̂ = X .

1. Square-error: d(x, x̂) = (x� x̂)2, where X and X̂ are real.

2. Hamming distortion:

d(x, x̂) =

⇢
0 if x = x̂

1 if x 6= x̂

where the symbols in X do not carry any particular meaning.



• Let X̂ be an estimate of X.

1. If d is the square-error distortion measure, Ed(X, X̂) is called the
mean square error.

2. If d is the Hamming distortion measure,

Ed(X, X̂) = Pr{X = X̂} · 0 + Pr{X 6= X̂} · 1 = Pr{X 6= X̂}

is the probability of error. For a source sequence x and a reproduction
sequence x̂, the average distortion d(x, x̂) gives the frequency of error
in x̂.



Definition 8.5 For a distortion measure d, for each x 2 X , let x̂

⇤(x) 2 X̂
minimize d(x, x̂) over all x̂ 2 X̂ . A distortion measure d is said to be normal if

c

x

def= d(x, x̂

⇤(x)) = 0

for all x 2 X .

• A normal distortion measure is one which allows a source X to be repro-
duced with zero distortion.

• The square-error distortion measure and the Hamming distortion measure
are normal distortion measures.

• The normalization of a distortion measure d is the distortion measure d̃

defined by
d̃(x, x̂) = d(x, x̂)� c

x

for all (x, x̂) 2 X ⇥ X̂ .

• It su�ces to consider normal distortion measures as we will see.



Example 8.6 Let d be a distortion measure defined by

d(x, x̂) a b c

1 2 7 5

2 4 3 8

Then

˜

d, the normalization of d, is given by

˜

d(x, x̂) a b c

1 0 5 3

2 1 0 5



Let

ˆ

X be any estimate of X which takes values in

ˆX . Then

Ed(X,

ˆ

X) =

X

x

X

x̂

p(x, x̂)d(x, x̂)

=

X

x

X

x̂

p(x, x̂)

h
˜

d(x, x̂) + c

x

i

= E

˜

d(X,

ˆ

X) +

X

x

p(x)

X

x̂

p(x̂|x)c
x

= E

˜

d(X,

ˆ

X) +

X

x

p(x)c

x

 
X

x̂

p(x̂|x)
!

= E

˜

d(X,

ˆ

X) +

X

x

p(x)c

x

= E

˜

d(X,

ˆ

X) +�,

where

� =

X

x

p(x)c

x

is a constant which depends only on p(x) and d but not on the conditional

distribution p(x̂|x).



Definition 8.7 Let x̂

⇤
minimizes Ed(X, x̂) over all x̂ 2 ˆX , and define

D

max

= Ed(X, x̂

⇤
).

Note: x̂

⇤
is not the same as x̂

⇤
(x).

• If we know nothing about a source variable X, then x̂

⇤
is the best estimate

of X, and D

max

is the minimum expected distortion between X and a

constant estimate of X.

• Specifically, D

max

can be asymptotically achieved by taking (x̂

⇤
, x̂

⇤
, · · · , x̂

⇤
)

to be the reproduction sequence.

• Therefore it is not meanful to impose a constraint D � D

max

on the

reproduction sequence.



8.2 The Rate-Distortion Function
All the discussions are with respect to an i.i.d. information source {Xk, k � 1}
with generic random variable X and a distortion measure d.

Definition 8.8 An (n,M) rate-distortion code is defined by an encoding func-

tion

f : Xn ! {1, 2, · · · ,M}

and a decoding function

g : {1, 2, · · · ,M} ! ˆXn.

The set {1, 2, · · · ,M}, denoted by I, is called the index set. The reproduc-

tion sequences g(1), g(2), · · · , g(M) in

ˆXn
are called codewords, and the set of

codewords is called the codebook.



Encoder Decoder 
f ( X ) X 

source 

sequence 

reproduction 

sequence 

X 

A Rate-Distortion Code



Definition 8.9 The rate of an (n, M) rate-distortion code is n�1
log M in bits

per symbol.

Definition 8.10 A rate-distortion pair (R,D) is (asymptotically) achievable if

for any ✏ > 0, there exists for su�ciently large n an (n, M) rate-distortion code

such that

1

n
log M  R + ✏

and

Pr{d(X, ˆ

X) > D + ✏}  ✏,

where

ˆ

X = g(f(X)).

Remark If (R,D) is achievable, then (R0, D) and (R,D0
) are achievable for

all R0 � R and D0 � D. This in turn implies that (R0, D0
) are achievable for all

R0 � R and D0 � D.



Definition 8.11 The rate-distortion region is the subset of <2
containing all

achievable pairs (R,D).

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

• The closeness follows from the definition of the achievability of an (R,D)

pair.

• The convexity is proved by time-sharing. Specifically, if (R(1), D(1)
) and

(R(2), D(2)
) are achievable, then so is (R(�), D(�)

), where

R(�)
= �R(1)

+

¯�R(2)

D(�)
= �D(1)

+

¯�D(2)

and

¯� = 1 � �. This can be seen by time-sharing between two codes,

one achieving (R(1), D(1)
) for � fraction of the time, and the other one

achieving (R(2), D(2)
) for

¯� fraction of the time.



R

D

R-D region

Dmax



Definition 8.13 The rate-distortion function R(D) is the minimum of all rates

R for a given distortion D such that (R,D) is achievable.

Definition 8.14 The distortion-rate function D(R) is the minimum of all

distortions D for a given rate R such that (R,D) is achievable.



Theorem 8.15 The following properties hold for the rate-distortion function

R(D):

1. R(D) is non-increasing in D.

2. R(D) is convex.

3. R(D) = 0 for D � D
max

.

4. R(0)  H(X).

Proof

1. Let D0 � D. (R(D), D) achievable ) (R(D), D0
) achievable. Then

R(D) � R(D0
) by definition of R(·).

2. Follows from the convexity of the rate-distortion region.

3. (0, D
max

) is achievable ) R(D) = 0 for D � D
max

.

4. Since d is assumed to be normal, (H(X), 0) is achievable, and henceR(0) 
H(X).
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8.3 The Rate Distortion Theorem

Definition 8.16 For D � 0, the information rate-distortion function is defined

by

R

I

(D) = min

X̂:Ed(X,X̂)D

I(X;

ˆ

X).

• The minimization is taken over the set of all p(x̂|x) such that Ed(X,

ˆ

X) 
D is satisfied, namely the set

8
<

:p(x̂|x) :
X

x,x̂

p(x)p(x̂|x)d(x, x̂)  D

9
=

; .

• Since this set is compact in <|X ||X̂ |
and I(X;

ˆ

X) is a continuous functional

of p(x̂|x), the minimum value of I(X;

ˆ

X) can be attained.



• Since

E

˜

d(X,

ˆ

X) = Ed(X,

ˆ

X)��,

where � does not depend on p(x̂|x), we can always replace d by

˜

d and D

by D �� in the definition of RI(D) without changing the minimization

problem.

• Without loss of generality, we can assume d is normal.



Theorem 8.17 (The Rate-Distortion Theorem) R(D) = R
I

(D).

Theorem 8.18 The following properties hold for the information rate-distortion

function R
I

(D):

1. R
I

(D) is non-increasing in D.

2. R
I

(D) is convex.

3. R
I

(D) = 0 for D � D
max

.

4. R
I

(0)  H(X).



Proof of Theorem 8.18

1. For a larger D, the minimization is taken over a larger set.

3. Let

ˆX = x̂⇤
w.p. 1 to show that (0, D

max

) is achievable. Then for D �
D

max

, R
I

(D)  I(X;

ˆX) = 0, which implies R
I

(D) = 0.

4. Let

ˆX = x̂⇤
(X), so that Ed(X, ˆX) = 0 (since d is normal). Then

R
I

(0)  I(X;

ˆX)  H(X).



Proof of Theorem 8.18

2. Consider any D

(1)
, D

(2) � 0 and 0  �1. Let

ˆ

X

(i)
achieves RI(D

(i)
) for

i = 1, 2, i.e.,

RI(D
(i)

) = I(X;

ˆ

X

(i)
),

where

Ed(X,

ˆ

X

(i)
)  D

(i)
,

Let

ˆ

X

(�)
be jointly distributed with X defined by

p�(x̂|x) = �p1(x̂|x) +

¯

�p2(x̂|x).

Then

Ed(X,

ˆ

X

(�)
)

= �Ed(X,

ˆ

X

(1)
) +

¯

�Ed(X,

ˆ

X

(2)
)

 �D

(1)
+

¯

�D

(2)

= D

(�)
.



Finally consider

�RI(D
(1)

) +

¯�RI(D
(2)

) = �I(X;

ˆX(1)
) +

¯�I(X;

ˆX(2)
)

� I(X;

ˆX(�)
)

� RI(D
(�)

).



Corollary 8.19 If R

I

(0) > 0, then R

I

(D) is strictly decreasing for 0  D 
D

max

, and the inequality constraint in the definition of R

I

(D) can be replaced

by an equality constraint.

Proof

1. R

I

(D) must be strictly decreasing for 0  D  D

max

because R

I

(0) > 0,

R

I

(D

max

) = 0, and R

I

(D) is non-increasing and convex.

2. Show that R

I

(D) > 0 for 0  D < D

max

by contradiction.

• Suppose R

I

(D

0
) = 0 for some 0  D

0
< D

max

, and let R

I

(D

0
) be

achieved by some

ˆ

X. Then

R

I

(D

0
) = I(X;

ˆ

X) = 0

implies that X and

ˆ

X are independent.

• Show that such an

ˆ

X which is independent of X cannot do better

than the constant estimate x̂

⇤
, i.e., Ed(X,

ˆ

X) � Ed(X, x̂

⇤
) = D

max

.

• This leads to a contradiction because

D

0 � Ed(X,

ˆ

X) � D

max

.



Proof

3. Show that the inequality constraints in R
I

(D) can be replaced by an
equality constraint by contradiction.

• Assume that R
I

(D) is achieved by some X̂⇤ such that Ed(X, X̂⇤) =
D00 < D.

• Then

R
I

(D00) = min
X̂:Ed(X,X̂)D

00
I(X; X̂)  I(X; X̂⇤) = R

I

(D),

a contradiction because R
I

(D) is strictly decreasing for 0  D 
D

max

.

• Therefore, Ed(X, X̂⇤) = D.

Remark In all problems of interest, R(0) = R
I

(0) > 0. Otherwise, R(D) = 0
for all D � 0 because R(D) is nonnegative and non-increasing.



Example 8.20 (Binary Source)

Let X be a binary random variable with

Pr{X = 0} = 1� � and Pr{X = 1} = �.

Let X̂ = {0, 1} and d be the Hamming distortion measure. Show that

RI(D) =
⇢

hb(�)� hb(D) if 0  D < min(�, 1� �)
0 if D � min(�, 1� �).



First consider 0  �  1
2 , and show that

R
I

(D) =

⇢
h

b

(�)� h
b

(D) if 0  D < �
0 if D � �.

• x̂⇤ = 0 and D
max

= Ed(X, 0) = Pr{X = 1} = �.

• Consider any

ˆX and let Y = d(X, ˆX).

• Conditioning on

ˆX, X and Y determine each other, and so, H(X| ˆX) =

H(Y | ˆX).

• Then for D < � = D
max

and any

ˆX such that Ed(X, ˆX)  D,

I(X;

ˆX) = H(X)�H(X| ˆX)

= h
b

(�)�H(Y | ˆX)

� h
b

(�)�H(Y ) (1)

= h
b

(�)� h
b

(Pr{X 6= ˆX})
a)
� h

b

(�)� h
b

(D), (2)

a) because Pr{X 6= ˆX} = Ed(X, ˆX)  D and h
b

(a) is increasing for

0  a  1
2 .



0 

1 

0 

1 

X X 

D 

D 

D 

D 1 

D 1 

1 2 D 

D 1 

1 2 D 

1 

• Therefore,

RI(D) = min

X̂:Ed(X,X̂)D
I(X;

ˆX) � hb(�)� hb(D).

Now need to construct

ˆX which is tight for (1) and (2), so that the above bound

is achieved.

• (1) tight , Y independent of

ˆX

• (2) tight , Pr{X 6= ˆX} = D

• The required

ˆX can be specified by the following reverse BSC:



• Therefore, we conclude that

RI(D) =

⇢
hb(�)� hb(D) if 0  D < �
0 if D � �.

For 1/2  �  1, by exchanging the roles of the symbols 0 and 1 and applying

the same argument, we obtain RI(D) as above except that � is replaced by

1� �. Combining the two cases, we have

RI(D) =

⇢
hb(�)� hb(D) if 0  D < min(�, 1� �)

0 if D � min(�, 1� �).

for 0  �  1.



R  I 

D 
0.5 0 

(D) 

1 



A Remark

The rate-distortion theorem does not include the source coding theorem as a
special case:

• In Example 8.20, RI(0) = hb(�) = H(X).

• By the rate-distortion theorem, if R > H(X), the average Hamming dis-
tortion, i.e., the error probability per symbol, can be made arbitrarily
small.

• However, by the source coding theorem, if R > H(X), the message error
probability can be made arbitrarily small, which is much stronger.



8.4 The Converse

• Prove that for any achievable rate-distortion pair (R,D), R � RI(D).

• Fix D and minimize R over all achievable pairs (R,D) to conclude that

R(D) � RI(D).

Proof

1. Let (R,D) be any achievable rate-distortion pair, i.e., for any ✏ > 0, there

exists for su�ciently large n an (n,M) code such that

1

n
logM  R+ ✏

and

Pr{d(X, ˆX) > D + ✏}  ✏,

where

ˆ

X = g(f(X)).



2. Then

n(R+ ✏)
a)
� logM

� · · ·

�
nX

k=1

I(Xk;
ˆXk)

c)
�

nX

k=1

RI(Ed(Xk, ˆXk))

= n

"
1

n

nX

k=1

RI(Ed(Xk, ˆXk))

#

d)
� nRI

 
1

n

nX

k=1

Ed(Xk, ˆXk)

!

= nRI(Ed(X, ˆX)).

c) follows from from the definition of RI(D).

d) follows from the convexity of RI(D) and Jensen’s inequality.



3. Let d

max

= max

x,x̂

d(x, x̂). Then

Ed(X,

ˆX)

= E[d(X,

ˆX)|d(X,

ˆX) > D + ✏]Pr{d(X,

ˆX) > D + ✏}
+E[d(X,

ˆX)|d(X,

ˆX)  D + ✏]Pr{d(X,

ˆX)  D + ✏}
 d

max

· ✏+ (D + ✏) · 1
= D + (d

max

+ 1)✏.

That is, if the probability that the average distortion between X and

ˆX
exceeds D + ✏ is small, then the expected average distortion between X
and

ˆX can exceed D only by a small amount.

4. Therefore,

R+ ✏ � R

I

(Ed(X,

ˆX))

� R

I

(D + (d

max

+ 1)✏),

because R

I

(D) is non-increasing in D.



5. R
I

(D) convex implies it is continuous in D. Finally,

R � lim

✏!0
R

I

(D + (d
max

+ 1)✏)

= R
I

⇣
D + (d

max

+ 1) lim

✏!0
✏
⌘

= R
I

(D).

Minimizing R over all achievable pairs (R,D) for a fixed D to obtain

R(D) � R
I

(D).



8.5 Achievability of RI(D)

• An i.i.d. source {X
k

: k � 1} with generic random variable X ⇠ p(x) is

given.

• For every random variable

ˆ

X taking values in

ˆX with Ed(X,

ˆ

X)  D,

where 0  D  D

max

, prove that the rate-distortion pair (I(X;

ˆ

X), D) is

achievable by showing for large n the existence of a rate-distortion code

such that

1. the rate of the code is not more than I(X;

ˆ

X) + ✏;

2. d(X,

ˆX)  D + ✏ with probability almost 1.

• Minimize I(X;

ˆ

X) over all such

ˆ

X to conclude that (R

I

(D), D) is achiev-

able.

• This implies that R

I

(D) � R(D).



Random Coding Scheme

• Fix ✏ > 0 and

ˆ

X with Ed(X,

ˆ

X)  D, where 0  D  D

max

. Let � be

specified later.

• Let M be an integer satisfying

I(X;

ˆ

X) +

✏

2

 1

n

logM  I(X;

ˆ

X) + ✏,

where n is su�ciently large.

• The random coding scheme:

1. Construct a codebook C of an (n,M) code by randomly generatingM

codewords in

ˆXn

independently and identically according to p(x̂)

n

.

Denote these codewords by

ˆX(1),

ˆX(2), · · · , ˆX(M).

2. Reveal the codebook C to both the encoder and the decoder.

3. The source sequence X is generated according to p(x)

n

.



4. The encoder encodes the source sequence X into an index K in the set
I = {1, 2, · · · ,M}. The index K takes the value i if

(a) (X, X̂(i)) 2 Tn
[XX̂]�

,

(b) for all i0 2 I, if (X, X̂(i0)) 2 Tn
[XX̂]�

, then i0  i;

i.e., if there exists more than one i satisfying (a), let K be the largest one.
Otherwise, K takes the constant value 1.

5. The index K is delivered to the decoder.

6. The decoder outputs X̂(K) as the reproduction sequence X̂.



Performance Analysis

• The event {K = 1} occurs in one of the following two scenarios:

1.

ˆX(1) is the only codeword in C which is jointly typical with X.

2. No codeword in C is jointly typical with X.

In other words, if K = 1, then X is jointly typical with none of the

codewords

ˆX(2), ˆX(3), · · · , ˆX(M).

• Define the event

Ei =

n

(X, ˆX(i)) 2 Tn
[XX̂]�

o

• Then

{K = 1} ⇢ Ec
2 \ Ec

3 \ · · · \ Ec
M .

• Since the codewords are generated i.i.d., conditioning on {X = x} for

any x 2 Xn
, the events Ei are mutually independent and have the same

probability.



• Then for any x 2 Xn
,

Pr{K = 1|X = x}  Pr{Ec
2 \ Ec

3 \ · · · \ Ec
M |X = x}

=

MY

i=2

Pr{Ec
i |X = x}

= (Pr{Ec
1|X = x})M�1

= (1� Pr{E1|X = x})M�1.

• We will focus on x 2 Sn
[X]� where

Sn
[X]� = {x 2 Tn

[X]� : |Tn
[X̂|X]�

(x)| � 1},

because Pr{X 2 Sn
[X]�} ⇡ 1 for large n (Proposition 6.13).



• For x 2 Sn
[X]�, obtain a lower bound on Pr{E1|X = x} as follows:

Pr{E1|X = x} = Pr

n

(x, ˆX(1)) 2 Tn
[XX̂]�

o

=

X

x̂2Tn
[X̂|X]�

(x)

p(ˆx)

a)
�

X

x̂2Tn
[X̂|X]�

(x)

2

�n(H(X̂)+⌘)

b)
� 2

n(H(X̂|X)�⇠)
2

�n(H(X̂)+⌘)

= 2

�n(H(X̂)�H(X̂|X)+⇠+⌘)

= 2

�n(I(X;X̂)+⇣),

where ⇣ = ⇠ + ⌘ ! 0 as � ! 0. In the above,

a) follows because from the consistency of strong typicality, if (x, ˆx) 2
Tn
[XX̂]�

, then

ˆ

x 2 Tn
[X̂]�

.

b) follows from conditional strong AEP.



• Therefore,

Pr{K = 1|X = x}  Pr{Ec
2 \ Ec

3 \ · · · \ Ec
M |X = x}


h
1� 2

�n(I(X;X̂)+⇣)
iM�1

• Then

lnPr{K = 1|X = x}  (M � 1) ln

h
1� 2

�n(I(X;X̂)+⇣)
i

a)


⇣
2

n(I(X;X̂)+ ✏
2 ) � 1

⌘
ln

h
1� 2

�n(I(X;X̂)+⇣)
i

b)
 �

⇣
2

n(I(X;X̂)+ ✏
2 ) � 1

⌘
2

�n(I(X;X̂)+⇣)

= �
h
2

n( ✏
2�⇣) � 2

�n(I(X;X̂)+⇣)
i

a) follows because the logarithm is negative.

b) follows from the fundamental inequality.



• Let � be su�ciently small so that

✏

2

� ⇣ > 0. (1)

Then the upper bound on lnPr{K = 1|X = x} tends to �1 as n ! 1,

i.e., Pr{K = 1|X = x} ! 0 as n ! 1.

• This implies for su�ciently large n,

Pr{K = 1|X = x}  ✏

2

.



• It follows that

Pr{K = 1} =

X

x2Sn
[X]�

Pr{K = 1|X = x}Pr{X = x}

+

X

x 62Sn
[X]�

Pr{K = 1|X = x}Pr{X = x}


X

x2Sn
[X]�

✏

2

· Pr{X = x}+
X

x 62Sn
[X]�

1 · Pr{X = x}

=

✏

2

· Pr{X 2 Sn
[X]�}+ Pr{X 62 Sn

[X]�}

 ✏

2

· 1 + (1� Pr{X 2 Sn
[X]�})

<
✏

2

+ �,

where we have invoked Proposition 6.13 in the last step.

• By letting � be su�ciently small so that both (1) and � < ✏
2 are satisfied,

we obtain

Pr{K = 1} < ✏.



Main Idea
• Randomly generate M codewords in

ˆXn
according to p(x̂)

n
, where n is

large.

• X 2 S

n
[X]� with high probability.

• For x 2 S

n
[X]�, by conditional strong AEP,

Pr

n

(X,

ˆ

X(i)) 2 T

n
[XX̂]�

|X = x

o

⇡ 2

�nI(X;X̂)
.

• If M grows with n at a rate higher than I(X;

ˆ

X), then the probability

that there exists at least one

ˆ

X(i) which is jointly typical with the source

sequence X with respect to p(x, x̂) is high.

• Such an

ˆ

X(i), if exists, would have d(X,

ˆ

X) ⇡ Ed(X,

ˆ

X)  D, because

the joint relative frequency of (x,

ˆ

X(i)) ⇡ p(x, x̂).

• Use this

ˆ

X(i) to represent X to satisfy the distortion constraint.



The Remaining Details
• For su�ciently large n, consider

Pr{d(X, ˆX) > D + ✏} = Pr{d(X, ˆX) > D + ✏|K = 1}Pr{K = 1}
+Pr{d(X, ˆX) > D + ✏|K 6= 1}Pr{K 6= 1}

 1 · ✏+ Pr{d(X, ˆX) > D + ✏|K 6= 1} · 1
= ✏+ Pr{d(X, ˆX) > D + ✏|K 6= 1}.

• Conditioning on {K 6= 1}, we have (X, ˆX) 2 Tn

[XX̂]�
.

• It can be shown that (see textbook)

d(X, ˆX)  D + d
max

�.

By taking �  ✏

d

max

, we obtain d(X, ˆX)  D + ✏.

• Therefore, Pr{d(X, ˆX) > D + ✏|K 6= 1} = 0, which implies Pr{d(X, ˆX) >
D + ✏}  ✏.



⇡ 2nH(X)

sequences
in Tn

[X]�

⇡ 2nH(X|X̂)

⇡ 2

nI(X;X̂)

codewords

in Tn
[X̂]�

The number of codewords must be at least

2

nH(X)

2

nH(X|X̂)
⇡ 2

nI(X;X̂)


