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Information Transmission with
Distortion

Consider compressing an information source with entropy rate H at rate
R < H.

By the source coding theorem, P, — 1 as n — oo.

Under such a situation, information must be transmitted with “distor-
tion” .

What is the best possible tradeoft?



8.1 Single-Letter Distortion
Measure

Let {X,k > 1} be an i.i.d. information source with generic random vari-
able X ~ p(x), where |X| < oc.

Consider a source sequence X = (x1,Z2, - ,T,) and a reproduction se-
quence X = (Z1,To, *+ ,Tp).

The components of x take values in a reproduction alphabet X , Where
X < o0.

In general, X may be different from X'.

For example, x can be a quantized version of x.



Definition 8.1 A single-letter distortion measure is a mapping
d: X x X — Rt

The value d(x,Z) denotes the distortion incurred when a source symbol x is
reproduced as 2.

Definition 8.2 The average distortion between a source sequence x € X and

a reproduction sequence x € X" induced by a single-letter distortion measure
d is defined by

N R A
d(x,%) = — > d(wk, ).
k=1



Examples of a Distortion Measure

o Let ¥ = X.

A

1. Square-error: d(z, %) = (x — )2, where X and X are real.

2. Hamming distortion:

0 itzx=2

“%@:{1ﬁx¢£

where the symbols in X do not carry any particular meaning.



e Let X be an estimate of X.

1. If d is the square-error distortion measure, Ed(X,X) is called the
mean square error.

2. It d is the Hamming distortion measure,
Ed(X,X)=Pr{X =X} - 0+Pr{X # X} -1 =Pr{X # X}

is the probability of error. For a source sequence x and a reproduction
sequence X, the average distortion d(x, X) gives the frequency of error
in X.



Definition 8.5 For a distortion measure d, for each z € X, let *(x) € X
minimize d(z,Z) over all £ € X. A distortion measure d is said to be normal if

ey & d(z,z"(x)) =0

for all z € X.
e A normal distortion measure is one which allows a source X to be repro-

duced with zero distortion.

e The square-error distortion measure and the Hamming distortion measure
are normal distortion measures.

e The normalization of a distortion measure d is the distortion measure d

defined by )
d(x,2) =d(x,2) — ¢

for all (z,%) € X x X.

e It suflices to consider normal distortion measures as we will see.



Example 8.6 Let d be a distortion measure defined by

dlz,z) |a b c
1 2 7 5
2 4 3 8

Then d, the normalization of d, is given by

a b ¢
1 0O 5 3
2 1 0 5




Let X be any estimate of X which takes values in X. Then

> Zp(% z)d(z, 2)
= 3 0w) [da,d) e

= Ed(X,X)+ ) px) ) plEz)e,

€T T

= EBd(X,X)+ ) p(x)c, (Zp(:ﬂ:p))

z

Ed(X, X)

where

is a constant which depends only on p(x) and d but not on the conditional
distribution p(z|x).



Definition 8.7 Let #* minimizes Ed(X,Z) over all & € X, and define

Doz = Ed(X, 3%).

Note: z* is not the same as 2*(x).

e If we know nothing about a source variable X, then Z* is the best estimate
of X, and D,,,, is the minimum expected distortion between X and a
constant estimate of X.

e Specifically, D,,.. can be asymptotically achieved by taking (z*, 2*,--- ,2%)
to be the reproduction sequence.

e Therefore it is not meanful to impose a constraint D > D,,,. on the
reproduction sequence.



8.2 The Rate-Distortion Function

All the discussions are with respect to an i.i.d. information source { X,k > 1}
with generic random variable X and a distortion measure d.

Definition 8.8 An (n, M) rate-distortion code is defined by an encoding func-
tion

f:x"—=A{1,2,--- M}
and a decoding function
g 1.2, MY A7

The set {1,2,---, M}, denoted by Z, is called the index set. The reproduc-
tion sequences g(1),g(2),--- ,g(M) in X™ are called codewords, and the set of
codewords is called the codebook.
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Definition 8.9 The rate of an (n, M) rate-distortion code is n~! log M in bits
per symbol.

Definition 8.10 A rate-distortion pair (R, D) is (asymptotically) achievable if
for any € > 0, there exists for sufficiently large n an (n, M) rate-distortion code
such that

1
—logM < R+ ¢
n

and A
Pr{d(X,X) > D + €} <,

where X = ¢(f(X)).
Remark If (R, D) is achievable, then (R’, D) and (R, D’) are achievable for

all R" > R and D" > D. This in turn implies that (R’, D’) are achievable for all
R'> R and D’ > D.



Definition 8.11 The rate-distortion region is the subset of #* containing all
achievable pairs (R, D).

Theorem 8.12 The rate-distortion region is closed and convex.

Proof

e The closeness follows from the definition of the achievability of an (R, D)
pair.

e The convexity is proved by time-sharing. Specifically, if (R™"), D(Y)) and
(R®), D)) are achievable, then so is (RN, DM), where

RN = ARW 4+ AR®
DX = ADW 4+ XxD®

and A\ = 1 — A\. This can be seen by time-sharing between two codes,
one achieving (R(l),D(l))_for A fraction of the time, and the other one
achieving (R®), D)) for X fraction of the time.



R-D region




Definition 8.13 The rate-distortion function R(D) is the minimum of all rates
R for a given distortion D such that (R, D) is achievable.

Definition 8.14 The distortion-rate function D(R) is the minimum of all
distortions D for a given rate R such that (R, D) is achievable.



Theorem 8.15 The following properties hold for the rate-distortion function
R(D):

1. R(D) is non-increasing in D.

. > D. (R(D),D) achievable = (R(D),D’) achievable. Then
R(D) > R(D') by definition of R(-).

2. Follows from the convexity of the rate-distortion region.
3. (0, Dypqaz) is achievable = R(D) =0 for D > D,,qz-

4. Since d is assumed to be normal, (H(X), 0) is achievable, and hence R(0) <
H(X).



R(D)

H(X)
R(0)

The rate
distortion
region

max



8.3 The Rate Distortion Theorem

Definition 8.16 For D > 0, the information rate-distortion function is defined
by

R;(D)=  min  I(X:;X).
X:Ed(X,X)<D

e The minimization is taken over the set of all p(&|x) such that Fd(X, X) <
D is satisfied, namely the set

p(Z|z) : Z p(x)p(&|z)d(z, ) < D

e Since this set is compact in RI*!1*! and T (X; X) is a continuous functional
of p(Z|z), the minimum value of I(X; X) can be attained.



e Since . A A
Fd(X,X)=FdX,X)— A,

where A does not depend on p(Z|z), we can always replace d by d and D
by D — A in the definition of R;(D) without changing the minimization
problem.

e Without loss of generality, we can assume d is normal.



Theorem 8.17 (The Rate-Distortion Theorem) R(D)= R;(D).

Theorem 8.18 The following properties hold for the information rate-distortion
function R;(D):

1. R;(D) is non-increasing in D.



Proof of Theorem 8.18
1. For a larger D, the minimization is taken over a larger set.

3. Let X = &* w.p. 1 to AShOW that (0, D,nqz) is achievable. Then for D >
Dz, Rr(D) < I(X;X) =0, which implies R;(D) = 0.

4. Let X = #*(X), so that Ed(X,X) = 0 (since d is normal). Then

R;(0) < I(X;X) < H(X).



Proof of Theorem 8.18

2. Consider any D, D@ > 0 and 0 < A1. Let X® achieves R; (D) for
1 =1,2, 1.e., | -
Rr(DW) = I(X; X),

where - |
Ed(X,X®) < DW

Let XM be jointly distributed with X defined by
pa(Z]z) = Ap1(2|z) + Ap2(2]2).
Then
Ed(X, XWM)
AEA(X, XM + NEd(X, X?)

< ADW 1+ XD®@)
DWW,



Finally consider
)\](X;X(l)) + S\I(X;XQ))

I[(X; X))
R (DY),

AR (DW) + AR (D®)

AVARRAV,



Corollary 8.19 If R;(0) > 0, then R;(D) is strictly decreasing for 0 < D <
D.az, and the inequality constraint in the definition of R;(D) can be replaced
by an equality constraint.

Proof

1. R;(D) must be strictly decreasing for 0 < D < D,,,4. because R;(0) > 0,
Ri(Dnaz) =0, and R;(D) is non-increasing and convex.

2. Show that R;(D) > 0 for 0 < D < D,,.: by contradiction.

e Suppose R;(D’) = 0 for some 0 < D" < Dyygq, and let Ry(D’) be
achieved by some X. Then

R;(D)=I(X;X)=0

implies that X and X are independent.

e Show that such an X which is independent of X cannot do better
than the constant estimate z*, i.e., Fd(X, X) > Fd(X,2*) = Dmnaz-

e This leads to a contradiction because

D' > Ed(X,X) > Dpmas.



Proof

3. Show that the inequality constraints in R;(D) can be replaced by an
equality constraint by contradiction.

e Assume that R;(D) is achieved by some X* such that Ed(X, X*) =
D" < D.

e Then

A

R;(D"Y=  min  I(X;X)<I(X;X*)=R;(D),
X:Ed(X,X)<D"

VAN

a contradiction because Rj(D) is strictly decreasing for 0 < D
Dma:v-

o Therefore, Fd(X,X*) = D.

Remark In all problems of interest, R(0) = R;(0) > 0. Otherwise, R(D) = 0
for all D > 0 because R(D) is nonnegative and non-increasing,.



Example 8.20 (Binary Source)

Let X be a binary random variable with
Pr{X =0}=1—v and Pr{X =1}=n+.
Let X ={0,1} and d be the Hamming distortion measure. Show that

R (D) = hy(y) — he(D) if 0 < D < min(y,1 — )
I L0 if D > min(y,1—7).



First consider 0 < v < %, and show that

Rmm:{hww—mw)ﬁogD<y

0 it D > ~.
e 2*=0and D, = Fd(X,0) =Pr{X =1} =+~.
e Consider any X and let Y = d(X, X).

e Conditioning on X, X and Y determine each other, and so, H(X|X) =
H(Y|X).

e Then for D < ~v = D,,., and any X such that Ed(X,X) < D,

[(X:X) = HX)-HX|X)
= Iy(v) — H(Y|X)
> hy(y) — H(Y) A (1)
= hp(y) — hp(Pr{X # X})
S holy) — ha(D). (2)

a) because Pr{X # X} = FEd(X,X) < D and hy(a) is increasing for
0<a<?i.
=& =3



e Therefore,

Ri(D)=  min  I(X;X)> hy(y) — ho(D).
X:Ed(X,X)<D

Now need to construct X which is tight for (1) and (2), so that the above bound
is achieved.

e (1) tight < Y independent of X

o (2) tight & Pr{X # X} =D

e The required X can be specified by the following reverse BSC:

1-vy-D 1-D
1-2D

>
S




e Therefore, we conclude that

B hb(’y) —hb(D) if 0<D <7y
RI(D)_{O if D> 7.

For 1/2 <~ < 1, by exchanging the roles of the symbols 0 and 1 and applying
the same argument, we obtain R;(D) as above except that = is replaced by
1 — . Combining the two cases, we have

R;(D) = ho(y) —he(D) if 0< D < min(y,1—7)
I L0 if D > min(y,1—7).

for 0 < v < 1.



R;(D)

0.5



A Remark

The rate-distortion theorem does not include the source coding theorem as a
special case:

e In Example 8.20, R;(0) = hy(v) = H(X).

e By the rate-distortion theorem, if R > H(X), the average Hamming dis-
tortion, i.e., the error probability per symbol, can be made arbitrarily
small.

e However, by the source coding theorem, if R > H(X), the message error
probability can be made arbitrarily small, which is much stronger.



8.4 The Converse

e Prove that for any achievable rate-distortion pair (R, D), R > R (D).

e Fix D and minimize R over all achievable pairs (R, D) to conclude that

R(D) > R;(D).
Proof

1. Let (R, D) be any achievable rate-distortion pair, i.e., for any € > 0, there
exists for sufficiently large n an (n, M) code such that

1
—logM < R+ ¢
n

and A
Pr{d(X,X) > D + ¢} <,

where X = g(f(X)).



2. Then

n(R + ¢€) log M

vV IVE

IV

> (X Xi)
k=1

S Ry(Bd(Xe, X))
k=1

AVASS

] — )
— — Ri(Ed(X:.. X
n n}; 1(Ed(Xy, X))

d) 1 — .

> —

= TLR] (n ZEd(Xkan)>
k=1

= nR;(Ed(X,X)).

c) follows from from the definition of R;(D).

d) follows from the convexity of R;(D) and Jensen’s inequality.



3. Let dyor = max, ; d(x,2). Then

A

Ed(X,X)
= Eld(X,X)|d(X,X) > D+ ]Pr{d(X,X) > D + ¢}
+E[d(X,X)|d(X,X) < D+ ¢|Pr{d(X,X) < D + ¢}
< dmpar-€+(D+e)-1
= D+ (dmas + 1)e.

That is, if the probability that the average distortion between X and X
exceeds D + € is small, then the expected average distortion between X
and X can exceed D only by a small amount.

4. Therefore,

R;(Ed(X, X))
Ri(D + (dmaz + 1)€),

R+ €

AVARAV,

because Rj(D) is non-increasing in D.



5. Rr(D) convex implies it is continuous in D. Finally,

R

[V

lim Ry (D + (dyaz + 1)€)

e—0
= R; (D + (dimaz + 1) lim e)
e—0
= R(D).

Minimizing R over all achievable pairs (R, D) for a fixed D to obtain
R(D) > R;(D).



8.5 Achievability of R|(D)

An i.i.d. source { X} : k > 1} with generic random variable X ~ p(z) is
given.

For every random variable X taking values in X with Fd(X,X) < D,
where 0 < D < D,pqz, prove that the rate-distortion pair (I(X;X), D) is
achievable by showing for large n the existence of a rate-distortion code
such that

1. the rate of the code is not more than I(X; X) + €;
2. d(X,X) < D + ¢ with probability almost 1.

Minimize I(X; X) over all such X to conclude that (R;(D), D) is achiev-
able.

This implies that R;(D) > R(D).



Random Coding Scheme

e Fix ¢ > 0 and X with Ed(X,)A() < D, where 0 < D < D,,az- Let 6 be
specified later.

e Let M be an integer satistying

1 A
£ < < —logM < I(X;X) +e¢,
27 n

A

I(X;X)+

where n is sufficiently large.
e The random coding scheme:

1. Construct a codebook C of an (n, M) code by randomly generating M
codewords in X" independently and identically according to p(z)".

Denote these codewords by X(1),X(2),--- , X(M).
2. Reveal the codebook C to both the encoder and the decoder.

3. The source sequence X is generated according to p(x)™.



4. The encoder encodes the source sequence X into an index K in the set
7=1{1,2,--- ,M}. The index K takes the value i if

(@) (X, X(0) €T7 ¢

(b) for all ¢/ € Z, if (X,X(¢)) € ' 415 then i <

i.e., if there exists more than one i satisfying (a), let K be the largest one.
Otherwise, K takes the constant value 1.

5. The index K 1is delivered to the decoder.

6. The decoder outputs X(K ) as the reproduction sequence X.



Performance Analysis

The event { K = 1} occurs in one of the following two scenarios:

1. X (1) is the only codeword in C which is jointly typical with X.
2. No codeword in C is jointly typical with X.

In other words, it K = 1, then X is jointly typical with none of the
codewords X (2), X(3), -+, X(M).

Define the event )
E;, = {(X,X(i)) c T&X](S}

Then
{K=1} C ESNE;N---NEY,.

Since the codewords are generated i.i.d., conditioning on {X = x} for
any x € X", the events F;, are mutually independent and have the same
probability.



e Then for any x € A",
Pr{K=1X=x} < Pr{ESNE;N---NEy,X=x}
M
= ][ Pr{EIX =x}
i=2

= (Pr{Ef|X = x})M~
= (1-Pr{F|X=x)M"1

e We will focus on x € SE}(] 5 where
Sn 5_{X€T |TX|X] ( )|21}7

because Pr{X € S;} =~ 1 for large n (Proposition 6.13).



o For x € 5[5, obtain a lower bound on Pr{F{|X = x} as follows:

Pr{fi|X =x} = Pr{(x,X(1) €T s}

(XX
Cé) Z o—n(H(X)+n)
ﬁeT&lx]é(x)
bz) Qn(H(X|X)—§)2—n(H(X)+n)

o—n(H(X)~H(X|X)+&+n)

_ Q—H(I(X;X)—I-C),

where ( =& +1n — 0 as 0 — 0. In the above,

a) follows because from the consistency of strong typicality, if (x,X) €
n * n
T[XX](S’ then x € T[X](S'

b) follows from conditional strong AEP.



e Therefore,

Pr{K =1|X = x}

VAN

Pr{ESNESN---NES X = x)
}M—l

VAN

{1 _ 9—n(I(X;X)+¢)

e Then

InPr{K=1X=x} < (M—-1)ln [1 _ Q—n(I(X;X)JrC)}

INE

(2n<z<x;;z>+g> B 1) In [1 _ 2—n<I<X;X>+c>}

INE

_ (2n<I<X;f<>+§> _ 1) o—n(I(X;X)+¢)

_ Pn(%—c) _ 2—n<I<X;X>+c>]

a) follows because the logarithm is negative.
b) follows from the fundamental inequality.



e Let 0 be sufficiently small so that

§—<>u (1)

Then the upper bound on InPr{K = 1|X = x} tends to —oo as n — o0,
i.e., Pt{K =1 X =x} —- 0 as n — oo.

e This implies for sufficiently large n,

Pr{K =1|X = x} < %



e It follows that

Pr{K=1} = » Pr{K=1X=x}Pr{X=x}
XESE}(](S
+ ) Pr{K=1X=x}Pr{X =x}
x%S&w

< Z %-Pr{X:X}+ Z 1-Pr{X = x}
XGS[X]5 XQS[X](S
¢ n mn

< %-1+(1 — Pr{X € S%5})
€
— 46

< 5 + 0,

where we have invoked Proposition 6.13 in the last step.

e By letting 0 be sufficiently small so that both (1) and § < 5 are satisfied,
we obtain

Pr{K =1} <e.



Main ldea

Randomly generate M codewords in X" according to p(2)™, where n is
large.

Xesd X5 with high probability.
For x € Si’fX] 5, by conditional strong AEP,

A

Pr {(X, X(i)) € T o5 | X = X} ~ 9 (XiX)

If M grows with n at a rate higher than I(X . X ), then the probability

that there exists at least one X(z) which is jointly typical with the source
sequence X with respect to p(x, ) is high.

Such an X(i), if exists, would have d(X,X) ~ Ed(X,X) < D, because
the joint relative frequency of (x,X(7)) ~ p(z, Z).

A

Use this X () to represent X to satisfy the distortion constraint.



The Remaining Details

For sufficiently large n, consider

Pr{d(X,X)>D+¢ = Pr{dX,X)>D+¢K =1}Pr{K =1}
+Pr{d(X,X) > D + ¢|K # 1}Pr{K # 1}
1-e+Pr{d(X,X)>D+e¢K#1}-1
e+ Pr{d(X,X) > D +¢|K #1}.

VAN

Conditioning on {K # 1}, we have (X, X) € T[?;(X]é'

It can be shown that (see textbook)
d(X,X) < D + dymaz0.

By taking § < ——, we obtain d(X, X) <D+e

dmaa:

Therefore, Pr{d(X,X) > D + ¢|K # 1} = 0, which implies Pr{d(X, X) >
D +e€} <e.




~ 9nH(X|X) —

~ Qi (X) ~ 2nI(X;X)
sequences . codewords
. n . : n
in T[X]5 - in T[X']é

. _

The number of codewords must be at least

2nH(X) ~ 2nI(X;X')

onH(X|X)



