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Repetition Channel Code
• Assume � < 0.5.

• Pe = � if encode message A to 0 and message B to 1.

• To improve reliability, encode message A to 00 · · · 0 (n times) and message
B to 11 · · · 1 (n times).

• Ni = # i’s received, i = 0, 1.

• Receiver declares �
A if N0 > N1

B otherwise

• If message is A, by WLLN, N0 ⇥ n(1 � �) and N1 ⇥ n� w.p. ⇤ 1 as
n⇤⌅.

• Decode correct w.p. ⇤ 1 if message is A. Similarly if message is B.

• However, R = 1
n log 2⇤ 0 as n⇤⌅. :(



7.1 Definition and Capacity

Definition 7.1 (Discrete Channel I) Let X and Y be discrete alphabets,
and p(y|x) be a transition matrix from X to Y. A discrete channel p(y|x) is a
single-input single-output system with input random variable X taking values
in X and output random variable Y taking values in Y such that

Pr{X = x, Y = y} = Pr{X = x}p(y|x)

for all (x, y) ⇤ X � Y.

Definition 7.2 (Discrete Channel II) Let X , Y, and Z be discrete alpha-
bets. Let � : X �Z ⇥ Y, and Z be a random variable taking values in Z, called
the noise variable. A discrete channel (�, Z) is a single-input single-output sys-
tem with input alphabet X and output alphabet Y. For any input random
variable X, the noise variable Z is independent of X, and the output random
variable Y is given by

Y = �(X, Z).
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Two Equivalent Definitions for 
Discrete Channel

• II � I: obvious

• I� II:

– Define r.v. Zx with Zx = Y for x ⇥ X such that Pr{Zx = y} = p(y|x).
– Assume Zx, x ⇥ X are mutually independent and also independent

of X.
– Define the noise variable Z = (Zx : x ⇥ X ).
– Let Y = Zx if X = x, so that Y = �(X, Z).
– Then

Pr{X = x, Y = y} = Pr{X = x}Pr{Y = y|X = x}
= Pr{X = x}Pr{Zx = y|X = x}
= Pr{X = x}Pr{Zx = y}
= Pr{X = x}p(y|x)



Definition 7.3 Two discrete channels p(y|x) and (�, Z) defined on the same
input alphabet X and output alphabet Y are equivalent if

Pr{�(x, Z) = y} = p(y|x)

for all x and y.



Some Basic Concepts

• A discrete channel can be used repeatedly at every time index i = 1, 2, · · · .

• Assume the noise for the transmission over the channel at di�erent time
indices are independent of each other.

• To properly formulate a DMC, we regard it as a subsystem of a discrete-
time stochastic system which will be referred to as “the system”.

• In such a system, random variables are generated sequentially in discrete-
time.

• More than one random variable may be generated instantaneously but
sequentially at a particular time index.



Definition 7.4 (DMC I) A discrete memoryless channel (DMC) p(y|x) is
a sequence of replicates of a generic discrete channel p(y|x). These discrete
channels are indexed by a discrete-time index i, where i ⇥ 1, with the ith
channel being available for transmission at time i. Transmission through a
channel is assumed to be instantaneous. Let Xi and Yi be respectively the
input and the output of the DMC at time i, and let Ti� denote all the random
variables that are generated in the system before Xi. The equality

Pr{Yi = y, Xi = x, Ti� = t} = Pr{Xi = x, Ti� = t}p(y|x)

holds for all (x, y, t) ⌅ X � Y � Ti�.

Remark: Ti� ⇤ Xi ⇤ Yi, or

Given Xi, Yi is independent of everything in the past.
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Definition 7.5 (DMC II) A discrete memoryless channel (�, Z) is a sequence
of replicates of a generic discrete channel (�, Z). These discrete channels are
indexed by a discrete-time index i, where i � 1, with the ith channel being
available for transmission at time i. Transmission through a channel is assumed
to be instantaneous. Let Xi and Yi be respectively the input and the output
of the DMC at time i, and let Ti� denote all the random variables that are
generated in the system before Xi. The noise variable Zi for the transmission
at time i is a copy of the generic noise variable Z, and is independent of (Xi, Ti�).
The output of the DMC at time i is given by

Yi = �(Xi, Zi).

Remark: The equivalence of Definitions 7.4 and 7.5 can be shown. See text-
book.
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Assume both X and Y are finite.

Definition 7.6 The capacity of a discrete memoryless channel p(y|x) is defined
as

C = max
p(x)

I(X;Y ),

where X and Y are respectively the input and the output of the generic discrete
channel, and the maximum is taken over all input distributions p(x).

Remarks:

• Since I(X;Y ) is a continuous functional of p(x) and the set of all p(x) is
a compact set (i.e., closed and bounded) in ⇥|X |, the maximum value of
I(X;Y ) can be attained.

• Will see that C is in fact the maximum rate at which information can be
communicated reliably through a DMC.

• Can communicate through a channel at a positive rate while Pe � 0!
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Example 7.7 (BSC)

Alternative representation of a BSC:

Y = X + Z mod 2

with
Pr{Z = 0} = 1� � and Pr{Z = 1} = �

and Z is independent of X.



Determination of C:

•

I(X;Y ) = H(Y )�H(Y |X)

= H(Y )�
�

x

p(x)H(Y |X = x)

= H(Y )�
�

x

p(x)hb(�)

= H(Y )� hb(�)
⇥ 1� hb(�)

• So, C ⇥ 1� hb(�).

• Tightness achieved by taking the uniform input distribution.

• Therefore, C = 1� hb(�) bit per use.
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Example 7.8 (Binary Erasure Channel)
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Erasure probability = �; C = (1� �) bit per use



7.2 The Channel Coding Theorem

• Direct Part Information can be communicated through a DMC with
an arbitrarily small probability of error at any rate less than the channel
capacity.

• Converse If information is communicated through a DMC at a rate
higher than the capacity, then the probability of error is bounded away
from zero.



Definition of a Channel Code

Definition 7.9 An (n, M) code for a discrete memoryless channel with input
alphabet X and output alphabet Y is defined by an encoding function

f : {1, 2, · · · , M}�X n

and a decoding function

g : Yn � {1, 2, · · · , M}.

• Message Set W = {1, 2, · · · , M}

• Codewords f(1), f(2), · · · , f(M)

• Codebook The set of all codewords.



Assumptions and Notations

• W is randomly chosen from the message set W, so H(W ) = log M .

• X = (X1, X2, · · · , Xn); Y = (Y1, Y2, · · · , Yn)

• Thus X = f(W ).

• Let Ŵ = g(Y) be the estimate on the message W by the decoder.

Encoder 
Channel 

p ( y | x ) 
Decoder 

X Y W 

Estimate 

of message 

W 

Message 



Error Probabilities

Definition 7.10 For all 1 � w �M , let

�w = Pr{Ŵ ⇥= w|W = w} =
�

y�Yn:g(y) ⇥=w

Pr{Y = y|X = f(w)}

be the conditional probability of error given that the message is w.

Definition 7.11 The maximal probability of error of an (n, M) code is defined
as

�max = max
w

�w.

Definition 7.12 The average probability of error of an (n, M) code is defined
as

Pe = Pr{Ŵ ⇥= W}.



•

Pe = Pr{Ŵ ⇥= W}
=

�

w

Pr{W = w}Pr{Ŵ ⇥= W |W = w}

=
�

w

1
M

Pr{Ŵ ⇥= w|W = w}

=
1
M

�

w

�w,

• Therefore, Pe � �max.

Pe vs λmax



Rate of a Channel Code

Definition 7.13 The rate of an (n, M) channel code is n�1 log M in bits per
use.

Definition 7.14 A rate R is (asymptotically) achievable for a discrete mem-
oryless channel if for any � > 0, there exists for su�ciently large n an (n, M)
code such that

1
n

log M > R� �

and
⇥max < �.



Theorem 7.15 (Channel Coding Theorem) A rate R is achievable for a
discrete memoryless channel if and only if R � C, the capacity of the channel.



7.3 The Converse

• The communication system consists of the r.v.’s

W, X1, Y1, X2, Y2, · · · , Xn, Yn, Ŵ

generated in this order.

• The memorylessness of the DMC imposes the following Markov constraint
for each i:

(W, X1, Y1, · · · , Xi�1, Yi�1)� Xi � Yi

• The dependency graph can be composed accordingly.
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• Use q to denote the joint distribution and marginal distributions of all
r.v.’s.

• For all (w,x,y, ŵ) ⇤W �Xn�Yn� Ŵ such that q(x) > 0 and q(y) > 0,

q(w,x,y ŵ) = q(w)

�
n⇤

i=1

q(xi|w)

⇥ �
n⇤

i=1

p(yi|xi)

⇥
q(ŵ|y).

• q(w) > 0 for all w so that q(xi|w) are well-defined.

• q(xi|w) and q(ŵ|y) are deterministic.

• The dependency graph suggests the Markov chain W ⇥ X⇥ Y ⇥ Ŵ .

• This can be formally justified by invoking Proposition 2.9.



Show that for x such that q(x) > 0,

q(y|x) =
n⌃

i=1

p(yi|xi)

First, for x and y such that q(x) > 0 and q(y) > 0,

q(x,y) =
⇧

w

⇧

ŵ

q(w,x,y, ŵ)

=
⇧

w

⇧

ŵ

q(w)

�
⌃

i

q(xi|w)

⇥ �
⌃

i

p(yi|xi)

⇥
q(ŵ|y)

=
⇧

w

q(w)

�
⌃

i

q(xi|w)

⇥ �
⌃

i

p(yi|xi)

⇥
⇧

ŵ

q(ŵ|y)

=

⇤
⇧

w

q(w)
⌃

i

q(xi|w)

⌅ ⇤
⌃

i

p(yi|xi)

⌅



Furthermore,

q(x) =
⇧

y

q(x,y)

=
⇧

y

⇤
⇧

w

q(w)
⌃

i

q(xi|w)

⌅ ⇤
⌃

i

p(yi|xi)

⌅

=

⇤
⇧

w

q(w)
⌃

i

q(xi|w)

⌅ ⇤
⇧

y1

⇧

y2

· · ·
⇧

yn

⌃

i

p(yi|xi)

⌅

=

⇤
⇧

w

q(w)
⌃

i

q(xi|w)

⌅
⌃

i

�
⇧

yi

p(yi|xi)

⇥

=
⇧

w

q(w)
⌃

i

q(xi|w)

Therefore, for x such that q(x) > 0,

q(y|x) =
q(x,y)
q(x)

=
⌃

i

p(yi|xi)



Why C is related to I(X;Y)?

• H(X|W ) = 0

• H(Ŵ |Y) = 0

• Since W and Ŵ are essentially identical for reliable communication, as-
sume

H(Ŵ |W ) = H(W |Ŵ ) = 0

• Then from the information diagram for W � X� Y � Ŵ , we see that

H(W ) = I(X;Y).

• This suggests that the channel capacity is obtained by maximizing I(X;Y ).
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Building Blocks of the Converse

• For all 1 � i � n,
I(Xi;Yi) � C

• Then
n�

i = 1

I(Xi;Yi) � nC

• To be established in Lemma 7.16,

I(X;Y) �
n�

i = 1

I(Xi;Yi)



• Therefore,

1
n

log M =
1
n

H(W )

=
1
n

I(X;Y)

� 1
n

n�

i=1

I(Xi;Yi)

� C



Lemma 7.16 I(X;Y) ⇥
�n

i=1 I(Xi;Yi)

Proof

1. Establish

H(Y|X) =
n⇥

i=1

H(Yi|Xi)

2.

I(X;Y) = H(Y)�H(Y|X)

⇥
n⇥

i=1

H(Yi)�
n⇥

i=1

H(Yi|Xi)

=
n⇥

i=1

I(Xi;Yi)



Formal Converse Proof

1. Let R be an achievable rate, i.e., for any � > 0, there exists for su�ciently
large n an (n, M) code such that

1
n

log M > R� � and ⇥max < �

2. Consider

log M
a)
= H(W )
= H(W |Ŵ ) + I(W ; Ŵ )
b)
⇥ H(W |Ŵ ) + I(X;Y)
c)
⇥ H(W |Ŵ ) +

n�

i=1

I(Xi;Yi)

d)
⇥ H(W |Ŵ ) + nC,



3. By Fano’s inequality,

H(W |Ŵ ) < 1 + Pe log M

4. Then,

log M < 1 + Pe log M + nC

⇥ 1 + ⇥max log M + nC

< 1 + � log M + nC,

Therefore,

R� � <
1
n

log M <
1
n + C

1� �

5. Letting n⇤⌅ and then �⇤ 0 to conclude that R ⇥ C.



Asymptotic Bound for Pe: 

Weak Converse
• For large n,

Pe ⇥ 1� 1 + nC

log M
= 1�

1
n + C

1
n log M

⇤ 1� C
1
n log M

• 1
n log M is the actual rate of the channel code.

• If 1
n log M > C, then Pe > 0 for large n.

• This implies that if 1
n log M > C, then Pe > 0 for all n.
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Strong Converse

• If there exists an � > 0 such that 1
n log M � C + � for all n, then Pe ⇥ 1

as n⇥⇤.



7.4 Achievability

• Consider a DMC p(y|x).

• For every input distribution p(x), prove that the rate I(X;Y ) is achievable
by showing for large n the existence of a channel code such that

1. the rate of the code is arbitrarily close to I(X;Y );
2. the maximal probability of error �max is arbitrarily small.

• Choose the input distribution p(x) to be one that achieves the channel
capacity, i.e., I(X;Y ) = C.



Lemma 7.17 Let (X⇥,Y⇥) be n i.i.d. copies of a pair of generic random vari-
ables (X ⇥, Y ⇥), where X ⇥ and Y ⇥ are independent and have the same marginal
distributions as X and Y , respectively. Then

Pr{(X⇥,Y⇥) ⇤ Tn
[XY ]�} � 2�n(I(X;Y )�⇥),

where ⇥ ⇥ 0 as � ⇥ 0.



Proof of Lemma 7.17
• Consider

Pr{(X⇥,Y⇥) ⇥ Tn
[XY ]�} =

�

(x,y)⇤T n
[XY ]�

p(x)p(y)

• Consistency of strong typicality: x ⇥ Tn
[X]� and y ⇥ Tn

[Y ]�.

• Strong AEP: p(x) � 2�n(H(X)�⇤) and p(y) � 2�n(H(Y )�⇥).

• Strong JAEP: |Tn
[XY ]�| � 2n(H(X,Y )+⌅).

• Then

Pr{(X⇥,Y⇥) ⇥ Tn
[XY ]�}

� 2n(H(X,Y )+⌅) · 2�n(H(X)�⇤) · 2�n(H(Y )�⇥)

= 2�n(H(X)+H(Y )�H(X,Y )�⌅�⇤�⇥)

= 2�n(I(X;Y )�⌅�⇤�⇥)

= 2�n(I(X;Y )�⇧)



An Interpretation of Lemma 7.17

2 nH ( Y ) 

2 nH ( X,Y ) 2 nH ( X ) 

y S 
[ Y ] 

n 

x S 
[ X ] 

n 
( x , y ) T 

[ XY ] 

n 

. 

. 

. . 
. 
. 

. . . 
. 

. . . . 

. 

• Randomly choose a row with uniform distribution and randomly choose a
column with uniform distribution.

•

Pr{Obtaining a jointly typical pair} � 2nH(X,Y )

2nH(X)2nH(Y )
= 2�nI((X;Y )



Random Coding Scheme
• Fix ⇥ > 0 and input distribution p(x). Let � to be specified later.

• Let M be an even integer satisfying

I(X;Y )� ⇥

2
<

1
n

log M < I(X;Y )� ⇥

4
,

where n is su�ciently large, i.e., M ⇥ 2nI(X;Y ).

The random coding scheme:

1. Construct the codebook C of an (n, M) code by generating M codewords
in Xn independently and identically according to p(x)n. Denote these
codewords by X̃(1), X̃(2), · · · , X̃(M).

2. Reveal the codebook C to both the encoder and the decoder.

3. A message W is chosen from W according to the uniform distribution.

4. Transmit X = X̃(W ) through the channel.



X̃(1)

X̃(2)

X̃(M)

n

• Generate each component according to p(x).

• There are a total of |X |Mn possible codebooks that can be constructed.

• Regard two codebooks whose sets of codewords are permutations of each
other as two di�erent codebooks.

•

•

•



5. The channel outputs a sequence Y according to

Pr{Y = y|X̃(W ) = x} =
n�

i=1

p(yi|xi)

6. The sequence Y is decoded to the message w if

• (X̃(w),Y) � Tn
[XY ]�, and

• there does not exists w� ⇥= w such that (X̃(w�),Y) � Tn
[XY ]�.

Otherwise, Y is decoded to a constant message in W. Denote by Ŵ the
message to which Y is decoded.



Performance Analysis

• To show that Pr{Err} = Pr{Ŵ ⇤= W} can be arbitrarily small.

•

Pr{Err} =
M�

w=1

Pr{Err |W = w}Pr{W = w}

= Pr{Err |W = 1}
M�

w=1

Pr{W = w}

= Pr{Err |W = 1}

• For 1 � w � M , define the event

Ew = {(X̃(w),Y) ⇥ Tn
[XY ]�}



•

•

•

X̃(1)

X̃(2)

X̃(M)

Y•

C
Yn



• If E1 occurs but Ew does not occur for all 2 ⇥ w ⇥ M , then no decoding
error. Therefore,

Pr{Errc|W = 1} ⇤ Pr{E1 ⇧ Ec
2 ⇧ Ec

3 ⇧ · · · ⇧Ec
M |W = 1}

•

Pr{Err |W = 1} = 1� Pr{Errc|W = 1}
⇥ 1� Pr{E1 ⇧ Ec

2 ⇧ Ec
3 ⇧ · · · ⇧Ec

M |W = 1}
= Pr{(E1 ⇧ Ec

2 ⇧ Ec
3 ⇧ · · · ⇧Ec

M )c|W = 1}
= Pr{Ec

1 ⌅ E2 ⌅ E3 ⌅ · · · ⌅EM |W = 1}

• By the union bound,

Pr{Err |W = 1} ⇥ Pr{Ec
1|W = 1} +

M�

w=2

Pr{Ew|W = 1}



• By strong JAEP,

Pr{Ec
1|W = 1} = Pr{(X̃(1),Y) ⌅⇤ Tn

[XY ]�|W = 1} < ⇥

• Conditioning on {W = 1}, for 2 � w � M , (X̃(w),Y) are n i.i.d. copies
of the pair of generic random variables (X ⇥, Y ⇥), where X ⇥ and Y ⇥ have
the same marginal distributions as X and Y , respectively.

• Since a DMC is memoryless, X ⇥ and Y ⇥ are independent because X̃(1) and
X̃(w) are independent and the generation of Y depends only on X̃(1). See
textbook for a formal proof.

• By Lemma 7.17,

Pr{Ew|W = 1} = Pr{(X̃(w),Y) ⇤ Tn
[XY ]�|W = 1}

� 2�n(I(X;Y )�⇥)

where ⇤ ⇥ 0 as � ⇥ 0.



•
1
n

log M < I(X;Y )� ⇥

4
⇤⌅ M < 2n(I(X;Y )� �

4 )

• Therefore,

Pr{Err} < ⇤ + 2n(I(X;Y )� �
4 ) · 2�n(I(X;Y )�⇥)

= ⇤ + 2�n( �
4�⇥)

• ⇥ is fixed. Since ⌅ ⇥ 0 as � ⇥ 0, we can choose � to be su�ciently small
so that ⇥

4
� ⌅ > 0

• Then 2�n( �
4�⇥) ⇥ 0 as n⇥⇧.

• Let ⇤ < �
3 to obtain

Pr{Err} <
⇥

2
for su�ciently large n.



Idea of Analysis

• Let n be large.

• Pr{X̃(1) jointly typical with Y}⇥ 1.

• For i ⇤= 1, Pr{X̃(i) jointly typical with Y} � 2�nI(X;Y ).

• If |C| = M grows at a rate < I(X;Y ), then

Pr{X̃(i) jointly typical with Y for some i ⇤= 1 }

can be made arbitrarily small.

• Then Pr{Ŵ ⇤= W} can be made arbitrarily small.



Existence of Deterministic Code

• According to the random coding scheme,

Pr{Err} =
�

C
Pr{C}Pr{Err |C}

• Then there exists at least one codebook C� such that

Pe = Pr{Err |C�} ⇥ Pr{Err} <
�

2

• By construction, this codebook has rate

1
n

log M > I(X;Y )� �

2



Code with λmax < ε

• We want a code with ⇥max < �, not just Pe < �/2.

• Technique: Discard the worst half of the codewords in C�.

• Consider
1
M

M⇤

w=1

⇥w <
�

2
�⇥

M⇤

w=1

⇥w <

�
M

2

⇥
�

• Observation: the conditional probabilities of error of the better half of the
M codewords are < � (M is even).



• After discarding the worse half of C�, the rate of the code becomes

1
n

log
M

2
=

1
n

log M � 1
n

>
�
I(X;Y )� �

2

⇥
� 1

n
> I(X;Y )� �

• Here we assume that the decoding function is unchanged, so that deletion
of worst half of the codewords does not a�ect the conditional probabilities
of error of the remaining codewords.



7.5 A Discussion
• The channel coding theorem says that an indefinitely long message can be

communicated reliably through the channel when the block length n�⇥.
This is much stronger than BER� 0.

• The direct part of the channel coding theorem is an existence proof (as
opposed to a constructive proof).

• A randomly constructed code has the following issues:

– Encoding and decoding are computationally prohibitive.
– High storage requirements for encoder and decoder.

• Nevertheless, the direct part implies that when n is large, if the codewords
are chosen randomly, most likely the code is good (Markov lemma).

• It also gives much insight into what a good code would look like.

• In particular, the repetition code is not a good code because the numbers
of ‘0’ and ‘1’s in the codewords are not roughly the same.
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The number of codewords cannot exceed about

2nH(Y )

2nH(Y |X)
= 2nI(X;Y ) = 2nC .



Channel Coding Theory
• Construction of codes with e�cient encoding and decoding algorithms falls

in the domain of channel coding theory.

• Performance of a code is measured by how far the rate is away from the
channel capacity.

• All channel codes used in practice are linear: e�cient encoding and de-
coding in terms of computation and storage.

• Channel coding has been widely used in home entertainment systems (e.g.,
audio CD and DVD), computer storage systems (e.g., CD-ROM, hard
disk, floppy disk, and magnetic tape), computer communication, wireless
communication, and deep space communication.

• The most popular channel codes used in existing systems include the Ham-
ming code, the Reed-Solomon code, the BCH code, and convolutional
codes.

• In particular, turbo code, a kind of convolutional code, is “capacity achiev-
ing.”



7.6 Feedback Capacity

• Feedback is common in practical communication systems for correcting
possible errors which occur during transmission.

• Daily example: phone conversation.

• Data communication: the receiver may request a packet to be retrans-
mitted if the parity check bits received are incorrect (Automatic Repeat-
reQuest).

• The transmitter can at any time decide what to transmit next based on
the feedback so far

• Can feedback increase the channel capacity?

• Not for DMC, even with complete feedback!
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Definition 7.18 An (n, M) code with complete feedback for a discrete mem-
oryless channel with input alphabet X and output alphabet Y is defined by
encoding functions

fi : {1, 2, · · · , M}�Y i�1 ⇤ X

for 1 ⇥ i ⇥ n and a decoding function

g : Yn ⇤ {1, 2, · · · , M}.

Notations: Yi = (Y1, Y2, · · · , Yi), Xi = fi(W,Yi�1)



Definition 7.19 A rate R is achievable with complete feedback for a discrete
memoryless channel p(y|x) if for any � > 0, there exists for su�ciently large n
an (n, M) code with complete feedback such that

1
n

log M > R� �

and
⇥max < �.

Definition 7.20 The feedback capacity, CFB, of a discrete memoryless channel
is the supremum of all the rates achievable by codes with complete feedback.

Proposition 7.21 The supremum in the definition of CFB in Definition 7.20
is the maximum.
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• The above is the dependency graph for a channel code with feedback, from
which we obtain

q(w,x,y, ŵ) = q(w)

�
n⇤

i=1

q(xi|w,yi�1)

⇥ �
n⇤

i=1

p(yi|xi)

⇥
q(ŵ|y)

for all (w,x,y, ŵ) ⇤W �Xn�Yn�W such that q(w,yi�1), q(xi) > 0 for
1 ⇥ i ⇥ n and q(y) > 0, where yi = (y1, y2, · · · , yi).



Lemma 7.22 For all 1 � i � n,

(W,Yi�1)⇥ Xi ⇥ Yi

forms a Markov chain.

Proof First establish the Markov chain

(W,Xi�1,Yi�1)⇥ Xi ⇥ Yi

by Proposition 2.9 (see the dependency graph for W,Xi, and Yi).
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• Consider a code with complete feedback.

• Consider
log M = H(W ) = I(W ;Y) + H(W |Y).

• First,

I(W ;Y) = H(Y)�H(Y|W )

= H(Y)�
n�

i=1

H(Yi|Yi�1, W )

a)
= H(Y)�

n�

i=1

H(Yi|Yi�1, W, Xi)

b)
= H(Y)�

n�

i=1

H(Yi|Xi)

⇥
n�

i=1

H(Yi)�
n�

i=1

H(Yi|Xi)

=
n�

i=1

I(Xi;Yi)

⇥ nC,



• Second,
H(W |Y) = H(W |Y, Ŵ ) � H(W |Ŵ )

• Then upper bound H(W |Ŵ ) by Fano’s inequality.

• Filling in the ⇥’s and �’s, we conclude that

R � C

Remark

1. Although feedback does not increase the capacity of a DMC, the availabil-
ity of feedback often makes coding much simpler. See Example 7.23.

2. In general, if the channel has memory, feedback can increase the capacity.



7.7 Separation of Source and 
Channel Coding
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• Consider transmitting an information source with entropy rate H reliably
through a DMC with capacity C.

• If H < C, this can be achieved by separating source and channel coding
without using feedback.

• Specifically, choose Rs and Rc such that

H < Rs < Rc < C

• It can be shown that even with complete feedback, reliable communication
is impossible if H > C.



The separation theorem for source and channel coding has the following engi-
neering implications:

• asymptotic optimality can be achieved by separating source coding and
channel coding

• the source code and the channel code can be designed separately without
losing asymptotic optimality

• only need to change the source code for di�erent information sources

• only need to change the channel code for di�erent channels

Remark For finite block length, the probability of error generally can be
reduced by using joint source-channel coding.


