# Chapter 7 Discrete Memoryless Channels

© Raymond W. Yeung 2012

Department of Information Engineering The Chinese University of Hong Kong

#### Binary Symmetric Channel



crossover probability =  $\epsilon$ 

### **Repetition Channel Code**

- Assume  $\epsilon < 0.5$ .
- $P_e = \epsilon$  if encode message A to 0 and message B to 1.
- To improve reliability, encode message A to  $00 \cdots 0$  (n times) and message B to  $11 \cdots 1$  (n times).
- $N_i = \#$  i's received, i = 0, 1.
- Receiver declares

$$\begin{cases} A & \text{if } N_0 > N_1 \\ B & \text{otherwise} \end{cases}$$

- If message is A, by WLLN,  $N_0 \approx n(1-\epsilon)$  and  $N_1 \approx n\epsilon$  w.p.  $\rightarrow 1$  as  $n \rightarrow \infty$ .
- Decode correct w.p.  $\rightarrow 1$  if message is A. Similarly if message is B.
- However,  $R = \frac{1}{n} \log 2 \to 0$  as  $n \to \infty$ . :(

#### 7.1 Definition and Capacity

**Definition 7.1 (Discrete Channel I)** Let  $\mathcal{X}$  and  $\mathcal{Y}$  be discrete alphabets, and p(y|x) be a transition matrix from  $\mathcal{X}$  to  $\mathcal{Y}$ . A discrete channel p(y|x) is a single-input single-output system with input random variable X taking values in  $\mathcal{X}$  and output random variable Y taking values in  $\mathcal{Y}$  such that

$$\Pr\{X = x, Y = y\} = \Pr\{X = x\}p(y|x)$$

for all  $(x, y) \in \mathcal{X} \times \mathcal{Y}$ .

**Definition 7.2 (Discrete Channel II)** Let  $\mathcal{X}$ ,  $\mathcal{Y}$ , and  $\mathcal{Z}$  be discrete alphabets. Let  $\alpha : \mathcal{X} \times \mathcal{Z} \to \mathcal{Y}$ , and Z be a random variable taking values in  $\mathcal{Z}$ , called the noise variable. A discrete channel  $(\alpha, Z)$  is a single-input single-output system with input alphabet  $\mathcal{X}$  and output alphabet  $\mathcal{Y}$ . For any input random variable X, the noise variable Z is independent of X, and the output random variable Y is given by

$$Y = \alpha(X, Z).$$



## Two Equivalent Definitions for Discrete Channel

- II  $\Rightarrow$  I: obvious
- I $\Rightarrow$  II:
  - Define r.v.  $Z_x$  with  $\mathcal{Z}_x = \mathcal{Y}$  for  $x \in \mathcal{X}$  such that  $\Pr\{Z_x = y\} = p(y|x)$ .
  - Assume  $Z_x, x \in \mathcal{X}$  are mutually independent and also independent of X.
  - Define the noise variable  $Z = (Z_x : x \in \mathcal{X}).$
  - Let  $Y = Z_x$  if X = x, so that  $Y = \alpha(X, Z)$ .
  - Then

$$Pr\{X = x, Y = y\} = Pr\{X = x\}Pr\{Y = y | X = x\}$$
$$= Pr\{X = x\}Pr\{Z_x = y | X = x\}$$
$$= Pr\{X = x\}Pr\{Z_x = y\}$$
$$= Pr\{X = x\}p(y|x)$$

**Definition 7.3** Two discrete channels p(y|x) and  $(\alpha, Z)$  defined on the same input alphabet  $\mathcal{X}$  and output alphabet  $\mathcal{Y}$  are equivalent if

$$\Pr\{\alpha(x, Z) = y\} = p(y|x)$$

for all x and y.

### Some Basic Concepts

- A discrete channel can be used repeatedly at every time index  $i = 1, 2, \cdots$ .
- Assume the noise for the transmission over the channel at different time indices are independent of each other.
- To properly formulate a DMC, we regard it as a subsystem of a discretetime stochastic system which will be referred to as "the system".
- In such a system, random variables are generated sequentially in discretetime.
- More than one random variable may be generated instantaneously but sequentially at a particular time index.

**Definition 7.4 (DMC I)** A discrete memoryless channel (DMC) p(y|x) is a sequence of replicates of a generic discrete channel p(y|x). These discrete channels are indexed by a discrete-time index i, where  $i \ge 1$ , with the ith channel being available for transmission at time i. Transmission through a channel is assumed to be instantaneous. Let  $X_i$  and  $Y_i$  be respectively the input and the output of the DMC at time i, and let  $T_{i-}$  denote all the random variables that are generated in the system before  $X_i$ . The equality

$$\Pr\{Y_i = y, X_i = x, T_{i-} = t\} = \Pr\{X_i = x, T_{i-} = t\}p(y|x)$$

holds for all  $(x, y, t) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{T}_{i-}$ .

**Remark**:  $T_{i-} \to X_i \to Y_i$ , or

Given  $X_i$ ,  $Y_i$  is independent of everything in the past.



**Definition 7.5 (DMC II)** A discrete memoryless channel  $(\alpha, Z)$  is a sequence of replicates of a generic discrete channel  $(\alpha, Z)$ . These discrete channels are indexed by a discrete-time index i, where  $i \geq 1$ , with the ith channel being available for transmission at time i. Transmission through a channel is assumed to be instantaneous. Let  $X_i$  and  $Y_i$  be respectively the input and the output of the DMC at time i, and let  $T_{i-}$  denote all the random variables that are generated in the system before  $X_i$ . The noise variable  $Z_i$  for the transmission at time i is a copy of the generic noise variable Z, and is independent of  $(X_i, T_{i-})$ . The output of the DMC at time i is given by

 $Y_i = \alpha(X_i, Z_i).$ 

**Remark**: The equivalence of Definitions 7.4 and 7.5 can be shown. See text-book.



- •

Assume both  $\mathcal{X}$  and  $\mathcal{Y}$  are finite.

**Definition 7.6** The capacity of a discrete memoryless channel p(y|x) is defined as

$$C = \max_{p(x)} I(X;Y),$$

where X and Y are respectively the input and the output of the generic discrete channel, and the maximum is taken over all input distributions p(x).

#### Remarks:

- Since I(X;Y) is a continuous functional of p(x) and the set of all p(x) is a compact set (i.e., closed and bounded) in R<sup>|X|</sup>, the maximum value of I(X;Y) can be attained.
- Will see that C is in fact the maximum rate at which information can be communicated reliably through a DMC.
- Can communicate through a channel at a positive rate while  $P_e \rightarrow 0!$

#### Example 7.7 (BSC)



Alternative representation of a BSC:

$$Y = X + Z \mod 2$$

with

$$\Pr\{Z=0\} = 1 - \epsilon \quad \text{and} \quad \Pr\{Z=1\} = \epsilon$$

and Z is independent of X.

Determination of C:

$$I(X;Y) = H(Y) - H(Y|X)$$
  
=  $H(Y) - \sum_{x} p(x)H(Y|X = x)$   
=  $H(Y) - \sum_{x} p(x)h_b(\epsilon)$   
=  $H(Y) - h_b(\epsilon)$   
 $\leq 1 - h_b(\epsilon)$ 

• So,  $C \leq 1 - h_b(\epsilon)$ .

- Tightness achieved by taking the uniform input distribution.
- Therefore,  $C = 1 h_b(\epsilon)$  bit per use.



#### Example 7.8 (Binary Erasure Channel)



Erasure probability =  $\gamma$ ;  $C = (1 - \gamma)$  bit per use

## 7.2 The Channel Coding Theorem

- **Direct Part** Information can be communicated through a DMC with an arbitrarily small probability of error at any rate less than the channel capacity.
- **Converse** If information is communicated through a DMC at a rate higher than the capacity, then the probability of error is bounded away from zero.

#### Definition of a Channel Code

**Definition 7.9** An (n, M) code for a discrete memoryless channel with input alphabet  $\mathcal{X}$  and output alphabet  $\mathcal{Y}$  is defined by an encoding function

$$f:\{1,2,\cdots,M\}\to \mathcal{X}^n$$

and a decoding function

$$g: \mathcal{Y}^n \to \{1, 2, \cdots, M\}.$$

- Message Set  $\mathcal{W} = \{1, 2, \cdots, M\}$
- Codewords  $f(1), f(2), \cdots, f(M)$
- **Codebook** The set of all codewords.

#### Assumptions and Notations

- W is randomly chosen from the message set  $\mathcal{W}$ , so  $H(W) = \log M$ .
- $\mathbf{X} = (X_1, X_2, \cdots, X_n); \mathbf{Y} = (Y_1, Y_2, \cdots, Y_n)$
- Thus  $\mathbf{X} = f(W)$ .
- Let  $\hat{W} = g(\mathbf{Y})$  be the estimate on the message W by the decoder.



#### **Error Probabilities**

**Definition 7.10** For all  $1 \le w \le M$ , let

$$\lambda_w = \Pr\{\hat{W} \neq w | W = w\} = \sum_{\mathbf{y} \in \mathcal{Y}^n : g(\mathbf{y}) \neq w} \Pr\{\mathbf{Y} = \mathbf{y} | \mathbf{X} = f(w)\}$$

be the conditional probability of error given that the message is w.

**Definition 7.11** The maximal probability of error of an (n, M) code is defined as

$$\lambda_{max} = \max_{w} \lambda_{w}.$$

**Definition 7.12** The average probability of error of an (n, M) code is defined as

$$P_e = \Pr\{\hat{W} \neq W\}.$$

## $P_e \; vs \; \lambda_{max}$

$$P_{e} = \Pr\{\hat{W} \neq W\}$$
  
$$= \sum_{w} \Pr\{W = w\}\Pr\{\hat{W} \neq W | W = w\}$$
  
$$= \sum_{w} \frac{1}{M} \Pr\{\hat{W} \neq w | W = w\}$$
  
$$= \frac{1}{M} \sum_{w} \lambda_{w},$$

• Therefore,  $P_e \leq \lambda_{max}$ .

### Rate of a Channel Code

**Definition 7.13** The rate of an (n, M) channel code is  $n^{-1} \log M$  in bits per use.

**Definition 7.14** A rate R is (asymptotically) achievable for a discrete memoryless channel if for any  $\epsilon > 0$ , there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon$$

and

 $\lambda_{max} < \epsilon.$ 

**Theorem 7.15 (Channel Coding Theorem)** A rate R is achievable for a discrete memoryless channel if and only if  $R \leq C$ , the capacity of the channel.

### 7.3 The Converse

• The communication system consists of the r.v.'s

$$W, X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n, \hat{W}$$

generated in this order.

• The memorylessness of the DMC imposes the following Markov constraint for each *i*:

$$(W, X_1, Y_1, \cdots, X_{i-1}, Y_{i-1}) \rightarrow X_i \rightarrow Y_i$$

• The dependency graph can be composed accordingly.



- Use q to denote the joint distribution and marginal distributions of all r.v.'s.
- For all  $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \hat{\mathcal{W}}$  such that  $q(\mathbf{x}) > 0$  and  $q(\mathbf{y}) > 0$ ,

$$q(w, \mathbf{x}, \mathbf{y}\,\hat{w}) = q(w) \left(\prod_{i=1}^{n} q(x_i|w)\right) \left(\prod_{i=1}^{n} p(y_i|x_i)\right) q(\hat{w}|\mathbf{y}).$$

- q(w) > 0 for all w so that  $q(x_i|w)$  are well-defined.
- $q(x_i|w)$  and  $q(\hat{w}|\mathbf{y})$  are deterministic.
- The dependency graph suggests the Markov chain  $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$ .
- This can be formally justified by invoking Proposition 2.9.

Show that for  $\mathbf{x}$  such that  $q(\mathbf{x}) > 0$ ,

$$q(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i)$$

First, for  $\mathbf{x}$  and  $\mathbf{y}$  such that  $q(\mathbf{x}) > 0$  and  $q(\mathbf{y}) > 0$ ,

$$q(\mathbf{x}, \mathbf{y}) = \sum_{w} \sum_{\hat{w}} q(w, \mathbf{x}, \mathbf{y}, \hat{w})$$

$$= \sum_{w} \sum_{\hat{w}} q(w) \left(\prod_{i} q(x_{i}|w)\right) \left(\prod_{i} p(y_{i}|x_{i})\right) q(\hat{w}|\mathbf{y})$$

$$= \sum_{w} q(w) \left(\prod_{i} q(x_{i}|w)\right) \left(\prod_{i} p(y_{i}|x_{i})\right) \sum_{\hat{w}} q(\hat{w}|\mathbf{y})$$

$$= \left[\sum_{w} q(w) \prod_{i} q(x_{i}|w)\right] \left[\prod_{i} p(y_{i}|x_{i})\right]$$

Furthermore,

$$q(\mathbf{x}) = \sum_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})$$

$$= \sum_{\mathbf{y}} \left[ \sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[ \prod_{i} p(y_{i}|x_{i}) \right]$$

$$= \left[ \sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \left[ \sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{n}} \prod_{i} p(y_{i}|x_{i}) \right]$$

$$= \left[ \sum_{w} q(w) \prod_{i} q(x_{i}|w) \right] \prod_{i} \left( \sum_{y_{i}} p(y_{i}|x_{i}) \right)$$

$$= \sum_{w} q(w) \prod_{i} q(x_{i}|w)$$

Therefore, for  $\mathbf{x}$  such that  $q(\mathbf{x}) > 0$ ,

$$q(\mathbf{y}|\mathbf{x}) = \frac{q(\mathbf{x}, \mathbf{y})}{q(\mathbf{x})} = \prod_{i} p(y_i|x_i)$$

## Why C is related to I(X;Y)?

- $H(\mathbf{X}|W) = 0$
- $H(\hat{W}|\mathbf{Y}) = 0$
- Since W and  $\hat{W}$  are essentially identical for reliable communication, assume

$$H(\hat{W}|W) = H(W|\hat{W}) = 0$$

• Then from the information diagram for  $W \to \mathbf{X} \to \mathbf{Y} \to \hat{W}$ , we see that

$$H(W) = I(\mathbf{X}; \mathbf{Y}).$$

• This suggests that the channel capacity is obtained by maximizing I(X;Y).



#### Building Blocks of the Converse

• For all  $1 \le i \le n$ ,

 $I(X_i; Y_i) \le C$ 

• Then

$$\sum_{i=1}^{n} I(X_i; Y_i) \le nC$$

• To be established in Lemma 7.16,

$$I(\mathbf{X};\mathbf{Y}) \le \sum_{i=1}^{n} I(X_i;Y_i)$$

• Therefore,

$$\frac{1}{n} \log M = \frac{1}{n} H(W)$$
$$= \frac{1}{n} I(\mathbf{X}; \mathbf{Y})$$
$$\leq \frac{1}{n} \sum_{i=1}^{n} I(X_i; Y_i)$$
$$\leq C$$

**Lemma 7.16**  $I(\mathbf{X}; \mathbf{Y}) \leq \sum_{i=1}^{n} I(X_i; Y_i)$ 

 $\mathbf{Proof}$ 

1. Establish

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{i=1}^{n} H(Y_i|X_i)$$

2.

$$I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})$$
  
$$\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i|X_i)$$
  
$$= \sum_{i=1}^{n} I(X_i; Y_i)$$

#### Formal Converse Proof

1. Let R be an achievable rate, i.e., for any  $\epsilon > 0$ , there exists for sufficiently large n an (n, M) code such that

$$\frac{1}{n}\log M > R - \epsilon \quad \text{and} \quad \lambda_{max} < \epsilon$$

2. Consider

$$\log M \stackrel{a)}{=} H(W)$$

$$= H(W|\hat{W}) + I(W;\hat{W})$$

$$\stackrel{b)}{\leq} H(W|\hat{W}) + I(\mathbf{X};\mathbf{Y})$$

$$\stackrel{c)}{\leq} H(W|\hat{W}) + \sum_{i=1}^{n} I(X_i;Y_i)$$

$$\stackrel{d)}{\leq} H(W|\hat{W}) + nC,$$

3. By Fano's inequality,

 $H(W|\hat{W}) < 1 + P_e \log M$ 

4. Then,

$$\log M < 1 + P_e \log M + nC$$
  
$$\leq 1 + \lambda_{max} \log M + nC$$
  
$$< 1 + \epsilon \log M + nC,$$

Therefore,

$$R - \epsilon < \frac{1}{n} \log M < \frac{\frac{1}{n} + C}{1 - \epsilon}$$

5. Letting  $n \to \infty$  and then  $\epsilon \to 0$  to conclude that  $R \leq C$ .

## Asymptotic Bound for Pe: Weak Converse

• For large n,

$$P_e \ge 1 - \frac{1 + nC}{\log M} = 1 - \frac{\frac{1}{n} + C}{\frac{1}{n}\log M} \approx 1 - \frac{C}{\frac{1}{n}\log M}$$

- $\frac{1}{n} \log M$  is the actual rate of the channel code.
- If  $\frac{1}{n} \log M > C$ , then  $P_e > 0$  for large n.
- This implies that if  $\frac{1}{n} \log M > C$ , then  $P_e > 0$  for all n.



## Strong Converse

• If there exists an  $\epsilon > 0$  such that  $\frac{1}{n} \log M \ge C + \epsilon$  for all n, then  $P_e \to 1$  as  $n \to \infty$ .

## 7.4 Achievability

- Consider a DMC p(y|x).
- For every input distribution p(x), prove that the rate I(X;Y) is achievable by showing for large n the existence of a channel code such that
  - 1. the rate of the code is arbitrarily close to I(X;Y);
  - 2. the maximal probability of error  $\lambda_{max}$  is arbitrarily small.
- Choose the input distribution p(x) to be one that achieves the channel capacity, i.e., I(X;Y) = C.

**Lemma 7.17** Let  $(\mathbf{X}', \mathbf{Y}')$  be *n* i.i.d. copies of a pair of generic random variables (X', Y'), where X' and Y' are independent and have the same marginal distributions as X and Y, respectively. Then

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} \le 2^{-n(I(X;Y)-\tau)},$$

where  $\tau \to 0$  as  $\delta \to 0$ .

#### Proof of Lemma 7.17

• Consider

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^n_{[XY]\delta}\} = \sum_{(\mathbf{x}, \mathbf{y}) \in T^n_{[XY]\delta}} p(\mathbf{x}) p(\mathbf{y})$$

- Consistency of strong typicality:  $\mathbf{x} \in T_{[X]\delta}^n$  and  $\mathbf{y} \in T_{[Y]\delta}^n$ .
- Strong AEP:  $p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}$  and  $p(\mathbf{y}) \leq 2^{-n(H(Y)-\zeta)}$ .
- Strong JAEP:  $|T_{[XY]\delta}^n| \leq 2^{n(H(X,Y)+\xi)}$ .
- Then

$$\Pr\{(\mathbf{X}', \mathbf{Y}') \in T^{n}_{[XY]\delta}\} \\
\leq 2^{n(H(X,Y)+\xi)} \cdot 2^{-n(H(X)-\eta)} \cdot 2^{-n(H(Y)-\zeta)} \\
= 2^{-n(H(X)+H(Y)-H(X,Y)-\xi-\eta-\zeta)} \\
= 2^{-n(I(X;Y)-\xi-\eta-\zeta)} \\
= 2^{-n(I(X;Y)-\tau)}$$

#### An Interpretation of Lemma 7.17



• Randomly choose a row with uniform distribution and randomly choose a column with uniform distribution.

 $\Pr\{\text{Obtaining a jointly typical pair}\} \approx \frac{2^{nH(X,Y)}}{2^{nH(X)}2^{nH(Y)}} = 2^{-nI((X;Y))}$ 

## Random Coding Scheme

- Fix  $\epsilon > 0$  and input distribution p(x). Let  $\delta$  to be specified later.
- Let M be an even integer satisfying

$$I(X;Y) - \frac{\epsilon}{2} < \frac{1}{n} \log M < I(X;Y) - \frac{\epsilon}{4},$$

where n is sufficiently large, i.e.,  $M \approx 2^{nI(X;Y)}$ .

The random coding scheme:

- 1. Construct the codebook  $\mathcal{C}$  of an (n, M) code by generating M codewords in  $\mathcal{X}^n$  independently and identically according to  $p(x)^n$ . Denote these codewords by  $\tilde{\mathbf{X}}(1), \tilde{\mathbf{X}}(2), \cdots, \tilde{\mathbf{X}}(M)$ .
- 2. Reveal the codebook  ${\mathcal C}$  to both the encoder and the decoder.
- 3. A message W is chosen from  $\mathcal{W}$  according to the uniform distribution.
- 4. Transmit  $\mathbf{X} = \tilde{\mathbf{X}}(W)$  through the channel.



- Generate each component according to p(x).
- There are a total of  $|\mathcal{X}|^{Mn}$  possible codebooks that can be constructed.
- Regard two codebooks whose sets of codewords are permutations of each other as two different codebooks.

5. The channel outputs a sequence  $\mathbf{Y}$  according to

$$\Pr{\{\mathbf{Y} = \mathbf{y} | \tilde{\mathbf{X}}(W) = \mathbf{x}\}} = \prod_{i=1}^{n} p(y_i | x_i)$$

- 6. The sequence  $\mathbf{Y}$  is decoded to the message w if
  - $(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta}$ , and
  - there does not exists  $w' \neq w$  such that  $(\tilde{\mathbf{X}}(w'), \mathbf{Y}) \in T^n_{[XY]\delta}$ .

Otherwise, **Y** is decoded to a constant message in  $\mathcal{W}$ . Denote by  $\hat{W}$  the message to which **Y** is decoded.

#### **Performance Analysis**

• To show that  $\Pr{Err} = \Pr{\{\hat{W} \neq W\}}$  can be arbitrarily small.

$$Pr\{Err\} = \sum_{w=1}^{M} Pr\{Err|W = w\} Pr\{W = w\}$$
$$= Pr\{Err|W = 1\} \sum_{w=1}^{M} Pr\{W = w\}$$
$$= Pr\{Err|W = 1\}$$

• For  $1 \le w \le M$ , define the event

$$E_w = \{ (\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T^n_{[XY]\delta} \}$$



• If  $E_1$  occurs but  $E_w$  does not occur for all  $2 \le w \le M$ , then no decoding error. Therefore,

$$\Pr\{Err^{c}|W=1\} \ge \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W=1\}$$

$$\Pr\{Err|W = 1\} = 1 - \Pr\{Err^{c}|W = 1\}$$
  

$$\leq 1 - \Pr\{E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c}|W = 1\}$$
  

$$= \Pr\{(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \dots \cap E_{M}^{c})^{c}|W = 1\}$$
  

$$= \Pr\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \dots \cup E_{M}|W = 1\}$$

• By the union bound,

$$\Pr\{Err|W=1\} \le \Pr\{E_1^c|W=1\} + \sum_{w=2}^M \Pr\{E_w|W=1\}$$

• By strong JAEP,

$$\Pr\{E_1^c | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(1), \mathbf{Y}) \notin T_{[XY]\delta}^n | W = 1\} < \nu$$

- Conditioning on  $\{W = 1\}$ , for  $2 \le w \le M$ ,  $(\mathbf{X}(w), \mathbf{Y})$  are *n* i.i.d. copies of the pair of generic random variables (X', Y'), where X' and Y' have the same marginal distributions as X and Y, respectively.
- Since a DMC is memoryless, X' and Y' are independent because X(1) and X(w) are independent and the generation of Y depends only on X(1). See textbook for a formal proof.
- By Lemma 7.17,

$$\Pr\{E_w | W = 1\} = \Pr\{(\tilde{\mathbf{X}}(w), \mathbf{Y}) \in T_{[XY]\delta}^n | W = 1\}$$
$$\leq 2^{-n(I(X;Y) - \tau)}$$

where  $\tau \to 0$  as  $\delta \to 0$ .

$$\frac{1}{n}\log M < I(X;Y) - \frac{\epsilon}{4} \iff M < 2^{n(I(X;Y) - \frac{\epsilon}{4})}$$

• Therefore,

$$\Pr\{Err\} < \nu + 2^{n(I(X;Y) - \frac{\epsilon}{4})} \cdot 2^{-n(I(X;Y) - \tau)} = \nu + 2^{-n(\frac{\epsilon}{4} - \tau)}$$

•  $\epsilon$  is fixed. Since  $\tau \to 0$  as  $\delta \to 0$ , we can choose  $\delta$  to be sufficiently small so that

$$\frac{\epsilon}{4} - \tau > 0$$

• Then 
$$2^{-n(\frac{\epsilon}{4}-\tau)} \to 0$$
 as  $n \to \infty$ .

• Let  $\nu < \frac{\epsilon}{3}$  to obtain

$$\Pr\{Err\} < \frac{\epsilon}{2}$$

for sufficiently large n.

#### Idea of Analysis

- Let n be large.
- $\Pr{\{\tilde{\mathbf{X}}(1) \text{ jointly typical with } \mathbf{Y}\}} \rightarrow 1.$
- For  $i \neq 1$ ,  $\Pr{\{\tilde{\mathbf{X}}(i) \text{ jointly typical with } \mathbf{Y}\}} \approx 2^{-nI(X;Y)}$ .
- If  $|\mathcal{C}| = M$  grows at a rate  $\langle I(X; Y)$ , then

 $\Pr{\{\tilde{\mathbf{X}}(i) \text{ jointly typical with } \mathbf{Y} \text{ for some } i \neq 1 \}}$ 

can be made arbitrarily small.

• Then  $\Pr{\{\hat{W} \neq W\}}$  can be made arbitrarily small.

#### Existence of Deterministic Code

• According to the random coding scheme,

$$\Pr{Err} = \sum_{\mathcal{C}} \Pr{\mathcal{C}} \Pr{Err|\mathcal{C}}$$

• Then there exists at least one codebook  $\mathcal{C}^*$  such that

$$P_e = \Pr\{Err|\mathcal{C}^*\} \le \Pr\{Err\} < \frac{\epsilon}{2}$$

• By construction, this codebook has rate

$$\frac{1}{n}\log M > I(X;Y) - \frac{\epsilon}{2}$$

#### Code with $\lambda_{max} < \epsilon$

- We want a code with  $\lambda_{max} < \epsilon$ , not just  $P_e < \epsilon/2$ .
- Technique: Discard the worst half of the codewords in  $\mathcal{C}^*$ .
- Consider

$$\frac{1}{M}\sum_{w=1}^{M}\lambda_w < \frac{\epsilon}{2} \iff \sum_{w=1}^{M}\lambda_w < \left(\frac{M}{2}\right)\epsilon$$

• Observation: the conditional probabilities of error of the better half of the M codewords are  $< \epsilon$  (M is even).

• After discarding the worse half of  $\mathcal{C}^*$ , the rate of the code becomes

$$\frac{1}{n}\log\frac{M}{2} = \frac{1}{n}\log M - \frac{1}{n}$$

$$> \left(I(X;Y) - \frac{\epsilon}{2}\right) - \frac{1}{n}$$

$$> I(X;Y) - \epsilon$$

• Here we assume that the decoding function is unchanged, so that deletion of worst half of the codewords does not affect the conditional probabilities of error of the remaining codewords.

## 7.5 A Discussion

- The channel coding theorem says that an indefinitely long message can be communicated reliably through the channel when the block length  $n \to \infty$ . This is much stronger than BER  $\to 0$ .
- The direct part of the channel coding theorem is an existence proof (as opposed to a constructive proof).
- A randomly constructed code has the following issues:
  - Encoding and decoding are computationally prohibitive.
  - High storage requirements for encoder and decoder.
- Nevertheless, the direct part implies that when n is large, if the codewords are chosen randomly, most likely the code is good (Markov lemma).
- It also gives much insight into what a good code would look like.
- In particular, the repetition code is not a good code because the numbers of '0' and '1's in the codewords are not roughly the same.



The number of codewords cannot exceed about

$$\frac{2^{nH(Y)}}{2^{nH(Y|X)}} = 2^{nI(X;Y)} = 2^{nC}$$

## Channel Coding Theory

- Construction of codes with efficient encoding and decoding algorithms falls in the domain of channel coding theory.
- Performance of a code is measured by how far the rate is away from the channel capacity.
- All channel codes used in practice are linear: efficient encoding and decoding in terms of computation and storage.
- Channel coding has been widely used in home entertainment systems (e.g., audio CD and DVD), computer storage systems (e.g., CD-ROM, hard disk, floppy disk, and magnetic tape), computer communication, wireless communication, and deep space communication.
- The most popular channel codes used in existing systems include the Hamming code, the Reed-Solomon code, the BCH code, and convolutional codes.
- In particular, turbo code, a kind of convolutional code, is "capacity achieving."

## 7.6 Feedback Capacity

- Feedback is common in practical communication systems for correcting possible errors which occur during transmission.
- Daily example: phone conversation.
- Data communication: the receiver may request a packet to be retransmitted if the *parity check* bits received are incorrect (Automatic RepeatreQuest).
- The transmitter can at any time decide what to transmit next based on the feedback so far
- Can feedback increase the channel capacity?
- Not for DMC, even with complete feedback!

**Definition 7.18** An (n, M) code with complete feedback for a discrete memoryless channel with input alphabet  $\mathcal{X}$  and output alphabet  $\mathcal{Y}$  is defined by encoding functions

$$f_i: \{1, 2, \cdots, M\} \times \mathcal{Y}^{i-1} \to \mathcal{X}$$

for  $1 \leq i \leq n$  and a decoding function

$$g: \mathcal{Y}^n \to \{1, 2, \cdots, M\}.$$

Notations:  $\mathbf{Y}^{i} = (Y_{1}, Y_{2}, \cdots, Y_{i}), X_{i} = f_{i}(W, \mathbf{Y}^{i-1})$ 



**Definition 7.19** A rate R is achievable with complete feedback for a discrete memoryless channel p(y|x) if for any  $\epsilon > 0$ , there exists for sufficiently large n an (n, M) code with complete feedback such that

$$\frac{1}{n}\log M > R - \epsilon$$

and

 $\lambda_{max} < \epsilon.$ 

**Definition 7.20** The feedback capacity,  $C_{FB}$ , of a discrete memoryless channel is the supremum of all the rates achievable by codes with complete feedback.

**Proposition 7.21** The supremum in the definition of  $C_{FB}$  in Definition 7.20 is the maximum.



• The above is the dependency graph for a channel code with feedback, from which we obtain

$$q(w, \mathbf{x}, \mathbf{y}, \hat{w}) = q(w) \left( \prod_{i=1}^{n} q(x_i | w, \mathbf{y}^{i-1}) \right) \left( \prod_{i=1}^{n} p(y_i | x_i) \right) q(\hat{w} | \mathbf{y})$$

for all  $(w, \mathbf{x}, \mathbf{y}, \hat{w}) \in \mathcal{W} \times \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{W}$  such that  $q(w, \mathbf{y}^{i-1}), q(x_i) > 0$  for  $1 \leq i \leq n$  and  $q(\mathbf{y}) > 0$ , where  $\mathbf{y}^i = (y_1, y_2, \cdots, y_i)$ .

**Lemma 7.22** For all  $1 \le i \le n$ ,

$$(W, \mathbf{Y}^{i-1}) \to X_i \to Y_i$$

forms a Markov chain.

**Proof** First establish the Markov chain

$$(W, \mathbf{X}^{i-1}, \mathbf{Y}^{i-1}) \to X_i \to Y_i$$

by Proposition 2.9 (see the dependency graph for  $W, \mathbf{X}^{i}$ , and  $\mathbf{Y}^{i}$ ).



- Consider a code with complete feedback.
- Consider

$$\log M = H(W) = I(W; \mathbf{Y}) + H(W|\mathbf{Y}).$$

• First,

$$I(W; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|W)$$
  
=  $H(\mathbf{Y}) - \sum_{i=1}^{n} H(Y_i|\mathbf{Y}^{i-1}, W)$   
 $\stackrel{a)}{=} H(\mathbf{Y}) - \sum_{i=1}^{n} H(Y_i|\mathbf{Y}^{i-1}, W, X_i)$   
 $\stackrel{b)}{=} H(\mathbf{Y}) - \sum_{i=1}^{n} H(Y_i|X_i)$   
 $\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i|X_i)$   
 $= \sum_{i=1}^{n} I(X_i; Y_i)$   
 $\leq nC,$ 

• Second,

#### $H(W|\mathbf{Y}) = H(W|\mathbf{Y}, \hat{W}) \le H(W|\hat{W})$

- Then upper bound  $H(W|\hat{W})$  by Fano's inequality.
- Filling in the  $\epsilon$ 's and  $\delta$ 's, we conclude that

 $R \leq C$ 

#### Remark

- 1. Although feedback does not increase the capacity of a DMC, the availability of feedback often makes coding much simpler. See Example 7.23.
- 2. In general, if the channel has memory, feedback can increase the capacity.

## 7.7 Separation of Source and Channel Coding

- Consider transmitting an information source with entropy rate H reliably through a DMC with capacity C.
- If H < C, this can be achieved by separating source and channel coding without using feedback.
- Specifically, choose  $R_s$  and  $R_c$  such that

$$H < R_s < R_c < C$$

• It can be shown that even with complete feedback, reliable communication is impossible if H > C.

$$U \longrightarrow \begin{bmatrix} \text{source} & W \\ \text{encoder} & \end{bmatrix} \begin{bmatrix} \text{channel} & X \\ \text{encoder} & \end{bmatrix} \begin{bmatrix} Y \\ p(y|x) & \end{bmatrix} \begin{bmatrix} \text{channel} & \hat{W} \\ \text{decoder} & \end{bmatrix} \begin{bmatrix} \hat{W} \\ \text{decoder} & \end{bmatrix} \begin{bmatrix} \text{source} \\ \text{decoder} & \end{bmatrix} \begin{bmatrix} \hat{W} \\ \text{decoder} & \end{bmatrix} \end{bmatrix} \begin{bmatrix} \hat{W} \\ \text{decoder} & \end{bmatrix} \begin{bmatrix} \hat{W} \\ \text{decoder} & \end{bmatrix} \end{bmatrix} \begin{bmatrix} \hat{W} \\ \text{decoder} & \end{bmatrix} \begin{bmatrix} \hat{W} \\ \text{decoder} & \end{bmatrix} \end{bmatrix} \begin{bmatrix} \hat{W} \\ \text{decoder}$$

The separation theorem for source and channel coding has the following engineering implications:

- asymptotic optimality can be achieved by separating source coding and channel coding
- the source code and the channel code can be designed separately without losing asymptotic optimality
- only need to change the source code for different information sources
- only need to change the channel code for different channels

**Remark** For finite block length, the probability of error generally can be reduced by using joint source-channel coding.